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Experimental study of double cavity flow
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Abstract The flow through two facing, identical cavi-
ties (double cavity) is characterized experimentally, as
the inflow velocity and the distance between the cavi-
ties is varied. Standard 2D2C particle image velocime-
try measurements in the spanwise mid-plane provide
information on the instantaneous and mean velocity
flow fields. Laser Doppler velocimetry measurements at
several points in the double cavity domain reveal the
global character of the streamwise fluctuating velocity
spectra. The flow is characterized based on times series,
recorded in one of the cavity’s shear layer, for a wide
range of inflow velocities and intercavity distances. In
a detailed spectral study we show, how the shear layer
spectra get affected when the two cavities are brought
closer together. Based on the the experimental data a
temporal local linear stability analysis was carried out,
which was able to explain why the frequency peaks for
close intercavity distances broaden and move to higher
Strouhal numbers.
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1 Introduction

Flows past cavities are known to generate self-sustained
oscillations, which are of great practical, as well as aca-
demic interest, and have been studied extensively over
the past decades experimentally [1–3], numerically [4,
5], as well as theoretically [6–9], ranging from subsonic
to supersonic flow conditions. Fluid dynamic oscilla-
tions are attributed to instabilities arising from the
cavity’s shear layer and are enhanced through a feed-
back mechanism, which organizes the flow globally. In
the literature, the feedback is described by a variety
of different view-points, ranging from the flow acoustic
feedback mechanism (commonly known as the Rossiter

mechanism [10]) in compressible flows to hydrodynamic
feedback [11,12] and reflected instability waves [9] in in-
compressible flows.

Double cavity flow arises when a fluid flows through
two identical cavities which are facing each other in
a symmetrical setup as in Ref. [13]. The geometry is
found in nature as well as engineering applications and
is therefore of interest to a large variety of fields: the
sudden expansion and contraction in pipe flows, river
flows, the flow through arteries with obstacles and the
laryngeal ventricle or Morgagni’s sinus in the human
phonatory system [13] are some of numerous examples
of double cavity flow.

Historically, the study of linear stability of the flow
over single open cavities has been focused on the self-
sustained oscillations of the predominantly two dimen-
sional shear layer [14,15]. Only in recent years, compu-
tationally more expensive three dimensional linear sta-
bility analysis have become available [5,16,17], mostly
focusing on the three dimensional structures (e.g. cen-
trifugal instabilities) of the inner flow.
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Fig. 1: The subsonic open wind tunnel setup at LIMSI-
CNRS.

In their landmark paper on open cavity flow, Rock-
well and Naudascher [15] mention the double cavity
(“axis-symmetrical internal cavity”), though little at-
tention has been given so far to this geometry in the
incompressible limit when intermediate to large inter-
cavity distances are considered. Previous works on the
double cavity geometry, found in the literature, such
as e.g. Maurel et al. [18], focus on very close intercav-
ity distances, low Reynolds numbers and on the effect
of varying the cavity length, rather than the distance
between the cavities. The result is an impinging jet of
changing length and speed. Morel [19] studies an axis-
symmetric double cavity but for high subsonic Mach
numbers, applying the Rossiter mechanism.

In the present work, we address double cavity flow
of varying intercavity distances and inflow velocity in
the incompressible limit and focus on the coupling of
the shear layers, that develop over both cavities. The
double cavity is not axis symmetric, but symmetric with
respect to the mid-plane. Hence, our study fills the miss-
ing gap between the studies by Ref. [18] (planar jet) and
the other extreme, namely open cavity flow (as e.g. in
Ref. [1]). We study the flow field using particle image
velocimetry (PIV) and obtain detailed spectral infor-
mation at discrete points in the flow field from laser
Doppler velocimetry (LDV) measurements for a wide
range of parameters. Based on the experimental data
of the mean velocity fields, a local temporal linear sta-
bility analysis is performed, which seeks to study the
dominant dynamics of the shear layer interactions. The
results of the instability analysis are compared to the
experimental spectra of the streamwise velocity fluctu-
ations.

Laser

C
am

z

D
H

S

U

S

Fig. 2: Sketch of experimental setup: Three dimensional
double cavity geometry of distance D, length L, depth
H , spanwise extension S and inflow velocity U∞ with
horizontal laser sheet in the mid-plane (y = 0) and
camera position.

2 Experimental setup

2.1 Wind tunnel

The study was carried out in the open wind tunnel of
LIMSI-CNRS, schematically depicted in figure 1. The
wind tunnel facility is composed of a centrifugal fan,
providing stationary volume flow, a settling chamber
that contributes to equalize the flow and a honey-comb
panel, placed at the inlet of the contraction, which con-
tributes to laminarize the flow. The double cavity ge-
ometry is placed in the test section as schematically
depicted in perspective view in figure 2, and in top
view in figure 3. The profiled and by approximately
4 degrees inclined leading edges separate the flow into
two bypass streams, one at either side of the geometry,
and a center flow entering the inflow channel leading to
the double cavity test section. Consequently, two, with
respect to the double cavity center line symmetrical,
laminar boundary layers are created, that develop in a
170mm-long inflow channel, before entering the double
cavity. The wind tunnel walls, as well as the double cav-
ity side wall, are made of 2mm-thick reflection-treated
glass, allowing for complete optical access. The rest of
the double cavity geometry is made of acrylic Plexiglas.
Adaptable shields are mounted at the test section out-
let, as well as at the wind tunnel outflow, in order to
minimize perturbations of the inflow.

The cavity ratio Γ = L/H = 2 is kept constant
throughout the entire study. The intercavity distanceD
is varied fromD/L = 0.1 toD/L = 1. The cavity length
L = 50mm, as well as the inflow length and the outflow
length, are kept constant at L1 = 3.4L and L2 = 2.6L,
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Fig. 3: Top view of figure 2. Double cavity geometry
with variable distance 5 ≤ D ≤ 50mm, constant length
L = 50mm, constant depthH = 25mm, constant span-
wise extension S = 75mm, constant inflow and outflow
channel length L1 = 170mm and L2 = 130mm, re-
spectively, and variable inflow velocity U∞. The red
filled circle indicates the main LDV probe point at
PLDV = [45mm, 5mm]. The inflow velocity profile (−−)
with the center velocity U∞ and the momentum thick-
ness Θ0 and the double cavity profile (− · −) with the
shear layer thickness δω are depicted.

