
Metabolomic Serum Profiling Detects Early-Stage High-Grade Serous
Ovarian Cancer in a Mouse Model
Christina M. Jones,† María Eugenia Monge,†,◆ Jaeyeon Kim,‡,▽ Martin M. Matzuk,‡,§,∥,⊥,#,▽

and Facundo M. Fernańdez*,†,○
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ABSTRACT: Ovarian cancer is a deadly disease killing more than any other
gynecologic cancer. Nonspecific symptoms, combined with a lack of early
detection methods, contribute to late diagnosis and low five-year survival
rates. High-grade serous carcinoma (HGSC) is the most common and
deadliest subtype that results in 90% of ovarian cancer deaths. To investigate
metabolic patterns for early detection of this deadly ovarian cancer, Dicer-
Pten double knockout (DKO) mice that phenocopy many of the features of
metastatic HGSC observed in women were studied. Using ultraperformance
liquid chromatography−mass spectrometry (UPLC−MS), serum samples
from 14 early-stage tumor (ET) DKO mice and 11 controls were analyzed in
depth to screen for metabolic signatures capable of differentiating early-stage HGSC from controls. Iterative multivariate
classification selected 18 metabolites that, when considered as a panel, yielded 100% accuracy, sensitivity, and specificity for
classification. Altered metabolic pathways reflected in that panel included those of fatty acids, bile acids, glycerophospholipids,
peptides, and some dietary phytochemicals. These alterations revealed impacts to cellular energy storage and membrane stability,
as well as changes in defenses against oxidative stress, shedding new light on the metabolic alterations associated with early
ovarian cancer stages.

KEYWORDS: ovarian cancer, mouse models, untargeted metabolomics, mass spectrometry, liquid chromatography, biomarkers,
early detection

■ INTRODUCTION

Ovarian cancer is the fifth leading cause of cancer-related deaths
for U.S. women.1 In particular, high-grade serous carcinoma
(HGSC), the subtype with the highest occurrence and mortality,
is responsible for 90% of all ovarian cancer deaths, yet its origin
and early progression are poorly understood.2−4 Because of the
unavailability of reliable screening tests in clinical practice and the
asymptomatic course through early stages of the disease, the
majority of ovarian cancer cases (68%), including most HGSCs
(>95%), are diagnosed as advanced, metastatic disease with poor
survival.5,6 The 5 year ovarian cancer survival rate for all cases
diagnosed during 2002−2008 was 43%.1 When the cancer is
confined to the ovary at diagnosis, however, the 5 year survival is
over 90%.2 Early detection is thus crucial in reducing ovarian
cancer mortality.
The conventional evaluation of patients includes physical

examination, transvaginal ultrasonography, and measurement of
levels of the serum tumor biomarker CA125. However, this
marker is of limited utility because it can also be elevated by
conditions unrelated to ovarian cancer, especially in premeno-

pausal women.7 Recent data8,9 have suggested that the OVA110

test, the first protein-based in vitro diagnostic multivariate index
assay (IVDMIA) approved by the FDA, may improve, along with
physician clinical assessment, detection rates of malignancies
among women with pelvic masses planning to undergo surgery.
Nonetheless, whether this assay can detect HGSC at an early
time point still remains unclear.11

During the past decade, metabolomics has emerged as a
promising discipline providing tools to investigate characteristic
metabolic patterns of disease, with one of its goals being the
discovery of biomarker panels for early diagnosis. Mass
spectrometry (MS) and 1H nuclear magnetic resonance
(NMR) spectroscopy in combination with multivariate statistical
analysis have been utilized to investigate ovarian-cancer-induced
metabolome alterations in urine,12−15 plasma,16,17 serum,18−22

and tissues.23−25 Li and collaborators, for example, identified L-
tryptophan, lysoPC(18:3), lysoPC(14:0), and 2-piperidinone as
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plasma metabolites discriminating between epithelial ovarian
cancer (EOC) patients and women with benign ovarian
tumors.16 Disruption to nucleotide, histidine, tryptophan, and
mucin metabolism pathways12,16 increased 27-nor-5β-choles-
tane-3,7,12,24,25 pentol glucuronide levels,21 and changes in
amino acids involved in de novo purine nucleotide synthesis have
also been reported.22 However, and despite these advances, no
widely accepted strategy for metabolome-based ovarian cancer
screening has yet emerged.11,26 In addition to a lack of
understanding of the early tumor development mechanisms
accompanying disease progression, this is also due to the
difficulty in obtaining sufficiently large, well-matched cohorts of
early-stage ovarian cancer patients for further validation of
metabolic changes reported in these various discovery studies.
Traditionally, ovarian cancer has been thought to originate in

