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angiosperm phylogenetic tree following the maximum par-
simony principle. In line with this, it could be hypothesized 
that: the open style appeared in the early divergent angio-
sperms; the closed type of style originated in Asparagales, 
Poales, and Eudicots; and the semi-closed style appeared 
in Rosids, Ericales, and Gentianales. The open style seems 
to have been lost in core Eudicots, with reversions in some 
Rosids and Asterids.
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Introduction

The success of sexual reproduction of angiosperms depends 
on a series of interactions between the pollen grain and the 
different tissues of the pistil, including pollen germination 
on the stigma, the pollen tube growth and the guidance 
through style followed by a successful fertilization (Heslop-
Harrison 1975a, b; Linskens 1986; Clarke et al. 1979; Gaude 
and Mccormick 1999; Acosta et al. 2007). Differences in 
the contribution of the sporophytic tissues that interact 
with the male gametophyte are observed along evolution, 
and were extensively studied in angiosperms (Whitehead 
1969; Mulcahy 1979; Eriksson and Bremer 1992; Herrero 
1992; Hormaza and Herrero 1992; Sargent and Otto 2004; 
Lora et al. 2016). These interactions will likely involve 
a complex cross talk, controlled by a genetic system that 
regulates the biochemical and molecular environments nec-
essary: protein–protein or simple molecules such as water, 
ions, lipids, sugars, calcium (Cheung 1996; Gaude and 
Mccormick 1999; Acosta et al. 2007). A specialized set of 
tissues that interact with the pollen tube and facilitate its 
access to the female gametophyte evolved in angiosperms 
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(Bell 1995; Herrero and Hormaza 1996; Sage et al. 2009; 
Williams et al. 2010). The functional attributes of the pro-
gamic phase are controlled by structural changes that exhibit 
considerable variation among species associated with differ-
ences in pollen–pistil interaction and their characteristics 
(Heslop-Harrison and Shivanna 1977; Erbar 2003; Edlund 
et al. 2004; Hiscock and Allen 2008; Williams 2009; Cruden 
2009; Williams et al. 2016; Harder et al. 2016). Two of the 
most notable events are the specialization of a receptive sur-
face in the stigma and the transmitting tissue (Endress and 
Igersheim 2000; Sage et al. 2009; Williams 2009; Endress 
2011). In the stigma, some molecules that play a role in the 
interaction with pollen regulate the compatibility systems, 
such a self-incompatibility (SI). For instance, in Brassica L., 
locus SI encodes two proteins present on the surface of the 
stigma, a transmembrane tyrosine kinase receptor (SRK) and 
extracellular glycoprotein (SGL) (Stein et al. 1996). How-
ever, Acosta et al. (2007) found that a pollen–stigma adhe-
sion in Arabidopsis thaliana L. is an interaction mediated 
by lipophilic molecules. In the open style of lily, adhesion 
molecules, pectin, and stigma/stylar cysteine-rich adhesion 
(SCA) are implicated in guidance (Lord 2003). In vitro assay 
results suggest that SCA alone may induce pollen chemotro-
pism, playing a dual role in lily pollination: chemotactic in 
the stigma and haptotactic (adhesion mediated) in the style 
(Lord 2003). According to Lord (2003), there is a hierarchy 
of signaling events in pollen–pistil interactions starting at 
the stigma and ending at the micropyle, before pollen tubes 
can respond to ovule cues.

Cellular studies on this area are usually focused on indi-
vidual pollen tube growth and their interaction with the 
stylar tissues (Malhó et al. 2006; Krichevsky et al. 2007; 
Moscatelli and Idilli 2009; Rounds et al. 2011; Dresselhaus 
and Franklin-Tong 2013). According to Harder et al. (2016), 
biochemical and cellular studies of pollen tube growth 
should consider heterogeneous conditions in styles, includ-
ing the availability of space and other resources as well as 
pollen tubes interactions between them. Undoubtedly, these 
conditions should vary according to the morphology and 
cellular ultrastructure of the style. Hence, in this review, 
we explore the style types according to their morphology 
and anatomy in angiosperms in order to systematize this 
primordial information. We also highlight the advances on 
the pollen–style interactions and discuss the histology and 
ultrastructure of the styles types, considering their implica-
tions in the pollen tube paths.

Pollen tube growth and its interaction 
with the sporophytic tissues

During angiosperm reproduction, pollen grains form a tube 
that grows through pistil tissues to the ovule micropyle 

(Palanivelu et al. 2003). Details of the progression of the 
pollen tube through the gynoecium, beginning with germina-
tion of the pollen grain on the stigma and culminating with 
delivery of the sperm cells to the synergid of the embryo sac, 
are well established for many species (Knox 1984; Heslop-
Harrison 1987; Bedinger et al. 1994; Cheung 1996; Wil-
helmi and Preuss 1997; Lennon et al. 1998).