respectively. The spanwise extension is kept constant
at S = 1.5L, limited by the floor and the ceiling of
the wind tunnel. As a reference, a single cavity case
is added to the double cavity cases, by closing one of
the two facing cavities at a distance of D/L = 1. A
Cartesian coordinate system is (ex, ey, ez) is set mid-
span at the cavity leading corner, as shown in figures 2
and 3. The study concerns Reynolds numbers between
ReL ≈ 3 000 and ReL ≈ 14 800, where the Reynolds
number, based on the cavity length and the maximum
velocity in the inflow channel, is defined as

ReL =
U∞L

ν
(1)

with ν = 15 · 10−6m2/s being the dynamic viscos-
ity of air at room temperature (24 degrees Celsius).
Due to a geometrically induced limited translucency at
−0.2 ! x/L ! 0, the maximum inflow velocity profile
U∞ is taken slightly upstream of the entry to the dou-
ble cavity at x/L = −0.3. The momentum thickness
Θ0 is obtained at the same x-position. The total tur-
bulent intensity on the inflow channel center line was
measured as to less than 1% in all cases.

2.2 PIV and LDV

Standard two component (2D2C) particle image ve-
locimetry (PIV) and laser Doppler velocimetry (LDV)
are carried out simultaneously. The PIV system con-
sists of a CCD camera, a laser system, a synchroniza-
tion box and a personal computer (PC), as shown in

Table 1: Summary of cases

Cases D [mm] D/L [-] Symbol

DC05 5 0.1 +
DC10 10 0.2 "
DC15 15 0.3 ◦

DC20 20 0.4 △

DC25 25 0.5 ×

DC30 30 0.6 ▹
DC40 40 0.8 ♦
DC50 50 1.0 %
SC50 50 1.0 &

figure 1. The DALSA Genie Camera is equipped with a
FUJINON 1 : 1.8/50mm lens and records images with
a resolution of 1368 × 1024 pixels, which are encoded
in 8 bits, saved and post-processed on a PC. The light
source, which is synchronized by a synchronization box
with the camera, is a Quantel Laser from Big Sky Laser
Tech., Inc. Model PIV190 PS2, that sends two laser
pulses with a time difference of ∆t. The wave length of
the lasers is λ = 532nm, providing a maximum energy
output of 2×190 mJ in the green part of the visible light
spectrum. The lasers are set to pulsate at its maximum
rate of 15 Hz, with each pulse lasting roughly 10 ns.
The light pulses are projected into a horizontal plane
by a concave lens, creating a laser sheet at z/S = 0
as shown in figure 2. In this plane the displacement
vector ∆x = [∆x,∆y]ᵀ, together with the known time
difference between the two laser pulses,∆t, yield the ve-
locity vector u = ∆x/∆t = [u, v]ᵀ. The time difference
∆t varies between 275µs and 700µs, depending on the
inflow velocity. Seeding particles are liquid droplets of
mineral oil DEHS – di(2-ethylhexyl)sebacate –, sprayed
at the fan entrance. DEHS density is 0.9 and droplet
diameter are of the order of 1µm. Measurements start
only after the seeding particle distribution is uniform
inside the double cavity. The field of vision is adapted,
such that for all intercavity distances the complete dou-
ble cavity area is covered. The PIV measurement plane
is kept constant in the symmetry plane at z/S = 0. Af-
ter image pre-processing, including mean field subtrac-
tion as well as intensity corrections, displacement fields
are computed using a FFT based cross-correlation algo-
rithm of two corresponding interrogation windows, that
are consecutively decreased from 64×64 pixels down to
8× 8 pixels in size, using a 50% overlap. For each case
400 images, resulting in 200 instantaneous vector fields,
are recorded. The mean was found to be well converged
after around 120 fields.

LDV measurements, using a Dantec BSA-system,
are performed simultaneously with the PIV measure-



4 F. Tuerke et al.

ments. A continuous argon-ion laser (35mW), with a
wave length of 660nm, is used. In the main probe point
PLDV , located 5mm upstream and 5mm above the
trailing edge, as indicated in figure 3, the streamwise
velocity component u is recorded. As also found by [1],
in the vicinity of PLDV , shear layer oscillations are of
highest amplitude, while low frequency content of the
recirculation region is still present, but not dominant.
LDV series are recorded over 30 seconds for each case,
at a LDV count rate of the order of 3 kHz. Time series
are resampled at the mean particle sampling frequency
by linear interpolation before performing Fourier anal-
ysis. The power spectral density (PSD) of a time series
is obtained by the help of the Welch algorithm [20] us-
ing an overlapped segment averaging estimator with a
Hamming window size equal to 5.2 seconds and a seg-
ment overlap of 98%. One LDV recording hence con-
sists of roughly 260 windows for averaging. The result-
ing frequency resolution is ∆f = 0.18 Hz. With these
parameters the 95% confidence interval is found below
[± ≃ 1.30dB]. Throughout this work the PSD is nor-
malized according to P = 2PSD∆f and is presented in
Decibel units (20 log10(P ) [dB]). The non-dimensional
frequency (Strouhal number)

StL =
fL

U∞

(2)

is used to graphic the data.

3 Double cavity flow

3.1 Flow description

Table 1 summarizes the cases under study. Eight double
cavity (DC) cases with different intercavity distances
D are complemented by a single cavity case (SC) as a
reference in the limit D → ∞. The instantaneous flow
fields (see videos provided in supplementary material)
of cases with 7 000 ! ReL ! 8 000 show that for D/L ≥
0.2, the center flow separates the two cavities in such a
way that no fluid is exchanged. At the smallest distance
(D/L = 0.1), the center flow starts to oscillate and fluid
is alternately spilled into the cavities. This flapping jet
enforces the intracavity recirculation region, resulting
in a destabilizing effect on the center flow. This type of
flow is commonly refered to as confined jet flow in the
literature [18].

The mean flow is shown in figure 4, for two intra-
cavity distances, at approximately the same Reynolds
number. In each cavity the recirculation region is struc-
tured into a main vortex, occupying most of the cavity,
and a second smaller one, located further upstream.
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Fig. 4: Mean flow fields. Top row: Streamlines over the
time averaged field for double cavity cases (a) D/L =
0.1 and (b) D/L = 0.5 both at ReL ≈ 8 700. Flow
from top to bottom. Middle row: Mean velocity profiles
at x/L = 0.1 (red −−) and at x/L = 0.7 (black —).
Buttom row: rms profiles at x/L = 0.1 (red −−) and
at x/L = 0.7 (black —).
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Fig. 5: Contour plot of spanwise instantaneous vorticity
ωz = ∂xv − ∂yu, computed from the 30 most energetic
POD modes of the velocity field. Double cavity config-
uration with D/L = 0.4 at ReL ≈ 8900. Flow from top
to bottom.