the ovary. The fallopian tube, however, has recently been
proposed as an alternate site of origin, especially in women
carrying hereditary BRCA mutations.27−29 A mouse model of
HGSC where disease originates through this alternative route
was therefore developed by conditionally disabling two critical
genes,Dicer and Pten (Dicer flox/flox Pten flox/flox Amhr2 cre/+), in the
fallopian tubes.30 In these Dicer-Pten double-knockout (DKO)
mice, HGSCs originate and progressively develop in the fallopian
tube before spreading to the ovary and then metastasize
throughout the abdominal cavity, causing ascites, and eventually
killing the mice. Besides replicating the clinical biology of human
HGSC in that tumors are characterized by complex papillae and
irregular glands forming slit-like spaces in addition to solid sheets
of tumor cells with pleomorphic nuclei, prominent nucleoli, and
elevated mitotic activity, disease in this DKO mice also shows
close molecular similarities with human HGSCs, such as
upregulated folate receptor 1 (Folr1), CA125 (Muc16), secreted
phosphoprotein 1 (Spp1), and chemokine genes, therefore
providing a simpler, better-controlled, model to study early-stage
ovarian cancer, which could potentially be later translated to
humans.
Here we report the first metabolomic profiling study of sera

from Dicer-Pten DKO mice using ultraperformance liquid
chromatography−mass spectrometry (UPLC−MS), showing
that discrimination of early-stage tumor (ET)mice from controls
with 100% accuracy, sensitivity, and specificity is possible
through a panel of metabolite markers.

■ MATERIALS AND METHODS

Chemicals

Healthy human blood serum (S7023-50 mL) was purchased
from Sigma-Aldrich (St. Louis, MO). FMOC-L-proline was
procured from Chem-Impex International (Wood Dale, IL).
Leucine enkephalin was obtained from ERA (Golden, CO).
Arginyl-glycyl-aspartic acid, L-fucose, L-rhamnose, 1,5-anhydro-
sorbitol, D-fucose, L-rhamnulose, 2-deoxy-D-glucose, and 2-
deoxy-D-galactose were acquired from Sigma-Aldrich Bilirubin,
and suberic acid was obtained from Alfa Aesar (Ward Hill, MA).
Ricinoleic acid was purchased fromMP Biomedicals (Santa Ana,
CA). Docosahexaenoic acid and 3-oxo stearic acid were acquired
from Cayman Chemical Company (Ann Arbor, MI).
LysoPE(16:0) was obtained from Avanti Polar Lipids (Alabaster,
AL). LC−MS grade methanol was purchased from J.T. Baker
Avantor Performance Materials (Center Valley, PA). Ultrapure
water with 18.2 MΩ cm resistivity (Barnstead Nanopure,
Thermo Fisher Scientific, Waltham, MA) was used to prepare
chromatographic mobile phases.

Dicer-Pten Double-Knockout (Dicer-Pten DKO) Mice

Dicer-Pten DKO (Dicerflox/flox Ptenflox/flox Amhr2cre/+) mice were
generated by mating males (Dicerflox/flox Ptenflox/flox Amhr2cre/+)
with females (Dicerflox/flox Ptenflox/flox). Female Dicerflox/flox

Ptenflox/flox (a genotype not carrying Amhr2cre/+) mice were
used as controls.
Mice were housed in a vivarium with a controlled temperature

of 21 °C. They were fed 5053 irradiated PicoLab Rodent Diet 20
and had access to drinking water supplied in bottles. Dicerflox/flox

Ptenflox/flox Amhr2cre/+ DKO mice were sacrificed for this study in
accordance to the animal protocol approved by the Institutional
Animal Care and Use Committee (IACUC) at Baylor College of
Medicine.