Studies on pollen tube growth are critical to understand 
the nature and regulation of sexual plant reproduction 
(Eberle et al. 2012). The pollen tube pathway evolved from 
an extragynoecial compitum to an internalized one through 
syncarpy. In the basal angiosperm lineages (the ANA grade 
of Amborella Baill., Nymphaeales, and Austrobaileyales) 
and the magnoliids, the carpels are generally free from each 
other, the style is very short or absent, and the compitum is 
in most cases extragynoecial, in species with either apocar-
pous or syncarpous gynoecia. Therefore, in many different 
species, the pollen tubes can start to grow before they reach 
the style, in the stigma–style interface (Endress 1982, 2015; 
Endress and Igersheim 2000). In contrast, most Eudicots 
and monocots show a syncarpous gynoecium in which the 
pollen tube, following stigmatic germination, traverses the 
style to reach the ovary locule and the ovule. As a result, 
stylar tissues constitute an internal compitum that allows 
pollen competition and selection (Endress 1982). The intrag-
ynoecial compitum offers greater advantages by providing 
favorable conditions and the necessary nutrition for pollen 
tubes (Labarca and Loewus 1972, 1973; Herrero and Dick-
inson 1981; Cheung et al. 1995; Wu et al. 1995; Herrero and 
Hormaza 1996). The evolution of distinct degrees of carpel 
closure and syncarpy evidently has impacted in the pollen 
tube track location (Endress 2015).

The canal and the transmitting tissue of the style provide 
an extracellular secretion that is incorporated into pollen 
tubes allowing a heterotrophic pollen tube growth (Labarca 
and Loewus 1973; Herrero and Dickinson 1981) that dif-
fers from the autotrophous pollen tube growth in the stigma 
(Herrero and Dickinson 1981; Stephenson et al. 2003). The 
stylar transmitting tissue is composed of highly secretory 
cells characterized by the production of an extensive extra-
cellular matrix (ECM) (Sassen 1974; Lennon et al. 1998). 
The actual roles that this ECM plays in pollination are 
currently unknown, although functions proposed include 
mechanical and chemotropic pollen tube guidance (Knox 
et al. 1976; Knox 1984; Clarke et al. 1979; Heslop-Harrison 
1987; Sanders and Lord 1989; Vennigerholz 1992; Cheung 
et al. 1995; Wu et al. 1995; Jauh and Lord 1995; Wilhelmi 
and Preuss 1996, 1997; Jauh et al. 1997; Malhó 1998; Wil-
helmi and Preuss 1999; Shimizu and Okada 2000), as well 
as pollen tube nutrition (Kroh et al. 1970; Wu et al. 1995; 
Lind et al. 1996). Mainly carbohydrates and proteins com-
pose the intercellular matrix (Knox 1984). There are also 
some pistil-specific glycoproteins (Herrero and Hormaza 
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1996). The transmitting tissue-specific glycoprotein (TTS) 
attracts pollen tubes and stimulates their growth; it adheres 
and incorporates into pollen tube walls (Cheung et  al. 
1995; Erbar 2003). This proposal is becoming increasingly 
accepted (Sanders and Lord 1989; Cheung 1996; Lord and 
Kohorn 1986; Wilhelmi and Preuss 1996; Lennon et al. 
1998). Pollen tube growth is believed to be heterotrophic at 
the expenses of the stylar reserves (Herrero and Dickinson 
1981). In many cases, the route of the pollen tubes depends 
on the structure of the transmitting tissue. In most species, 
the pathway is provided by the presence of thickened mid-
dle lamellae or by secretions produced by epithelial cells 
lining a canal (Crawford and Yanofsky 2008). However, 
other possible pathways were also described. For instance, 
pollen tubes were also observed growing through the cell 
wall and between the plasma membrane and the cell wall 
(Wilms 1980) and through the cytoplasm of the epithelial 
cells (Gotelli et al. 2012). This last report is an isolated case, 
and more studies are needed to confirm if the pollen tube can 
really pass through the plasmalemma.

A highly regulated tip growth of the pollen tube is 
required for plant fertility. Pollen tube growth is associated 
with several types of intracytoplasmic movements (Pierson 
and Cresti 1992; Mascarenhas 1993). A large number of 
secretory vesicles accumulate in the tip region and fuse with 
the apical membrane, providing new membrane and cell wall 
precursors to the growing pollen tube. A conspicuous mass 
of organelles moves along the pollen tube for the proper tip-
directed elongation. Polarized growth is maintained mostly 
by two factors: the tip-to-base gradient of Ca2+ distribution 
within the pollen tube (Miller et al. 1992) and the cytoskele-
ton (Hepler et al. 2001). While the internal Ca2+ distribution 
could act as a factor of general control during tube elonga-
tion (Lenartowska et al. 2001; Ge et al. 2009; Hepler et al. 
2012; Steinhorst and Kudla 2013), it seems likely that the 
cytoskeleton represents the molecular machinery that effec-
tively moves vesicles and other organelles (Heslop-Harrison 
et al. 1988; Moscatelli et al. 1995). Suwinska et al. (2017) 
claimed that, in Petunia Juss. calreticulin is needed for the 
tip-focused Ca2+ homeostasis and for the actin cytoskeleton 
arrangement and function, required for several key processes 
involved in the pollen tube tip growth. It is believed that 
pollen germination and pollen tube growth depend on the 
presence of Ca2+ in the medium (Brewbaker and Kwack 
1963). Zhao et al. (2004) described an increase of detect-
able levels of Ca2+ in the cytoplasm and vesicles near the 
pollen tube tip, in the transmitting tract extracellular matrix 
binding to the stylar cell and in the pollen tube walls after 
pollination in lily. Bednarska et al. (2005) reported that pol-
lination induces an accumulation of Ca2+ in the apoplast of 
the stigma. According to Rosenfeldt and Galati (2009) the 
subcellular localization of Ca2+ ions in stigmas of species 
of Oxalis L. differs between developmental stages, being the 

highest during anthesis, but it is the same between different 
stylar morphs (heterostyly).