Figure 4 also shows the streamwise mean velocity pro-
files and the root mean square (rms) profiles at the indi-
cated streamwise positions. Comparing the inflow pro-
files (at x/L ≈ 0.1) with the profiles in the rear cavity
part (at x/L ≈ 0.7), we note that the velocity profile in
the channel center is independent of the streamwise po-
sition, whereas the intracavity flow is more pronounced
at the location further downstream. The profiles of the
rms show, that two shear layers are formed along the
cavity. For small intercavity distances (figure 4(a)), the
two shear layers join in the downstream part of the
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Fig. 6: Fluctuating streamwise velocity correlations of shear layer probe points (cf. figure 11) at a streamwise
position xP5 = xP6 = 0.6L and yP5,P6 = ±D/2 for (a) D/L = 0.1, (b) D/L = 0.2, (c) D/L = 0.3 and (d)
D/L = 0.4. The Reynolds number range is 5 000 ! ReL ! 6 000.

domain, forming a jet. For larger intercavity distances
(figure 4(b)), the two shear layers stay separate all along
the cavity length.

Figure 5 shows a typical instantaneous field of the
spanwise vorticity component ωz = ∂xv − ∂yu of a
D/L = 0.4 case at ReL ≈ 8 900. The vorticity field
was computed from the 30 most energetic POD (proper
orthogonal decomposition) modes of the velocity field.
Both shear layers, originating from the boundary lay-
ers of the inflow channels, can clearly be distinguished.
When the shear layers impinge on the cavity rear edge,
vorticity is regularly injected into the respective cavi-
ties. The injected vorticity forms small vortices at the
frequency of the shear-layer oscillations. These regu-
larly spaced vortices, that circumvent along a dipolar
vortex sheet inside each cavity, were also observed by
Ref. [1] for the case of the single cavity. Recently, Ref.
[12] showed by means of two dimensional numerical sim-
ulations of double cavity flow, that the small vortex
structures create a hydrodynamic feedback mechanism
which is responsible for the appearance of non-harmonic
frequency peaks.

In order to elucidate the spatio-temporal symmetry
characteristics of the facing cavities, figure 6 shows the
spatial correlation graphs of the streamwise fluctuat-
ing velocity component u = uex − ⟨uex⟩t between two
shear layer points P5 = [xP5, yP5] and P6 = [xP6, yP6]
(see caption of figure 6 for details), for the four closest
intercavity distances 0.1 ! D ! 0.4. At D/L = 0.1 the
flow is globally anti-symmetric from a spatio-temporal
point of view, as can be seen from the elongated cloud
of points, spread along the diagonal in figure 6(a). At
D/L = 0.2 the flow is still mainly anti-symmetric, how-
ever, with increasing distance 6(c)-(d), the cloud of
points transforms from the elongated form to a circular
form. The distribution of the points becomes aleatory,
indicating that the correlation and hence the symmetry
is lost.
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Fig. 7: Experimental and analytical velocity profiles at
inflow position x = −0.03 for cases at (a) D/L = 0.1
(parabolic fit) and at (b) D/L = 0.5 (Blasius boundary
layer fit).

3.2 Velocity profiles

The incoming boundary layer is obtained at position
x/L = −0.3. Depending on the inflow velocity and the
intercavity distance the streamwise inflow profile U(y)
either corresponds to a parabolic profile of the form

Up(y) = U∞

(

1−
y2

D2

)

(3)

or to a symmetric (double) Blasius boundary layer pro-
file. The parabolic profile is obtained when the two op-
posing boundary layers join in the channel center. This
happens for all cases at the distance D/L = 0.1 and
for the lower Reynolds number cases at the distance
D/L = 0.2. The parabolic fit, together with experi-
mentally measured profiles for all cases at D/L = 0.1,
are shown in figure 7(a). A good agreement between
the analytic profiles and the experimental profiles is
observed. For all other distances, the Blasius bound-
ary layer is fitted to the experimental data. The fits
are performed by minimizing the L2-norm difference of
experimental streamwise velocity profile and the ana-
lytical profile. The results for the distance D/L = 0.5
are exemplified in figure 7(b). A good agreement be-
tween experiments and analytical profile was found for
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Fig. 8: Momentum thickness of incoming boundary
layer Θ0, measured at x = 0.03m for all cases in ta-
ble 1. Symbols show experimental data and solid lines
(—) indicate least square fits.

all inflow velocities. The shape factors of the profiles
vary between 2.62 and 2.72, strongly suggesting a lami-
nar inflow. The shear layers, that form upon separation
at the double cavity’s leading edge, depend on the mo-
mentum thickness Θ0 of the incoming velocity profile.
The momentum thickness is calculated according to

Θ0 =

∫

∞

0

U(y)

U∞

(

1−
U(y)

U∞

)

dy (4)

Figure 8 shows the momentum thickness Θ0, cal-
culated from experimental data, for all cases in table
1, as a function of the center line inflow velocity U∞.
For the parabolic profiles the momentum thickness is in
theory independent of the center line velocity U∞ and
depends only on the intercavity distance. At D/L = 0.1
an almost constant behavior of Θ0 is obtained, varying
linearly, as indicated by the linear fit to the experimen-
tal data. At D/L = 0.2 a somewhat stronger depen-
dency on U∞ is found, though Θ0 still varies linearly
with U∞. All other cases (D/L ≥ 0.3) were fitted with
a power fit function of the form y = cxd, by minimizing
the L2-norm difference of the analytical function and
the experimental data. For D/L ≥ 0.3, the momentum
thickness is largely independent of the intercavity dis-
tance. Interestingly, for the single cavity case, slightly
larger values of Θ0 are obtained than for the closely
related double cavity case with D/L = 1.0, suggest-
ing, that even though the cavities are far, the incoming
flow is still affected by the presence of the second cavity.

The streamwise velocity profiles inside the double
cavity domain are fitted to a hyperbolic sine (sinh) pro-
file, borrowed from the analysis of a cylinder wake [21].
The analytical form of the hyperbolic sine profile reads

U/U∞

x/L

U/U∞

y
[m

m
]

y
[m

m
]

Fig. 9: Experimental and analytic velocity profiles (a)
at streamwise position x = xmin for all cases in table
1 at ReL ≈ 9 000 and (b) along a double cavity with
D/L = 0.4 at ReL = 8 800. The analytic profile is given
in equation 5. Symbols as in table 1.