Serum Sample Collection

Blood samples were collected from 23 ET and 10 late-stage
tumor (LT) Dicer-Pten DKO mice (Dicerflox/flox Ptenflox/flox

Amhr2cre/+) in addition to 21 control mice (Dicerflox/flox

Ptenflox/flox). Murine blood samples were collected into serum
separator tubes. Serum was obtained by centrifugation at 14 000
rpm for 5 min at room temperature. Immediately after
centrifugation, 200 μL serum aliquots were frozen and stored
at −80 °C until UPLC−MS analysis.

Serum Sample Preparation and Experimental Design

Commercially available healthy human blood serum was used to
optimize the serum sample metabolite extraction protocol and
UPLC−MSmethod. Serum samples were thawed on ice prior to
sample preparation. Methanol was added to 100 μL of each
serum sample in a 3:1 ratio to precipitate proteins. Samples were
vortex-mixed for 10 s and centrifuged at 13 000 rpm for 7 min.
After centrifugation, 350 μL of supernatant was transferred to
new microcentrifuge tubes and frozen at −80 °C for 2 h after the
addition of 400 μL of ultrapure water. Subsequently, samples
were lyophilized for 24 h at −50 °C and 25 mTorr using a VirTis
benchtop freeze-dryer (SP Industries, Stone Ridge, NY). Sample
residues were reconstituted in 100 μL of water/methanol (80:20
v/v, initial UPLC gradient conditions) and analyzed by UPLC−
MS. Blank samples, consisting of ultrapure water, underwent the
same process as murine serum samples. Samples were randomly
separated into two batches and analyzed on consecutive days.
Solvent and sample preparation blanks were jointly analyzed with
murine serum samples. Quality control (QC) samples (15 μM
FMOC-L-proline and leucine enkephalin solution in ultrapure
water) were analyzed every 5 h to verify that retention time, peak
shape, and intensity were stable for the duration of the analysis.
The relative standard deviations of the retention times, peak
areas, and intensities of the monoisotopic ions obtained from
extracted ion chromatograms were <15% over the duration of the
experiments.

Metabolic Profiling via Ultraperformance Liquid
Chromatography−Mass Spectrometry

UPLC−MS analysis was performed using a Waters ACQUITY
UPLC H Class system fitted with a Waters ACQUITY UPLC
BEH C8 column (2.1 × 100 mm, 1.7 μm particle size) and
coupled to a Xevo G2 QTOF mass spectrometer (Waters,
Manchester, U.K.) with a typical resolving power of 25 000 M/
Δm fwhm and mass accuracy of 1.8 ppm at m/z 554.2615. The
instrument was operated in negative ion mode with a probe
capillary voltage of 2.5 kV and a sampling cone voltage of 45 V.
The ion source and desolvation temperatures were 120 and 350
°C, respectively; the nitrogen desolvation flow rate was 800 L
h−1, and the cone desolvation flow rate was 50 L h−1. The mass
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spectrometer was calibrated across the 50−1200m/z range using
a 0.5 mM sodium formate solution prepared in 90:10 2-
propanol/water v/v. Data were mass-corrected during acquis-
ition using a leucine enkephalin reference spray (LockSpray)
infused at 2 μL min−1. Data were acquired in the 50−1200 m/z
range, and the scan time was set to 1 s. Data acquisition and
processing was carried out using MassLynx v4.1. The chromato-
graphic method for sample analysis involved elution with water
(mobile phase A) and methanol (mobile phase B) at a flow rate
of 0.40 mL min−1 using the following gradient program: 0−15
min 20−90% B; 15−19min 90% B. The gradient was returned to
its initial conditions over a period of 11 min after each sample
injection. The column temperature was set to 60 °C, the
autosampler tray temperature was set to 5 °C, and the injection
volume was 2 μL. Technical duplicates were acquired. UPLC−
MS/MS experiments were performed by acquiring product ion
mass spectra with applied voltages of 10, 20, and 30 V in the
collision cell, using ultra-high-purity argon (≥99.999%) as the
collision gas.