Stigma/style cysteine-rich adhesins (SCA) and planto-
cyanins are involved in pollen tube tip growth and guidance 
(Dong et al. 2005; Chae and Lord 2011; Qu et al. 2015), 
and chemocyanins appear to play a role in adhesion of the 
pollen tube to the stylar tissue (Park et al. 2000). Dowd et al. 
(2006) cloned the cDNA for PI-PLC of Petunia inflata R. E. 
Fr. named Pet PLC1, which is expressed in growing pollen 
tube. Pet PLC1 is involved in stabilizing the apical Ca2+ 
gradient normally required for directed tip growth and in 
maintaining actin dynamics associated with growth. These 
authors suggest that Pet PLC1 is an important element of the 
cellular machinery allowing pollen tube extension.

Other regulators of pollen tube tip growth include mono-
meric G-proteins (Fu et al. 2001; Wu et al. 2001; Chen et al. 
2003; Gu et al. 2005). GABA (γ-amino butyric acid) is an 
extracellular signal for several cells; it is a neurotransmitter 
(Maitre et al. 2000) and a regulator of hormone secretion 
in endocrine organs (Gamel-Didelon et al. 2002; Satin and 
Kinard 1998). Plant cells can secrete GABA (Chung et al. 
1992), and the pop2 defect raises the possibility that GABA 
plays a signaling role in guiding pollen tubes. Palanivelu 
et al. (2003) described the role for GABA in pollen tube 
growth and guidance in Arabidopsis. They identified the 
Arabidopsis POP2 gene as a GABA transaminase and dem-
onstrated that decreased POP2 activity leads to increased 
levels of GABA throughout the ovule, coupled with aberrant 
growth and guidance of pop2 pollen tubes.

Arabinogalactan glycoproteins (AGPs) are believed to 
have numerous functions for cell-to-cell interactive pro-
cesses (Kreuger and van Holst 1993; Showalter 1993; Serpe 
and Nothnagel 1995) and constitute a major class of proteins 
in the extracellular matrix of the transmitting tissue and in 
the stigma exudates (Clarke et al. 1979; Gleeson and Clarke 
1980). In Nicotiana tabacum L. a transmitting tissue-specific 
(TTS) protein belonging to the AGPs family attracts pol-
len tubes and promotes tube elongation (Wang et al. 1993; 
Cheung et al. 1995; Wu et al. 1995, 2000). AGPs act as 
a nutrient source as pollen tubes deglycosylate TTS pro-
teins to free the carbohydrate from the protein backbone 
(Wu et al. 1995; Sanchez et al. 2004). However, the mecha-
nism by which AGPs contribute to pollen tube guidance 
is not clear (Sommer-Knudsen et al. 1998; Higashiyama 
and Hamamura 2008; Hiscock and Allen 2008). In Trithu-
ria Hook. F., AGPs have a similar role in the hairs that are 
homologous to the stigmatic papilla of most angiosperms 
and function as stigma and style (Prychid et al. 2011). Ara-
binogalactan proteins are also expressed in the ovule and 
in the synergids of other species (Pereira et al. 2014; Lopes 
et al. 2016). In Malus domestica Borkh. the secretion of 
glycoproteins on the obturator surface is concomitant with 
pollen tube arrival at this structure, and AGPs are depleted 



	 Plant Reprod

1 3

after pollen tube passage, suggesting a role in regulating 
pollen tube access to the ovule (Losada and Herrero 2017). 
According to Okuda and Higashiyama (2010), cysteine-rich 
polypeptides (LUREs) secreted by the synergids cells are 
the key molecules at the last step of pollen tube guidance.

Styles types

In relation to its transmitting function and anatomy, styles 
can be classified into three different types: open, closed, or 
semi-closed (Johri 1984; Satina 1944; Knox 1984; Gasser 
and Robinson-Beers 1993). The open style is characterized 
by a canal lined with a glandular epidermis or epithelium 
and is more common among the monocots; the closed style, 
usually present in Eudicots, has a core of transmitting tissue; 
and, in semi-closed style, the transmitting tissue is limit-
ing the stylar canal (Vasil and Johri 1964; Vasil 1974; Johri 
1984).

Styles and pollen tube pathways in basal 
angiosperms

In the early divergent angiosperms, the precise pathway of 
the pollen tubes is known for a few species. In Brasenia 
Schreb., Cabomba Aubl., Nymphaea L., Victoria Lindl. 
Austrobaileya C. T. White, Illicium L., Trimenia Seem., 
Tasmannia R. Br. ex DC., and Annona L. a stylar, canal is 
distinct at least at some part of the stylar region, and it is 
coated by uniseriate epithelium with uninucleate secretory 
cells (Orban and Bouharmont 1995; Endress and Igersheim 
1997; Bernhardt et al. 2003; Frame 2003; Lyew et al. 2007; 
Sage et al. 2009; Taylor and Williams 2009; Lora et al. 2010; 
Williams et al. 2010; Galati et al. 2016, table 1). The pollen 
tubes enter the stylar canal in these taxa; however, they do 
not necessarily start their growth in it. In Cabomba carolini-
ana A. Gray pollen tubes first grow through the intercellular 
lamella of the substigmatic ground stylar tissue adjacent to 
the stigmatic papillae and then grow into the stylar canal 
(Galati et al. 2016). In the syncarpous gynoecium of Nym-
phaea, the stylar portion (no true style) is also composed by 
a solid tract formed by the postgenitally fused epidermis, 
determining intercellular growth of the pollen tubes at this 
region (Orban and Bouharmont 1995; Williams et al. 2010). 
Many pollen tubes displace freely within the canal rich in 
secretion in Nymphaea and Cabomba (Williams et al. 2010; 
Galati et al. 2016), whereas only one to three of them can 
penetrate the short and narrow stylar canal in Annona (Lora 
et al. 2010). Trithuria (Hydatellaceae) is devoid of a style but 
long stigmatic papillae function as a style. In this genus, the 
pollen tubes penetrate the hair cuticle and grow through the 
outer layer of the cell wall (Prychid et al. 2011).