Usinh(y,N, a) =
[

1 + sinh2N
[

y sinh−1(a)
]

]−1
, (5)

where N ∈ N and a ∈ R are the free parameters to be
fitted. For the single cavity case the classical hyperbolic
tangent (tanh) profile

Utanh(y) =
1

2
+

1

2
tanh

(y

2

)

(6)

is proposed. Figure 9 shows the results of the fit for all
cases in table 1, measured at x = xmin for a Reynolds
number of roughly ReL ≈ 9 000. Again, the fit is per-
formed by minimizing the L2-norm difference of the
analytical profile and the experimental mean velocity
profile, varying both N and a. The streamwise position
xmin denotes the location where the best fit (in the least
square sense) is obtained. More details on xmin can be
found in section 5. In the channel center and the shear
layer region good agreement between the analytic and
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Fig. 10: Normalized vorticity thickness δω/δω0 for all
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mental data.

experimental profiles is observed for all intercavity dis-
tances. The recirculation regions inside both cavities
are not captured by the sinh profile.

Figure 9(b) exemplifies for a case with D/L = 0.4
at ReL = 8 800 the development of the streamwise ve-
locity profile along the double cavity, together with the
fitted sinh profile. In the channel center the sinh profile
follows closely the experimental data at all streamwise
positions. Very close to the leading edge (x/L < 0.15)
as well as close to the trailing edge (x/L > 0.6) both
profiles show differences in the shear region, while close
to the streamwise position xmin good agreement is ob-
tained over the entire shear region. As mentioned be-
fore, inside the cavities we observe a difference between
the experimental and the analytical profiles due to the
recirculation regions which are not modeled by the sinh
profile.

The vorticity thickness, defined as

δω =
∆U

(

∂U
∂y

)

max

, (7)

is calculated along the cavity length from experimental
velocity profiles for all cases in table 1 at ReL ≈ 9 000.
The inflexion point is determined such that the gradi-
ent (∂U/∂y) is maximum. The shear-strength is given
as ∆U = Umax − Umin. The vorticity thickness δω, nor-
malized with the vorticity thickness at the cavity’s lead-
ing edge (δω0 = δω(x = 0)), is depicted in figure 10.
The vorticity thickness at the cavity’s leading edge δω0

is essentially determined by the momentum thickness
Θ0 of the incoming flow. The development along the
double cavity domain was found to be largely indepen-
dent of the Reynolds number, but strongly dependent
on the intercavity distance. For intercavity distances
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Fig. 11: Power spectra at multiple probe locations inside
the double cavity case at D/L = 0.5 and ReL = 9 600.

D/L ≤ 0.3 the vorticity thickness δω increases much
stronger compared to larger distances and the value of
δω at x/L = 0.8 is roughly 50% higher. The trend is
close to linear up to x/L ≈ 0.8, where it flattens out
and even drops due to the effect of the rear cavity edge.
For intermediate distances 0.4 ≤ D/L ≤ 0.8 the vortic-
ity thickness starts showing a plateau-like zone between
0.2 ≤ x/L ≤ 0.5. All cases at these distances show
similar values. The plateau flattens out for increasing
distances (D/L = 1.0 and SC), as was also found for
the single cavity case by [1]. For the cases where the
inflow profile corresponds to a Blasius boundary layer
profile (D/L ≥ 0.3), the value of δω,0 at the cavities
leading edge is 2δω,0 ≈ 4.5Θ0, which reasonably satis-
fies the theoretical properties of Blasius profile mixing
layers, as defined by Huerre and Monkevitz [8]. A simi-
lar value (2δω0 ≈ 4.6Θ0) was found by Ref. [22] for the
single cavity.

4 Spectral analysis

4.1 Probe positions and spectra

Figure 11 shows spectra recorded with Laser Doppler
Velocimetry (LDV) at nine different probe locations in-
side the double cavity domain, for a case with D/L =
0.5 at ReL = 9 600. As expected, the spectrum at the
inflow (P7) shows no significant spectral content. Only a
very low frequency peak at StL ≈ 0 is present, which is,
as mentioned by [23], most likely due to steady features
of the flow. The six probe points located in the chan-
nel center show the same spectral structure: two non-
harmonic frequency peaks at Strouhal numbers StL ≈
1.0 and StL ≈ 1.4, together with its first harmonics,
which are roughly two orders of magnitude smaller in
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amplitude. A rather broadband peak, one order of mag-
nitude smaller, is found at around StL ≈ 0.6. The low
frequency content at StL ≈ 0 is transmitted from the
inflow. Probe points P8 and P9 are located inside the re-
spective cavities. Spectra from times series recorded at
these probe points are different from spectra recorded
at probe points, located in the channel center. Only
a strongly amplified broadband low frequency peak at
St ≈ 0 can be found in the power spectra of the intra-
cavity probe points. The typical shear layer peaks can
not be found. This is in agreement with Ref. [1], who
found the same spectral structure inside the cavity of
single open cavity flow at nearly the same Reynolds
number and for the same cavity aspect ratio. In the
present work we are mainly interested in the interac-
tion of the two shear layers. Since probe points P1 to
P6 give very similar results we will focus on time series
recorded at probe point P1 (which is coincident with
the position of PLDV in figure 3).

4.2 Local spectra

Time series for a wide range of Reynolds numbers and
intercavity distances were recorded at point PLDV. Fig-
ure 12 summarizes the power spectra of these time se-
ries in terms of the Strouhal number StL, for the non-
dimensional intercavity distanceD/L and ReynoldsReL.
The light gray checkered areas indicate the four cases,
that were selected for a detailed spectral analysis in sec-
tion 4.2.5. Different spectral compositions, depending
on the intercavity distance and the Reynolds number,
are observed. For sufficiently low Reynolds numbers all
cases are in a (quasi) steady regime, where no signifi-
cant shear layer oscillations are present.