Data Analysis

Following UPLC−MS, spectral features (retention time (Rt),m/
z pairs) were extracted from the data using MZmine 2.0
software.32 This procedure involved chromatogram alignment,
peak identification and integration, peak area extraction, and
normalization after curation of the data matrix. The data matrix
curation consisted of the removal of signals that were present in
the blank samples, the solvent, or were not present in at least 50%
of the serum samples. The curated data matrix was utilized to
build a model for sample class discrimination via oPLS-DA and to
down-select a smaller panel of discriminant features through the
usage of a genetic algorithm (MATLAB version 7.13.0, The
MathWorks, Natick, MA with PLS_Toolbox v.6.71, Eigenvector
Research, Wenatchee, WA). A panel of 18 discriminant features
had the lowest root-mean-square error of cross-validation
(RMSECV) at the conclusion of the genetic algorithm variable
selection process. The parameters for genetic algorithm variable
selection were as follows: population size: 64, variable window
width: 1, % initial terms (variables): 10, target minimum number
of variables: 8, target maximum number of variables: 15, penalty
slope: 0.05, maximum generations: 150, % at convergence: 79.7,
mutation rate: 0.005, crossover: double, regression choice: PLS,
number of latent variables: 6, cross-validation: random, number
of splits: 5, number of iterations: 5, replicate runs: 20. PLS-DA
models were orthogonalized and internally cross-validated using
10 iterations of random sample subsets with 5 data splits. Data
were preprocessed by autoscaling prior to oPLS-DA analysis.

Principal component analysis (PCA) was also performed to
inspect data before and after genetic algorithm variable selection
(i.e., on all of the extracted spectral features and only the
discriminant feature panel).

Discriminant Feature Identification

Metabolite identification was attempted for the 18 discriminant
features resulting from the genetic algorithm variable selection
process. Mass spectral ion adduct analysis was first performed to
ensure the unambiguous assignment of the signal of interest in
each mass spectrum. The adduct ions that were investigated in
the mass spectra included [M−H]−, [M+Cl]−, [M+CH3COO]

−,
[M+HCOO]−, [M+Na−2H]−, [M+K−2H]−, [M−H2O−H]−,
[M+H2O−H]−, and [2M−H]− species, which are usually
observed in negative electrospray ionization mode. The
theoretical m/z values for these species were calculated and
compared with the experimental values from mass spectral
signals. For spectra in which multiple adducts were not present,
the accurate mass of the candidate neutral molecule was
calculated based on the assumption that the m/z value observed
corresponded to the [M−H]− ionic species. For mass spectra in
which multiple adducts were present, the [M−H]− spectral
signal was determined and the accurate mass of the metabolic
candidate neutral molecule was calculated based on it. Elemental
formulas were generated based on the exact mass (maximum
mass error of 10 mDa) and isotopic patterns of the features using
MassLynx 4.1. The elements included in the formulas were
constrained to C, H, N, O, P, and S. The lists of generated
elemental formulas were searched against the Metlin database,33

the LIPID Metabolites and Pathways Strategy (LIPID MAPS)
database,34 and the human metabolome database (HMDB).35

MetaboSearch36 was also utilized to search the aforementioned
databases solely using neutral masses with a mass accuracy of 20
ppm. Tandem MS data could not be acquired for discriminant
features, where the precursor ion abundance was not high
enough for sensitive quadrupole selection and MS/MS due to
ion transmission losses.37 The MS/MS Metlin database,
MassBank,38 and literature searches were used to further confirm
the identity of the candidates for which MS/MS data were
successfully acquired. Additionally, fragmentation patterns were
manually analyzed in a few cases to discriminate between
different isobaric species. Available chemical standards were
purchased to validate tentative metabolite identities by
chromatographic retention time matching or MS/MS fragmen-
tation pattern matching. These chemical standards also served
the purpose of eliminating possible metabolite candidates from
the tentative identification list.

Figure 1. Early- and late-stage high-grade serous carcinomas (HGSCs) in DKO mice (Dicerflox/flox Ptenflox/flox Amhr2cre/+). (A) Early fallopian tube
tumors (yellow arrows) formed in a 6.8 month old DKO mouse used in this study with normal ovaries (white arrowheads) and uterus (green arrows).
(B) Massive fallopian tube tumors that engulfed the ovaries in a 10 month old DKO mouse with late-stage HGSCs.
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■ RESULTS AND DISCUSSION

DKO Mouse Cohort

Typically, between 4 and 7 months, DKO mice develop high-
grade serous carcinomas of the fallopian tubes, which later spread
to envelop the ovaries and at a late stage metastasize throughout
the abdominal cavity including peritoneal tissues (Figure 1). For
the purpose of this study, early-stage tumors in DKO mice were
defined as those confined to the fallopian tube without any sign
of metastasis. Eventually, all DKO mice die from metastatic
HGSCs after developing hemorrhagic ascites, an accumulation of
hemorrhagic fluid in the abdominal cavity. The typical life span of
these mice is 6.5−13 months.30