In Amborella trichopoda Baill., the pollen tube grows 
through a continuous line of secretion from stigma to the 
open stylar canal and the ovarian cavity (Endress and Iger-
sheim 2000; Williams 2009). The brief style presents a 
secretory canal not bounded by a distinct epidermal layer, so 
it was considered as semi-closed (Williams 2009). Accord-
ing to Sage et al. (2009), the cuticular matrices from adja-
cent stigmatic papillae become fused during development, 
forming a stigmatic matrix that structurally resembles a 
“solid style” in other angiosperms. Enfolding of the carpel 
margins in the pseudostyle offers protection to the growing 
pollen tube (Lyew et al. 2007) and to a minor amount of 
ECM present over the secretory slit. The role of the pseu-
dostyle is more or less similar to that of the usual compitum 
in confining the pollen tube growth along the secretory path 
and regulating the number of pollen tubes (Erbar 2003). The 
pathway in the stylar region is in most cases intercellular, 
through the extracellular matrix between the loose secre-
tory cells bordering the canal, and only in few occasions 
pollen tube enters the stylar canal if proceeds from a pollen 
grain just above its open mouth (Williams 2009). Similar 
growth pattern of pollen tubes is reported in Trimenia Seem. 
in which the two surfaces of the carpel are appraised to each 
other and secretion is also present, but the pollen tube grows 
intercelullarly between subepithelial cells (Bernhardt et al. 
2003). This partly hidden pollen tube growth pattern is 
similar to that reported in Winteraceae (Canellales) (Frame 
2003), Schisandraceae (Austrobaileyales) (Lyew et al. 2007) 
and other basal angiosperms (Endress and Igersheim 2000; 
Bernhardt et al. 2003; Thien et al. 2003; Lora et al. 2010, 
2016). Sarcandra Gardner and Chloranthus Sw. (Chloran-
thaceae, Chloranthales) also possess a stylar canal delimited 
by an epithelium, but pollen tubes elongate intercellulary 
within the extracellular matrix of the inner tangential wall 
of the canal epidermal cells (Hristova et al. 2005).

Open styles

Open type styles are characterized by a canal lined with 
a glandular epidermis or secretory epithelium (Tilton and 
Horner 1980; Ciampolini et al. 1981; Dickinson et al. 1982). 
They are mostly present in monocots (Johri 1984, table 1); 
however, there are reports of Eudicots with open styles too 
(Gotelli et al. 2012, table 1). The ultrastructure of the epithe-
lial cells was studied in some species, and it is characterized 
by the presence of abundant rough endoplasmic reticulum, 
usually with cisterns parallel to the external tangential wall, 
vacuoles, many mitochondria, plastids that contain well-
developed grana and lipidic globules inside, numerous dic-
tyosomes, and vesicles (Rosen and Thomas 1970; Vasilev 
1970; Clarke et al. 1977; Tilton and Horner 1980; Ciampo-
lini et al. 1981; Owens et al. 1984; Lord and Kohorn 1986; 
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Leins and Erbar 2005; Reinhardt et al. 2007; Castro et al. 
2008; Gotelli et al. 2012; Galati et al. 2016).

Ciampolini et al. (1981) found that the inner tangential 
walls of Citrus x limon (L.) Osbeck were formed by two lay-
ers: the original wall and the inner one formed by subsequent 
deposition of abundant materials of different origin. Local-
ized wall expansions or wall ingrowths toward the interior 
of the cell were also found in the epithelial cells of Lilium 
L. (Rosen and Thomas 1970; Vasilev 1970), Gladiolus L. 
(Clarke et al. 1977), Ornithogalum caudatum Jacq. (Tilton 
and Horner 1980), Strelitzia reginae Aiton (Kronestedt and 
Walles 1986), Sternbergia Waldstein & Kitaibel (Ciampo-
lini et al. 1990), Ornithogalum sigmoideum Freyn & Sint. 
(Ismailoglu and Ünal 2012) and, Discaria americana Gillies 
& Hook. (Gotelli et al. 2012). This is a common charac-
teristic of transfer cells (Gunning and Pate 1969; Pate and 
Gunning 1972). According to Tilton and Horner (1980) the 
increase in surface area in transfer cells facilitates intracel-
lular transport and transfer of the secretion products into 
the canal.

The stylar canal of Polygala vayredae is surrounded by 
metabolically active cells and has lipid rich mucilage (Cas-
tro et al. 2008). In Cabomba caroliniana the ultrastructure 
of the glandular epidermal cells shows abundant mitochon-
dria, plastids, RER, and dictyosomes (Galati et al. 2016). 
Considerable dictyosomic activity was observed in Citrus 
limon (Ciampolini et al. 1981) and in C. caroliniana (Galati 
et al. 2016). Ismailoglu and Ünal (2012) described the ultra-
structure of the open style of Ornithogalum sigmoideum and 
considered that the presence of abundant endoplasmic retic-
ulum, dictyosomes, mitochondria, plastids, and ribosomes 
would indicate the secretory function of these cells. The 
presence of ER, active dictyosomes, and abundant starch-
containing plastids in epithelial cells is correlated with the 
synthesis and secretion of proteins, polysaccharides, and 
lipids required for pollen tube growth (Tilton and Horner 
1980; Kandasamy and Kristen 1987; Ciampolini et al. 1990; 
Ciampolini and Cresti 1997). The presence of abundant and 
active dictyosomes is linked to the synthesis and secretion 
of polysaccharides (Ciampolini et al. 1988), while there is a 
close relationship between lipid accumulation and the pres-
ence and activity of ER with abundant plastids (Ismailoglu 
and Ünal 2012).