By increasing the Reynolds number, the typical shear
layer peak at StL,1 ≈ 1 arises in all cases, except the
very close distance case D/L = 0.1 (figure 12(a)). For
D/L ≥ 0.2 at increased Reynolds number a second non-
harmonic peak at StL,2 ≈ 1.4 appears. Both peaks ex-
hibit a similar amplitude over a restricted Re-range,
before St = 1.4 becomes the unique dominant peak in
the spectrum. For a given Reynolds number the dom-
inance between the two peaks switches as D/L is de-
creased down to D/L = 0.4. The switching scenario
remains true for D/L < 0.4, though with much wider
peaks. The lowest threshold to shear layer oscillations
is found at the intermediate distance D/L = 0.5. For
both, close distances (D/L = 0.1) and very far dis-
tances the shear layer oscillations arise at a roughly
25% higher Reynolds number than the one correspond-
ing to this intermediate distance. We will consider in
next section the spectra in the experimental conditions
for which oscillations of the shear layers are significant.

4.2.1 Single Cavity Spectra

Figure 12(i) shows the spectra for a single cavity case as
a reference to the eight double cavity cases depicted in
figures 12(a)-(h). The results of the single cavity agree
well with other works in literature, such as [22]. The
peak associated with single shear layer oscillations at
StL,1 ≈ 1 is observed when a certain threshold in the
Reynolds number is crossed. For even higher Reynolds
numbers a bi-periodic regime takes place, where two,
non-harmonic frequencies coexist. From the literature
[3,22] we know, that for increasing L/Θ0, the ampli-
tude of the second peak at StL,2 can even overtake the
first peak at StL,1. As shown in Ref. [22], this cascade
process can reach up to 3StL,1 and 2StL,2 and is pre-
dominantly influenced by the term L/Θ0. In our study,
the takeover of the second peak is not observed for the
single cavity but as we will see below, this phenomenon
appears when approaching both cavities.

4.2.2 Spectra of intermediate to far intercavity

distances

Let us consider the range of intermediate to far in-
tercavity distances 0.4 ≤ D/L ≤ 1, depicted in fig-
ures 12(d)-(h). At these distances, the spectral compo-
sition of the double cavity cases is similar to the one of
the single cavity (figure 12(a)). The single shear layer
peak at StL,1 ≈ 1 is observed over a wide range of
Reynolds numbers, that increases with D/L. For in-
creasing Reynolds numbers the bi-periodic regime ap-
pears and the second non-harmonic frequency peak at
StL,2 ≈ 1.4 grows with increasing ReL. The onset of
the second peak continually increases with D/L. At
D/L = 0.4 the Reynolds number of the onset is about
50% lower than for the single cavity. The peak of StL,2

is less sharp than the one associated with StL,1. The
takeover of the second peak is observed for this inter-
cavity distances range. This seems to indicate that the
proximity of the second cavity advances the cascade
process. For cases at 0.4 ≤ D/L ≤ 0.6, this even leads
to the disappearance of the first peak StL,1 at the high-
est Reynolds numbers. Partly, this may be due to the
decreasing value of Θ0 (increasing value of L/Θ0) with
decreasing D/L, as shown in figure 8).

4.2.3 Spectra of close intercavity distances

For intercavity distances D/L = 0.2 and D/L = 0.3
(12(b)-(c)) the spectral composition changes drastically
with respect to the single cavity. The steady regime is
still followed by a periodic regime with a frequency peak
at StL,1 ≈ 1, however, the peaks are much broader.
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Fig. 12: Normalized power spectra PSD/max(PSD). The cases indicated by the checkered area are discussed in
detail in section 4.2.5. The light gray shaded areas indicate cases for which a local temporal linear stability was
carried out in section 5.

At a distance of D/L = 0.3 the second peak (StL,2)
eventually starts growing, though at a Reynolds num-
ber roughly 30% higher than for the neighboring case at
D/L = 0.4. Both peaks show a similar increase in band-
width. For the distance D/L = 0.2 the peaks broaden
further and the second peak (StL,2) overtakes the first
peak (StL,1) at a much lower Reynolds number, com-
pared to the other cases. With decreasing intercavity
distance, the frequency of both peaks increases contin-
uously such that the following two inequalities hold:

StL,1(SC) ≤ StL,1(D/L = 0.3), (8)

StL,2(SC) ≤ StL,2(D/L = 0.2). (9)

4.2.4 Jet-like behavior

As mentioned above, at the closest intercavity distance
D/L = 0.1 (12(a)), a significantly different spectral
composition is observed. The flow type is called jet-

like, as it is similar to the confined jet flow, investigated

at lower Reynolds numbers by Maurel et al. [18]. For
all Reynolds numbers low frequency content dominates
the spectra. Only between 6 000 ! ReL ! 9 000 a sub-
tle peak at StL = 1.25 appears. which is in accordance
with mode III found by Maurel et al. [18].

As shown in section 3, due to the close intercav-
ity distance, the double Blasius profile turns into a
parabolic inflow profile. The resulting jet becomes un-
stable and, under the influence of the recirculation re-
gion, starts to flap irregularly at frequencies, that are
one order of magnitude smaller than those of the typ-
ical shear layer oscillations. The unstable jet fluctua-
tions can also be observed in the smoke visualizations
provided in the supplementary material.

4.2.5 Detailed spectral composition

We will now analyze the composition of four typical
spectra at different distances focusing on frequencies
close to StL,1 and StL,2. Figure 13 shows a detailed
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Fig. 13: Shear layer spectra recorded in probe point
PLDV for cases at (a) D/L = 0.1, (b) D/L = 0.4, (c)
D/L = 1.0 and (d) SC at indicated Reynolds numbers,
where P = 2PSD∆f is the normalized power spectral
density.

view of power spectra for four cases with comparable
Reynolds numbers (10 100 ≤ ReL ≤ 10 600) but dif-
ferent intercavity distances. As we see the logarithmic
scaling reveals a rich composition of the spectrum.

The spectrum of the single cavity, shown in figure
13(a), exhibits a main frequency peak very close to the
typical shear layer frequency at St1 = 0.96. A sec-
ond, about one order of magnitude less energetic, non-
harmonic frequency peak can be found at St2 = 1.28.
The first harmonic of St1 can be found at 2St1 = 1.92.
St12 and St3 are combinations of the two non-harmonic
peaks and its harmonics: St12 = St1 + St2 = 2.22
and St3 = 2St1 − St2 ≈ 0.6. A low frequency peak
at St0 ≈ 0 is common to all four cases.