Initially, an exploratory experiment was conducted to
determine to what extent UPLC−MS metabolic profiling could
differentiate the blood sera of 9 ET (mean age 319 ± 36 days)
and 10 LT (mean age 309 ± 34 days) DKO mice, in addition to
10 control (mean age 342 ± 80 days) mice. For this experiment,
DKOmice were staged based on the presence or lack of ascites
LT DKO mice had developed ascites while ET DKO mice had
not. Unsupervised PCA of the resultant data showed clear
separation of LT DKO mice from ET DKO mice and control
mice along the first principal component (unpaired t test, n = 29,
p = 0.002) (Figure S1 in the Supporting Information). However,
both ETDKOmice and control mice were clustered together. As
expected, this result somewhat reflects what is clinically observed
for the diagnosis of human ovarian carcinomas; that is, late stages
in which metastasis has occurred are more easily detectable
because the disease is systemically widespread, yet detection of
early stages is challenging because the disease is still localized and
asymptomatic.
In this stage the focus of the study was shifted to the detection

of early stage HGSC in DKO mice by comparing metabolomic
profiles between DKO mice with early stage HGSC against
control mice, as this is the equivalent of the clinically relevant
challenge for human HGSC detection. Therefore, a set of 14
Dicer-Pten DKO mice with early stage HGSC (mean age 206 ±
19 days) and 11 control mice (mean age 211 ± 30 days) was
investigated via an alternative approach involving supervised
multivariate analysis. ET DKO mice were sacrificed after blood
sample collection to confirm the early tumor status by ensuring
that all had primary tumors located on their fallopian tubes with
no visible metastasis to ensure complete confidence in the class
membership of each mouse in the cohort. Table S1 in the
Supporting Information describes detailed information on the
mice included in these experiments as well as the tumor status
verified for each ET DKO mouse.
Multivariate Classification Performance

MZmine data processing extracted 934 features (Rt, m/z pairs)
from the UPLC−MS data from both control and ET DKO mice
(Data set S1 in the Supporting Information). These extracted
features were utilized to build an oPLS-DA model that classified
the respective serum samples from each class. Performance
characteristics of the initial oPLS-DA analysis of the data matrix
that included all 934 metabolic features (Figure 2A,B) were 76,
68, and 83% for the cross-validated accuracy, sensitivity, and
specificity, respectively. A total of five murine serum samples
were misclassified. This three latent variable model interpreted
35.35 and 93.64% variance from the X- (feature peak areas) and
Y- (mouse class membership) blocks, respectively. Although the
model performance was not entirely poor, genetic algorithms
were used to attain a smaller, but more robust, metabolic feature
set that could serve to better discriminate between control and

ET DKO mice with higher cross-validated accuracy, sensitivity,
and specificity. A panel of 18 metabolic features with the lowest
RMSECV was selected through the genetic algorithm variable
selection process. oPLS-DA modeling with this smaller panel
(Figure 2C,D) resulted in 100% cross-validated accuracy,
sensitivity, and specificity; therefore, no mice were misclassified.
This model interpreted 33.12 and 98.30% of the X- and Y-block
variances, respectively, with only two latent variablesone less
than the model using all 934 metabolic features. Furthermore,
the captured Y-block variance was slightly higher, thereby
demonstrating that the down-selected panel of 18 features is
more informative than the initial set. Of the 18 selected features,
the concentration levels of 9 metabolites were found to increase
and 9 metabolites were found to decrease in ET DKO mice.
While only 11 of these concentration changes were univariately
significant (Mann−Whitney U test, n = 25, p < 0.05; Figure 3),
the covarying concentrations of all 18 metabolic features allowed
us to distinguish the detected metabolomes of control and ET
DKO mice in multivariate space; accordingly, they all display
discriminatory power when collectively included as part of a joint
panel. The concentration levels of those features that were not
statistically different between ET DKO and control mice in a
univariate fashion could also be a result of the relatively modest
sample size used in this study.
PCA was utilized to evaluate the performance of the 18-feature

discriminant panel in an unsupervised manner to further
investigate these results. Scores plots were generated for both
the initial set of 934 metabolic features and the 18 discriminant
feature panel (Figure S2 in the Supporting Information). Using
the initial set, three principal components interpreting 46.43% of