Secretions found in stylar canals are usually rich in poly-
saccharides and proteins. Secretion products found in the 
canal of Citrus L. (Ciampolini et al. 1981), Strelitzia reginae 
Aiton (Kronestedt and Walles 1986), and Ornithogalum sig-
moideum (Ismailoglu and Ünal 2012), consist of insoluble 
polysaccharides, proteins, and lipids. In Lilium (Labarca 
and Loewus 1973), Annona (Vithanage 1984), Sternber-
gia (Ciampolini et al. 1990), and in Cabomba caroliniana 
(Galati et al. 2016) secretions show a weak reaction for pro-
teins but are rich in polysaccharides. According to van Went 

and Willemse (1984), the secretion products of the canal 
epithelial cells in open styles are compared with the extra-
cellular matrix of the transmitting tissue in closed styles. 
Galati et al. (2016) supported this by claiming that secretion 
in C. caroliniana has a notable fibrillar structure, similar to 
a cell wall.

In Gladiolus, the mucilaginous secretion is accumulated 
between the epithelial cell wall and the cuticle that covers 
the canal epithelial cells. The pollen tube penetrates the 
cuticle and grows through the secretion (Clarke et al. 1977; 
Pandey 1997).

In some species of Rhamnaceae pollen tubes do not 
always grow through the canal. In Discaria americana pol-
len tubes grow through the middle lamella located between 
epithelial and subepithelial canal cells and not through the 
canal (Gotelli et al. 2012). In D. americana and Colletia 
spinossisima J. F. Gmel., pollen tubes can move through 
different routes: They can grow through the secretion in the 
canal, through the middle lamella between epithelial and 
subepithelial cells of the stylar canal, and through the cyto-
plasm of subepithelial cells (Gotelli et al. 2012).

According to Gotelli et al. (2012) ultrastructural dif-
ferences between the epithelial cells of the canal can be 
correlated with different pollen tubes paths. The presence 
of epithelial and subepithelial cells with cytoplasm rich 
in organelles and a copious secretion in the lumen of the 
canal could favor growth of the pollen tubes both through 
the cytoplasm of these cells and the canal. Conversely, very 
vacuolated epithelial cells, with transfer cell characteristics, 
abundant amyloplasts, and limited canal secretion, may lead 
pollen tubes to grow through the thickened middle lamella 
between the epithelial and subepithelial cells, which it would 
probably be the most favorable medium.

Closed styles

The structure of closed styles is known for several species, 
such as Lycopersicum peruvianum (L.) Mill. (Cresti et al. 
1976), Malus communis Desf. (Cresti et al. 1980), Primula 
vulgaris Huds. (Heslop-Harrison et al. 1981), Olea euro-
paea L. (Ciampolini et al. 1983), Zephyranthes candida 
(Lindl.) Herb. and Z. citrina Baker (Ghosh and Shivanna 
1984), Hypericum calycinum L. (Ciampolini et al. 1988), 
Nicotiana sylvestris Speg. (Kandasamy and Kristen 1987; 
1990), Pyrus serotina Rehder (Nakanishi et al. 1991), Brug-
mansia suaveolens (Humb. & Bonpl. Ex Willd.) Bercht. & 
J. Presl. (Vennigerholz 1992; Hudak et al. 1993), Smyrnium 
perfoliatum L. (Weber 1994), Tibouchina semidecandra 
(Mart. & Schrank ex D.C.) Cogn. (Ciampolini et al. 1995), 
Vitis vinifera var. vinifera Raf. (Ciampolini et al. 1996), 
Karwinskia parvifolia Rose (Hanackova and Piñeyro Lopez, 
1999), Oxalis paludosa A. St.-Hill., O. hispidula Zucc., and 
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O. articulata Savigny (Rosenfeldt and Galati 2000), Cynara 
cardunculus L. (Duarte et al. 2006), Passiflora edulis fo. fla-
vicarpa O. Deg. (Souza et al. 2006), Olea europaea (Serrano 
et al. 2008), Oxalis pes-caprae L. (Signorini et al. 2014), 
Allionia choisyi Standl., Boerhavia diffusa var. leiocarpa 
(Heimerl) C. D. Adams, B. pulchella Griseb., Bougainvil-
lea campanulata Heirmel, B. praecox Griseb., B. stipitata 
Griseb., Mirabilis jalapa L., M. ovata, Pisonia zapallo var. 
guaranitica Toursark, P. zapallo var. zapallo Griseb., Piso-
niella arborescens var. glabrata Kuntze (Nores et al. 2015).