When a second cavity faces the first cavity, the struc-
ture of the spectrum stays largely the same. The spec-
trum of a case with D/L = 1 is shown in figure 13(b).
The second cavity acts like an amplifier, leading to a
similar but more amplified spectrum, when compared
to the single cavity case. The main peak at St1 = 0.99
increases slightly and moves closer to unity. The second
non-harmonic peak also increases slightly to St2 = 1.32.
All other peaks are again harmonics or linear combina-
tions of these two peaks: St3 = 2St1 − St2 = 0.58 and
St12 = St1 + St2 = 2.30. Due to the increased ampli-
fication, even the third harmonic 3St1 = 2.94 can now
be observed.

We consider now cases in which cavities are brought
even at closer distances. AtD/L = 0.4 we note, that the
two non-harmonic peaks at St1 = 1.02 and St2 = 1.41
further increase in Strouhal number, as proposed earlier
in inequalities 8 and 9, respectively. The amplitudes of
both peaks are now within the same order of magni-
tude. In fact, the second peak even overtakes the first
peak, showing the advancement in the cascade process,
mentioned earlier in this section. As before, linear com-
binations of the two non-harmonic peaks are present:
we find the second harmonic of the second peak at
2St2 = 2.83 and the sum of the two non-harmonic peaks
at St12 = St1 + St2 = 2.43. We note that the peak at
St3 disappears and the peak-to-noise-ratio decreases,
while both peaks broaden a little.

For even closer distances the spectrum changes strongly.
The only prevailing two peaks are the low frequency
peak at St0 ≈ 0 and the second shear layer peak at
St2 = 1.54. The latter broadens strongly, extending
over roughly∆St = 1. Sideband peaks cannot be clearly
identified most likely due to a further decrease of the
peak-to-noise-ratio.

This sections has allowed us to synthesize the rich-
ness of the dynamics of the double cavity flow with the
usual tool of spectral analysis. It is of interest to try to
gain some physical insight of the phenomena involved
with the use of other tools. Therefore we propose in
next section to undertake a linear instability analysis
with the hope this will provide a better understand-
ing of the complex flow behavior. It is obvious however
that the experimental results, we have shown, will not
be fully described by such a simple analysis and com-
plementary works are still required.

5 Temporal linear stability analysis

5.1 The considered model

In this section, we present the results of a temporal
linear stability analysis. Our goal is to try to explain
why the frequency peaks for close intercavity distances
(D/L = 0.2 and D/L = 0.3) show stronger side bands
(broadening of the peaks) and move away from the clas-
sical shear layer peak value of StL ≈ 1.

The flow is assumed to be steady, parallel and uni-
directional. The streamwise development of the base
flow is therefore entirely neglected. The analysis of flow
stability considers the two-dimensional, inviscid and in-
compressible Euler equations given by
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Fig. 14: Effective momentum thickness Θeff over dis-
tance D for all cases in table 2, computed from an-
alytic profiles (black) and from experimental profiles
(red). Symbols as in table 2.

∂tu+ [u ·∇]u = −∇p (10)

∇ · u = 0, (11)

where u = (u, v)T . The flow variables q(x, y, t) = (u, v, p)T

and coordinates x, y are non-dimensionalized using the
maximum velocity U∞ and the effective momentum
thickness Θeff as in Ref. [9]. In accordance with Ref. [8],
the effective momentum thickness is computed from the
velocity profiles at the streamwise position x = xmin,
defined later in this section. The flow is decomposed
into a steady laminar base flow Q(y) = (U, V , P )T

upon which small amplitude perturbations q′(x, t) =
(u′, v′, p′)T are permitted (x = (x, y)T ). Normal mode
solutions q′(x, t) = q̂(y)ei(kx−ωt) with q̂(y) = (û, v̂, p̂)T

are then considered to model the temporal development
of the perturbations. Note, that the wave number k and
the angular frequency ω are also non-dimensionalized
using the maximum velocity U∞ and the effective mo-
mentum thickness Θeff. The decomposed flow field is
subsequently linearized by neglecting higher order per-
turbation terms. This yields a system of linear equa-
tions, which in the case of the temporal linear stability
analysis is solved as an eigenvalue problem (EVP) for a
real wave number kr, resulting in a complex frequency
ω = ωr + iωi. The complex part of the frequency ωi

corresponds to the temporal growth rate and the real
part of the frequency ωr to the physical frequency.

The boundary conditions of the EVP for u are of
Dirichlet type (no-slip conditions at the solid walls) at
y = ±(H∗ +D∗/2), where H∗ and D∗ are the with the
effective momentum thickness normalized cavity depth
and channel height, respectively. The boundary condi-
tion for the pressure is of Neumann type, as follows
from the momentum equation. The customary parallel

Table 2: Summary parameters of linear stability analy-
sis

Cases D/L a N ReL Symbol

DC10 0.2 2.28 2 9 200 "
DC15 0.3 2.68 3 9 300 ◦

DC20 0.4 3.04 4 8 800 △

DC25 0.5 3.23 5 8 900 ×

DC30 0.6 3.43 6 9 000 ▹
DC40 0.8 3.74 8 9 300 ♦
DC50 1.0 3.98 10 9 000 %
SC50 1.0 — — 9100 &

flow assumptions V = 0, P = const and ∂xQ = 0 are
applied. The one dimensional base-state of the velocity
field U = f(y) is non-dimensionalized with the center-
line (or freestream) velocity U∞ and the effective mo-
mentum thickness Θeff, shown in figure 14. For the dou-
ble cavity cases the sinh velocity profile from equation
5 is fitted to the experimental data by minimizing the
L2-norm difference of experimental streamwise veloc-
ity profile and the analytical profile, varying the fitting
parameters a and N . For the single cavity case the clas-
sical tanh profile (equation 6) is used. The analytic fits
to the experimental velocity profiles which are imposed
on the dispersion relation of the linear stability analysis
are depicted in figure 9(a). The momentum thickness of
the fitted analytic velocity profiles is compared to the
experimental values in figure 14 for all analyzed cases.
While the trend is well captured by the fitted profiles,
the absolute values lie slightly above the experimental
values of Θeff. The streamwise position, at which the
experimental velocity profiles as well as the effective
momentum thickness are taken, is denoted x = xmin.
At this position the error between the analytic and the
experimental profile, given by

E(xmin) = min(|Usinh(y)− Uexp(y)|
2), (12)

yields a minimum. In agreement with Refs. [8] and [9],
the position xmin was found close to xmin ≈ 0.25L in
all cases.