Figure 2. Orthogonal projection to latent structures-discriminant
analysis (oPLS-DA) models of early stage tumor (ET) Dicer-Pten
DKO (red circles) versus control mice (blue squares). (A) oPLS-DA
calibration scores plot using the total initial set of 934 spectral features.
The model consisted of three LVs with 35.35 and 93.64% total captured
X- and Y-block variances, respectively. The cross-validated accuracy,
sensitivity, and specificity were 76, 68, and 83%, respectively. (B)
Corresponding ET cross-validated prediction plot for panel A. There
were five misclassified mice. (C) oPLS-DA calibration scores plot using
the 18 discriminant metabolic feature panels obtained from genetic
algorithm variable selection. The model consisted of 2 LVs with 33.12
and 98.30% total captured X- and Y-block variances, respectively. The
accuracy, sensitivity, and specificity were all 100%. (D) Corresponding
ET cross-validated prediction plot for panel C. There were no
misclassified mice.
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the data matrix variance showed no distinct grouping of the
sample classes (Figure S2A in the Supporting Information).
However, better clustering was observed with the 18-feature
three-principal component PCA model, which interpreted
53.49% of the variance (Figure S2B in the Supporting
Information). The PCA class separation was statistically
significant and occurred along the first principal component
(unpaired t test, n = 25, p = 0.0055), providing further evidence
of the robustness of the 18-feature discriminant panel.
Discriminant Metabolite Identification

Metabolite identification was attempted for the 18 discriminant
feature subset once PCA confirmed the robustness of the oPLS-
DA model. The metabolite identification procedure is illustrated
in Figure 4 for feature 2501. Typical total ion UPLC−MS
chromatograms for control and ET DKO mice are shown in
Figure 4A,B, respectively. The apparent similarity of these
chromatograms hints that subtle metabolic differences occur as
HGSCs initially form and begin to proliferate and demonstrates
the need for multivariate methods to extract these differences
from the detected metabolomes. Highly selective accurate mass
extracted ion chromatograms for each discriminant feature
(Figure 4C) were generated thanks to the high resolving power
of the time-of-flight mass analyzer utilized. The corresponding
averaged mass spectra were used for adduct ion analysis (Figure
4D) to ensure that the correct exact mass was assigned to the
spectral features of interest. The presence of multiple adducts for
some features further assisted in chemical assignments. The
ensuing isotopic patterns and accurate masses were used to
generate lists of possible candidate elemental formulas that were
searched against metabolite databases. Furthermore, UPLC−
MS/MS experiments were conducted to obtain fragmentation
patterns that helped confirm the metabolite identities of the 18

feature subset. TandemMS spectra were compared with those in
metabolite databases or scientific literature and manually
analyzed as well (Figure 4E). Lastly, standards of the
commercially available metabolites were analyzed by UPLC−
MS and UPLC−MS/MS to further verify the identity of the
candidates by retention time and mass spectral matching as well
as eliminating nonmatches.
Eleven of the 18 metabolic features were identified by MS and

MS/MS, while 4 were further confirmed chromatographically by
chemical standards (Table 1). These four were ricinoleic acid
(Figure 3; +0.23 fold change), bilirubin (Figure 3; −0.74 fold
change), suberic acid (−0.42 fold change), and LysoPE(16:0)
(Figure 3; −0.33 fold change). Extracted ion chromatograms of
these 4 detected metabolites and their respective chemical
standards are shown in Figure S3 in the Supporting Information.
Corresponding MS and tandem MS spectra are displayed in
Figures S4−S7 in the Supporting Information. Additional
identified features (Table 1) include di- and triglycerides,
phospholipids, bile acids, and terpenes. Four of the features in
Table 1 were tentatively matched to exogenous metabolites,
which have no known biofunctions, such as Peltatol A (lignan) or
metabolites yet to be reported in mammals, such as (4E,8E,10E-
d18:3)sphingosine (sphingoid base). These tentative metabolite
identifications are listed in Table S2 in the Supporting
Information, and the metabolite chemical class is still listed in
Table 1 (italicized).
HGSC-Related Metabolic Alterations