According to Ciampolini et al. (2001) in almost all non-
graminaceous species characterized by a closed style, the 

transmitting tract of the style is very distinct. The transmit-
ting tissue in a closed style can be either loosely arranged 
or in a more compact structure, depending on the amount 
and quality of the intercellular spaces (Johri 1984). These 
intercellular spaces can be filled with interstitial material 
containing phenolic compounds, tannins polysaccharides 
and pectic substances, commonly referred to as extracellu-
lar matrix (ECM) or intercellular matrix (IM) (Sanders and 
Lord 1992; Cheung et al. 1995; Raghavan 1997; Shivanna 
et al. 1997; Mollet et al. 2000). The extracellular matrix has 
greater electron density than the cell walls due to its amor-
phous nature (Raghavan 1997). This mucilaginous matrix 

Fig. 1   Pollen tube pathways in open styles. a General aspect and 
detail of pollen tube growing through the secretion in the canal. b 
General aspect and detail of pollen tube growing through the secre-
tion accumulated between the cuticle and the wall of the epithelial 

cells. c General aspect and detail of pollen tube growing through the 
cytoplasm of subepithelial cells. d General aspect and detail of pollen 
tube growing through the middle lamella between epithelial and sub-
epithelial cells of the stylar canal (b)

Fig. 2   Pollen tube pathways in closed styles. a General aspect. b 
Detail of pollen tube growing through the intercellular matrix of 
the transmitting tissue. c Detail of pollen tube growing through the 

thickened cell walls of the transmitting tissue. d Detail of pollen tube 
growing between the plasma membrane and the cell wall of the trans-
mitting tissue cells
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facilitates and guides pollen tube growth (Clarke et al. 1977; 
Rosenfeldt and Galati 2009).

In Lycopersicum peruvianum the development of the 
transmitting tissue goes through two phases: first the main 
part of the extracellular matrix, consisting of pectins, is 
formed; then, the cells form an extensive rough endoplasmic 
reticulum and proteins are incorporated in the extracelular 
matrix (Cresti et al. 1976). In Petunia, Lycopersicum and 
Malus the intercellular spaces are equally filled throughout 
the whole diameter of the transmitting tissue, but the inter-
cellular substance in Vitis L. increases from the periphery to 
the center of the transmitting tissue where the cuticle of both 
carpels is joined. This phenomenon is especially prominent 
near the ovary resulting in a real cavity or canal (Ciampolini 
et al. 1996). The primary axes of the pistils of Pennisetum 
Rich. (Heslop-Harrison and Heslop-Harrison 1980), Zea L. 
(Heslop-Harrison et al. 1984), and Oryza L. (Ciampolini 
et al. 2001) lack a well-defined transmitting strand. Many 
cell layers surrounding the vasculature represent the trans-
mitting tissue. The cells of the transmitting tissue in these 
cereals are polygonal in cross section, and plasmodesmata 
are present in the longitudinal as well as in transverse walls. 
In rice the ECM is confined to the corners of the cells of 
the transmitting tissue (Ciampolini et al. 2001). The com-
ponents of the ECM in rice seem to be secreted by exo-
cytosis, as indicated by the discharge of the contents of 
vesicles by fusion with the plasma membrane. In Secale L. 
and Hordeum L. (Heslop-Harrison and Heslop-Harrison 
1980), paramural bodies discharging vesicle swarms into the 

adjacent intercellular spaces of the axes have been frequently 
observed. Heslop-Harrison and Heslop-Harrison (1980) sug-
gest that the paramural bodies form a granulocrine secretory 
system producing the constituents of the ECM (Ciampolini 
et al. 2001).

The presence of active dictyosomes, ribosomes, rough 
endoplasmic reticulum, and vesicles in cells of the transmit-
ting tissue can be associated with the synthesis and secre-
tion of polysaccharides and pectin (Jensen and Fisher 1969; 
Cresti et al. 1976; Ciampolini et al. 1995; Duarte et al. 2006; 
Souza et al. 2006; Rosenfeldt and Galati 2009). Transmit-
ting tissue in Nicotiana tabacum is chlorophyllous, and its 
cells contain numerous mitochondria, dictyosomes, RER, 
amyloplasts, ribosomes, as well as crystal-containing micro-
bodies and myelin-like formations (Bell and Hicks 1976). 
Rosenfeldt and Galati (2000) claim that starch is commonly 
present in the peripheral parenchyma of the transmitting tis-
sue and is consumed by the pollen tube during growth and 
not by the cells that contain it. Plasmodesmata are observed 
in the transmitting cell walls of several species: Petunia 
hybrida E. Vilm. (Sassen 1974), Nicotiana tabacum (Bell 
and Hicks 1976), Lycopersicum peruvianum (Cresti et al. 
1976), Tibouchina semidecandra (Mart. & Schrank ex DC.) 
Cogn. (Ciampolini et al. 1995), Corylus avellana L. (Ciam-
polini and Cresti 1997), Oryza sativa L. (Ciampolini et al. 
2001), Oxalis paludosa, and O. hispidula (Rosenfeldt and 
Galati 2009). The cell walls of the transmitting tissue of 
O. paludosa and O. hispidula have ingrowths surrounded 
by the plasma membrane. Similar observations were made 

Fig. 3   Pollen tube pathways in semi-closed styles. a General aspect. b Pollen tube growing through the intercellular matrix of the transmitting 
tissue. c Pollen tube growing through the secretion in the canal
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in P. hybrida by Herrero and Dickinson (1981). Accord-
ing to these authors, this characteristic associated with the 
plasmodesmata assures a great efficiency in the cellular 
exchange. These wall ingrowths resemble the “transfer cells” 
described by Gunning and Pate (1969). Wardini et al. (2007) 
claim that the progression of wall ingrowths deposition is 
positively correlated with intracellular sucrose concentra-
tions. Intracellular sucrose is likely to increase in the trans-
mitting tissue cells before anthesis. Ciampolini et al. (1996) 
suggest that the presence of plasmodesmata strengthens the 
hypothesis that they are involved in transduction of signals 
from the ovary and in the control of pollen tube growth.