The EVP together with the base-flow assumptions
yield the dispersion relation of the system, given by the
complex equation

∆(ωr,ωi, kr) = 0 (13)

For a real wavenumber kr, the roots ω(k) of this
equation provide the eigen-frequencies and temporal
growth rates. The dispersion relation is solved numeri-
cally using a Matlab code based on an adapted Cheby-
shev collocation method, which refines the grid points
in both shear layers zones, in order to guarantee a high
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resolution in areas with strong velocity gradients. Be-
tween M = 100− 120 grid points were used, depending
on the case. Differentiation is carried out using a second
order non-equidistant finite difference method. The fit-
ting parameters N and a of each case are summarized
in table 2. The effective momentum thickness Θeff, de-
picted in figure 14, increases with D/L. The Strouhal
number StL is obtained by

StL =
fL

U∞

= ωr
U∞

Θeff

1

2π

L

U∞

= ωr
L

2πΘeff

(14)

where ωr is the non-dimensional angular frequency re-
sulting from the linear stability analysis. The Strouhal
number is independent of the inflow velocity and only
depends on the momentum thickness Θeff and the cav-
ity length L. The momentum thickness appears due to
its use as the normalizing scale in the stability analysis
while the cavity length serves as a limiter for the pre-
ferred frequency of oscillation, in accordance with other
works in the literature [15,18,9], who expect that a cer-
tain number of wavelengths, or fraction thereof, must
enter the cavity. The light gray shaded areas in figure 12
indicate the cases, for which the linear stability analysis
was carried out.

5.2 Results and Discussion

As in Ref. [21], the temporal linear stability analysis
of the sinh profile results in two unstable branches: a
symmetric (varicose) and a anti-symmetric (sinuous)
branch. Figure 15 exemplifies both eigenmodes for case
DC10 (D/L = 0.2). The tanh profile results in a single
(sinuous) branch, which is in accordance with Ref. [6].

Figure 16(a) shows the temporal amplification rate
ωi over the Strouhal number StL, exemplary for two
cases: a close distance case at D/L = 0.2 and a far
distance case at D/L = 0.6. At D/L = 0.2 the two
branches are well separated. The sinuous branch yields
higher values of ωi and hence is more unstable. The dif-
ference between the branches decreases with distance,
such that for distances D/L ≥ 0.4, the difference be-
tween the two branches becomes negligible and both
modes exhibit a similar temporal amplification rate
(∆ωi < 3%), i.e. both modes are equally prone to am-
plification. These theoretical predictions are in good
agreement with the experimental results from the shear
layer correlations in section 3 (figure 6), where we found,
that for small intercavity distances, the flow is anti-
symmetric from a spatio-temporal point of view, while
for larger intercavity distances (D/L ≥ 0.4) symmetry
is lost.

We define the Strouhal number StL, at which the
growth rate ωi is maximal, as

StL,max = StL(ωi,max) (15)

and in the same manner the wave number kr, at which
the growth rate ωi is maximal, as

kr,max = kr(ωi,max) (16)

In figure 16, the temporal growth rate is plotted as a
function of the Strouhal number and the wave number.
When the two branches are distinguishable, StL,max of
the varicose branch is found at higher Strouhal numbers
than StL,max of the sinuous mode. The wave number
of the maximal growth rate kr,max, however, is found
to be equal for the two branches, as can be seen from
figure 16(b).

Figure 17 summarizes the results from the linear sta-
bility analysis for all eight cases in table 2 and compares
them to the experimental data from section 4. The
Strouhal number of the maximum growth rate StL,max,
the Strouhal number range ∆StL, the wave number
range ∆kr and the maximum growth rate ωi,max are
plotted over the non-dimensional intercavity distance



Experimental study of double cavity flow 13

D/L. The Strouhal number range and the wave num-
ber range are defined as

∆StL = {StL ∈ R | 0.9 ωi,max ≤ ωi(StL) ≤ ωi,max}(17)

∆kr = {kr ∈ R | 0.9 ωi,max ≤ ωi(kr) ≤ ωi,max} (18)

Figure 16 exemplifies the definitions for the caseD/L =
0.2. The experimental values of the Strouhal number
range and the wave number range were obtained from
the power spectra, considering a cut-off threshold ac-
cording to

∆StL = {StL ∈ R | P (StL) > −85dB} (19)

∆kr = {kr ∈ R | P (StL) > −85dB} (20)

where P = 2PSD∆f is the normalized power spec-
tral density.

In figure 17(a), atD/L = 0.2, the value of StL,max =
1.37, obtained by the linear stability analysis, is slightly
below the experimental value of StL,max ≈ 1.5. At the
distance D/L = 0.3, the linear stability analysis pre-
dicts StL,max = 1.26, while experimentally we obtain a
somewhat lower value of StL,max ≈ 1.12. Experimen-
tally, for D/L ≥ 0.4, the frequency peaks become more
narrow band and start to be distinguishable. The ex-
perimental data for D/L ≥ 0.4 shows the amplifica-
tion of two non-harmonic peaks, StL,1 (red) and StL,2

(blue). For cases with 0.3 ≤ D/L ≤ 0.6, the first mode
StL,1 lies below the value obtained from the linear sta-
bility analysis, while the second mode StL,2 is found
at a higher Strouhal number. The far distance cases
0.8 ≤ D/L ≤ 1.0 coincide well with the first experi-
mental mode StL,1, found close to unity. For the single
cavity (SC), the predicted value StL,max of the linear
stability analysis increases slightly to StL,max = 1.1
and lies exactly in between the values obtained exper-
imentally (StL,1 = 0.96 and StL,2 = 1.24). This is in
agreement with Ref. [9], who found that, in order to
predict both non-harmonic peaks, the finiteness of the
system has to be taken into account.