The structure of the transmitting tissue determines the 
path of pollen tubes from stigma to ovules, along a path of 
least mechanical resistance (Jensen and Fisher 1968; Vasil 

1974; Heslop-Harrison 1999; Signorini et al. 2014). In sev-
eral taxa such as Petunia (Van der Pluijm and Linskens 1966; 
Sassen 1974), Diplotaxis DC. (Kroh and Munting 1967), 
Capsella lythrum (Sassen 1974), Lycopersicum (Cresti et al. 
1976), Nicotiana (Bell and Hicks 1976), Raphanus raphan-
istrum L. (Hill and Lord 1987), A. thaliana (Lennon et al. 
1998), Borago officinalis L. and Heliotropium europaeum 
L. (Ghorbel and Nabli 1998), Quercus suber L. (Boavida 
et al. 1999), Oxalis articulata, O. hispidula and O. paludosa 
(Rosenfeldt and Galati 2009), and O. pes-caprae (Signorini 
et al. 2014), pollen tubes grow through the extracellular 
matrix of the transmitting tissue of the style. In Gossypium 
L., pollen tubes penetrate and grow through the thickened 
cell walls of the transmitting tissue as in Helianthus annus 
L. (Jensen and Fisher 1970; Gotelli et al. 2010). In spinach, 

Fig. 4   a Bright field microscope. c–f TEM. a–c Open styles. d 
Closed style. e, f Semi-closed style. a Transversal section of pol-
len tubes (arrows) growing through the secretion (s) in the canal 
of Cabomba caroliniana [reproduced by permission from Galati 
et  al. (2016) Protoplasma 253:155–162]. b Pollen tube (pt) grow-
ing through the intercellular matrix between the epithelial and sub-
epithelial cells in Discaria americana; cw: cell wall [reproduced 
by permission from Gotelli et  al. (2012) Plant Syst Evol https://
doi.org/10.1007/s00606-012-0665-x]. c Pollen tube (pt) growing 
through subepitelial cells (sec) in Colletia paradoxa. The cytoplasm 

of the epithelial cell (ec) shows abortion signs [imagines modified 
and reproduced by permission from Gotelli et  al. (2012) Plant Syst 
Evol https://doi.org/10.1007/s00606-012-0665-x]. d Pollen tube (pt) 
growing through the intercellular matrix of Condalia buxifolia. e 
Pollen tube (pt) growing through the intercellular matrix of Ziziphus 
mucronata [reproduced by permission from Gotelli et al. (2017) Pro-
toplasma https://doi.org/10.1007/s00709-017-1167-z]. f Pollen tube 
(pt) growing through the secretion of Ziziphus mucronata [repro-
duced by permission from Gotelli et  al. (2017) Protoplasma https://
doi.org/10.1007/s00709-017-1167-z]. Scale bars: a 50 µm; b–f 1 µm

https://doi.org/10.1007/s00606-012-0665-x
https://doi.org/10.1007/s00606-012-0665-x
https://doi.org/10.1007/s00606-012-0665-x
https://doi.org/10.1007/s00709-017-1167-z
https://doi.org/10.1007/s00709-017-1167-z
https://doi.org/10.1007/s00709-017-1167-z
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pollen tubes can grow intercellularly through the outer part 
of the cell wall or between the plasma membrane and the cell 
wall (Wilms 1981). It is not known how pollen tubes pen-
etrate and pass the cell wall. One possibility is the presence 

of enzymes that degrade cell walls. As pollen tubes grow 
within the cell walls, the cytoplasm of the penetrated cells 
slowly degenerates.

Fig. 5   a–e TEM. a, b Detail of cytoplasm of transmitting tissue 
cells in Condalia buxifolia. rer: rough endoplasmic reticulum, m: 
mitochondria, d: dictyosome, arrow: plasmodesmata, arrow head: 
cell wall ingrowths [imagines modified and reproduced by permis-
sion from Gotelli et  al. (2017) Protoplasma https://doi.org/10.1007/
s00709-017-1167-z]. c Detail of open style of Cabomba caroliniana 
showing secretion (s), ephitelial (ec) and subepithelial (epc) cells 
[reproduced by permission from Galati et  al. (2016) Protoplasma 

253:155–162]. d Detail the transmitting tissue of closed style in Con-
dalia buxifolia showing intercellular matrix (im), the cell wall (cw) 
and organelles (p: amyloplast, m: mitochondria, rer: rough endoplas-
mic reticulum). e Detail the transmitting tissue of semi-closed style 
in Helianthus annus showing thickened cell wall (cw) and thin inter-
cellular matrix (arrows) [reproduced by permission from Gotelli et al. 
(2010) Biocell 34: 133–138]. Scale bars: a 0.25 µm; b, d 0.5 µm; c 
2 µm; e 1 µm

https://doi.org/10.1007/s00709-017-1167-z
https://doi.org/10.1007/s00709-017-1167-z
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Semi‑closed styles

The transmitting tissue in semi-closed styles is characterized 
by production of a fluid intercellular matrix between its cells 
and pollen tubes generally grow through the highly special-
ized matrix (de Graaf et al. 2001). However, pollen tubes 
growing through the secretion in the canal were observed in 
Ziziphus mucronata Willd. (Gotelli et al. 2017). The ultra-
structure of semi-closed styles is known for a few species: 
Trifolium pratense L. (Heslop-Harrison and Heslop-Harri-
son 1982a, b), Caesalpinia pulcherrima (L.) Sw. (Owens 
et al. 1995), Asclepias exaltata L. (Sage and Williams 1995), 
Vigna adenantha (G. Mey.) Maréchal, Mascherpa & Stain-
ier (Castro and Agulló 1998), Ceiba insignis (Kunth) P. E. 
Gibbs & Semir (Rosenfeldt and Galati 2000), and Ziziphus 
mucronata Willd., Z. jujuba Mill., Paliurus spinachristi 
Mill. and Hovenia dulcis Thunb. (Gotelli et al. 2017).

In Vigna adenantha the distal portion of the style is closed 
and gradually passes to the semi-closed condition. One or 
a few layers of transmitting tissue surround the canal of the 
style (Castro and Agulló 1998). The transmitting tissue of 
Ceiba insignis has thin primary walls that are separated by 
massive deposits of amorphous material, and contain numer-
ous mitochondria, endoplasmic reticulum of rough type, 
ribosomes and amyloplasts (Rosenfeldt and Galati 2000). 
Transmitting tissue cells of Asclepias exaltata have a periph-
eral cytoplasm with some mitochondria, numerous plastids 
with starch grains, dictyosomes and several lipidic globules. 
These characteristics indicate a secretory function and pro-
teins, and insoluble carbohydrates are secreted (Sage and 
Williams 1995). In Caesalipinia pulcherrima (Owens et al. 
1995) and in the species above mentioned, pollen tubes grow 
through the intercellular matrix of the transmitting tissue 
but do not enter the canal (Sage and Williams 1995; Castro 
and Agulló 1998; Rosenfeldt and Galati 2000; Gotelli et al. 
2010). In Colophospermum mopane (J. Kirk ex Benth.) J. 
Léonard (Jordaan et al. 2002) and Scutia buxifolia Hutch. & 
M.B. Moss (Gotelli et al. 2017), the style has a lysigenous 
canal. In the first species, this canal is bordered by several 
layers of large vacuolated parenchyma cells containing 
starch and polyphenolic substances that constitute the body 
of the style. Pollen tubes grow through the transmitting tis-
sue, which is rich in starch and phenolic substances (Jordaan 
et al. 2002).

Conclusions

Different pollen tube pathways have been described for sev-
eral species. Although there is a tendency for pollen tubes to 
grow through the canal in open styles and through the inter-
cellular matrix in closed and semi-closed styles, there are 
other possible pathways. Therefore, the pollen tube’s route 
cannot be deduced by the type of style and more ultrastruc-
tural studies at different developmental stages of the style are 
needed. In this review, subtypes are defined according to the 
pollen tube pathway.

Type I (open style):

Subtype I A: pollen tubes grow through the secretion in 
the canal (Figs. 1a, 4a).
Subtype I B: pollen tubes grow through the secretion 
accumulated between the cuticle and the wall of the epi-
thelial cells (Fig. 1b).
Subtype I C: pollen tubes grow through the middle 
lamella between epithelial and subepithelial cells of the 
stylar canal (Figs. 1c, 4b).
Subtype I D: pollen tubes grow through the cytoplasm of 
epithelial cells (Figs. 2b, 4c).

Type II (closed style, Fig. 2a):

Subtype II A: pollen tubes grow through the intercellular 
matrix of the transmitting tissue (Figs. 2b, 4d).
Subtype II B: pollen tubes grow through the thickened cell 
walls of the transmitting tissue (Fig. 2c).
Subtype II C: pollen tubes grow between the plasma 
membrane and the cell wall of the transmitting tissue 
cells (Fig. 2d).

Type III (semi-closed styles, Fig. 3a):

Subtype III A: pollen tubes grow through the intercellular 
matrix of the transmitting tissue (Figs. 3b, 4e).
Subtype III B: pollen tubes grow through the secretion in 
the canal (Figs. 3c, 4f).

The secretory characteristics present in epithelial and 
transmitting tissue cells, such as a dense cytoplasm with 
abundant mitochondria, RER, dictyosomes, and plasmodes-
mata, with or without transfer cells characteristics (Fig. 5a, 
b), are related with the secretion where pollen tube grows. 
This secretion can either be represented by the substances 
in the canal (Fig. 5c), in the intercellular matrix (Fig. 5d), 
or in the cell wall (Fig. 5e).

Fig. 6   Type of style mapped in a phylogenetic tree according to APG 
IV and APweb following the maximum parsimony principle. : 
open style, : closed style, : semi-closed style, : lost of open 
style, : lost of closed style, : lost of semi-closed style

◂
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The morphology of the style has received little atten-
tion. Although there are studies on flower morphology and 
anatomy of many species of angiosperms, authors do not 
usually describe the type of style. However, all orders, 
with the exception of Picramniales and Escalloniales, 
have at least one type of style either described, mention 
or photographed. This trait was mapped in a phylogenetic 
tree according to APG IV and APweb (Fig. 6) following 
the maximum parsimony principle and information was 
detailed in Table 1 (supplementary material). According to 
this, it could be hypothesized that the open style appeared 
in the early divergent angiosperms. The closed type of 
style originated three times, in Asparagales, Poales, and 
Eudicots, and the semi-closed style appeared three times in 
Rosids, Ericales, and Gentianales. It could also be hypoth-
esized that the open style was lost in core Eudicots, with 
reversions in some Rosids and Asterids orders (Fig. 6). 
However, since the information is limited to a few species, 
we cannot assure if other types of styles are represented 
in a specific order.
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