In figure 17(b)-(c), the Strouhal number range∆StL
and the wave number range ∆kr are depicted. As found
in section 4, for close intercavity distances, 0.2 ≤ D/L ≤
0.3, the frequency peaks broaden, i.e. a greater range
of frequencies is amplified. This is reflected in the in-
creased value of ∆StL. The results from the linear sta-
bility analysis compare well to the experimental data.
For intermediate distances 0.4 ≤ D/L ≤ 0.6 both the
linear stability prediction and the experimental data
show a drop in ∆StL, however, the amplified frequency
range of the experimental data drops stronger than
the linear stability analysis predicts. The arbitrary fre-
quency range selection criterion (0.9 ωi,max) could be
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Fig. 17: Results from linear stability analysis compared
to experimental results for different intercavity dis-
tances D/L and the single cavity (SC). (a) Strouhal
number of the first experimental mode StL,1 (red ◦),
the second experimental mode StL,2 (blue ▽) and lin-
ear stability analysis (black &). (b) Strouhal number
range ∆StL, (c) wave number range ∆kr and (d) maxi-
mum growth rate ωi,max from experimental results (red
◦) and from linear stability analysis (black &). Error
bars in (d) indicate 95% confidence interval of the fit-
ted growth rate ωi,exp (equation 22).

adapted to increase the accuracy. The rebound of ∆StL
for large intercavity distances D/L ≥ 0.8 and the sin-
gle cavity, found experimentally, is also predicted by
the linear stability analysis. The wave number range
∆kr, depicted in figure 17(c), shows a nearly linear
and monotonic decrease with D/L. This suggests, that
a closer intercavity distance is favorable to a greater
set of wave numbers being amplified. In figure 17(d),
the maximum temporal growth rate ωi,max, obtained
from the linear stability analysis, also decreases with
D/L, however, only up to a distance of D/L = 0.8.
For D/L > 0.8 it increases again and finally settles for
the single cavity at almost the same value as at close
intercavity distances.

In order to compare the temporal growth rates of
the linear stability analysis to the experimental results
from section 3, the experimental temporal growth rates
are calculated for all cases in table 2. In figure 18 the
rms (root-mean-square) peak valuesA(x) of the stream-
wise fluctuating velocity component are plotted over
the cavity length in a range of 0.2 ! x/L ! 0.6, ex-
emplary for three cases. The maximum value at each
streamwise position is normalized with A(x0), where
x0 ≈ 0.2L. For x < x0 the velocity profiles are stable
and no significant shear layer fluctuations are observed.
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For x/L ' 0.6 nonlinearities saturate the fluctuations.
An exponential function of the form

A(x) = γ eκx (21)

is fitted to the experimental data by minimizing the L2-
norm difference, varying the fitting parameters γ and
κ. After normalization with the maximum center line
velocity U∞ and the effective momentum thickness Θeff,
we obtain the temporal growth rate according to

ωi,exp = κcg
Θeff

U∞

= κ
Θeff

2
(22)

where cg = ∂ω
∂k

is the group velocity of the perturb-
ing wave packet, which was found to be cg ≈ 0.5U∞,
independent of the intercavity distance. Figure 18 ex-
emplifies the fitting procedure for three cases. Inter-
estingly, at close distances (D/L ≤ 0.4) the amplitude
of the streamwise velocity fluctuations increases nearly
linearly along the cavity length. For larger distances
(D/L ≥ 0.5) the typical exponential growth is observed
and equation 21 fits well the experimental data. The
proximity of the facing cavity seems to inhibit the expo-
nential growth of fluctuations. In figure 17(d) the exper-
imental growth rates ωi,exp(x), calculated according to
equation 22 for all cases in table 2 are compared to the
maximum temporal growth rates ωi,max, obtained from
the linear stability analysis. As expected from an invis-
cid analysis, the experimental growth rates are found
at somewhat lower values than the theoretical predic-
tions but within the same order of magnitude. For close
intercavity distances the trend of the predictions does
not resemble the experimental data. This is due to the
linear course of A(x) for D/L ≤ 0.4, which reduces

ωi,exp. For distances D/L ' 0.5, independent of the
intercavity distance, similar growth rates of approxi-
mately ωi,exp ≈ 0.02 are obtained.

Note, the temporal linear stability analysis only pre-
dicts a single frequency peak, while experimentally for
certain parameters two non-harmonic peaks are observed.
Recently Tuerke et al. [9] showed that taking into ac-
count the finite extent of the system results in a quan-
tization mechanism of the frequency spectrum. This, so
called linear stability analysis in a finite domain, was
able to explain the existence of non-harmonic frequency
peaks in the shear layer spectrum and is a suitable can-
didate for the double cavity geometry. It is subject of
current on-going research work.

6 Conclusion

We report experimental and analytical results of the
flow through two facing identical cavities, namely a
double cavity, as the Reynolds number and the inter-
cavity distance are varied. Experimentally, the flow was
studied by means of non-time resolved PIV (particle im-
age velocimetry) and time resolved LDV (laser Doppler
velocimetry) measurements. The streamwise velocity
profiles inside the double cavity were found to fit well a
hyperbolic sine (sinh) profile intercavity distancesD/L ≥
0.2. For the distance D/L = 0.1 the streamwise velocity
profile in the inflow channel yields a parabolic profile.
At such close distance the shear layers, forming over
each cavity merge along the double cavity length and
the instantaneous flow fields show a fluctuating jet, os-
cillating between the two cavities. This flow configura-
tion corresponds confinded jet flow [18]. For D/L ≥ 0.2
the two shear layers stay separated all along the cavity
length. For close distances the flow is anti-symmetric
from a spatio-temporal point of view, while for larger
distances no symmetry could be observed. This observa-
tion was confirmed by the results of a temporal local lin-
ear stability analysis, which showed that for D/L ≥ 0.4
the varicose and the sinous branch coincide.

Spectra, recorded at various probe locations inside
the double cavity domain, reveal its global nature. From
power spectra, recorded at a single probe point in the
impingement zone of one of the shear layers for a wide
range of distances and Reynolds numbers a parame-
ters space plot was built. A steady, a periodic and a
bi-periodic regime were observed as the Reynolds num-
ber is increased. The onset of the regimes change with
the intercavity distance. At the closest intercavity dis-
tance (D/L = 0.1) the different flow structure, ob-
served in the instantaneous fields, is confirmed by the



Experimental study of double cavity flow 15

absence of the dominant shear layer frequency peaks.
All other cases show strong spectral activity at the typ-
ical shear layer frequency StL ≈ 1. For intercavity dis-
tances 0.2 ≤ D/L ≤ 0.3 the peaks broaden and move to
higher Reynolds numbers. This observation was again
confirmed by the results of a temporal local linear sta-
bility analysis, which showed that the range of amplified
frequencies increases with decreasing distance. At dis-
tances D/L ≥ 0.4, the spectral signature looks similar
to the single cavity, though the bi-periodic regime, is
reached at lower Reynolds numbers the smaller D/L.
The difference between the temporal growth rate, pre-
dicted by the linear stability analysis, and the temporal
growth rate, computed from the experimentally mea-
sured spatial growth rate, may be due to viscous effects,
which were not taken into account by the inviscid Euler
equations.
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