The identified discriminant metabolites cover a broad range of
biomolecule classes and pathways (Figure 5), many of which
have been individually reported to be involved in ovarian cancer
proliferation. Table 1 summarizes these findings, which are
discussed based on pathway/chemical class later. Although fold

Figure 3. Discriminatory spectral features having statistically significant
univariate changes between early stage tumor (ET) Dicer-Pten DKO
mice (n = 14) and control (C) mice (n = 11). P values were calculated
using theMann−WhitneyU test. Box plots withmean (square), median,
upper and lower quartile, outliers, and minimum and maximum
(whiskers) data values are displayed. Feature ID numbers are indicated
on top of each case.

Figure 4. Typical total ion chromatograms obtained for serum samples
from (A) a control mouse and (B) a Dicer-Pten early-stage tumor DKO
mouse. (C) Extracted ion chromatogram for m/z 452.2779 ± 0.0050
generated from a control mouse sample (blue line) and a Dicer-Pten
early-stage tumor DKO mouse (red line). These were generated from
the data shown in panels A and B, respectively. (D) Mass spectrum for
the discriminant metabolic feature withm/z 452.2779. (E) TandemMS
spectrum for the m/z 452.2779 precursor ion using a collision cell
voltage of 30 V. The matching of the experimental tandem MS
fragmentation pattern with the metabolite candidate is illustrated by the
mass errors calculated as differences with the values in the MassBank
database, in addition to manual fragment analysis.
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changes are reported in this discussion, the only statistically
significant metabolite fold changes were those shown in Figure 3.

Fatty Acids and Derivatives

The development of hormone-related cancers, such as ovarian
cancer, may be influenced by fatty acids.39 Fatty acids are
involved in tumor cell signaling and growth and are also used for
energy expenditure, bulk membrane synthesis, and membrane-
targeted protein modifications.40,41 Thus, it is not surprising that
changes in fatty acid concentrations aid in detecting the early
stages of HGSC development in the DKO mouse model. Five
features in our discriminant subset were tentatively identified as
fatty acids or their derivatives (Table 1; Figure 5): TG(55:7),
ricinoleic acid, DG(37:5), suberic acid, and an unidentified
possible fatty acid (C22H32O2).

Estrogens, which play a major role in ovarian cancer
proliferation,42 have been linked with increased hepatic
triglyceride production and secretion into blood in mice,43

chickens,44,45 and humans.46,47 Accordingly, increased blood
serum triglyceride concentrations have been linked to gyneco-
logical (ovarian, endometrial, cervical) cancer risk,48 in agree-
ment with our finding in ET DKO mice (Table 1; Figure 3; fold
change: +0.36). Gercel-Taylor et al. found increased diglyceride
levels in the ascites of late-stage ovarian cancer patients,49 which
is opposite to the decrease found in this study in the serum from
mice with early stage tumors (Table 1; Figure 3; fold change:
−0.99). Because diglycerides are precursors to triglycerides,
decreased diglyceride levels could be the result of increased
triglyceride synthesis in the ET DKO mice, further demonstrat-
ing that HGSCs impact energy storage and generation. As a note,
the identified odd-chain di- and triglycerides could also result

Table 1. Confirmed and Tentative Metabolites Identified as Discriminatory between Early-Stage Tumor Dicer-Pten Double-
Knockout Mice and Control Micea

feature
code

average
retention time

(min)b
average
m/zb

fold
changec P valued ion type

elemental
formula

theoretical
m/z

mass
error
(mDa)

tentative metabolite
identification ref

2734 11.88 294.2410 1.23 0.0011 [M−H]− C18H33NO2 294.2439 2.9 sphingoid base 13,17
2798 15.53 363.2883 0.46 0.0051 [M−H]− C23H40O3 363.2905 2.2 24-nor-5β-cholane-

3α,6α,23-triol
12,18,21

24-nor-5β-cholane-
3α,7α,12α-triol

24-nor-5β-cholane-
3α,7α,23-triol

24-nor-5β-cholane-
3α,7β,23-triol

24-nor-5β-cholane-
3α,12α,23-triol

4-hydroxy-3-(16-
methylheptadecyl)-2H-
pyran-2-one

2-(8-[3]-ladderane-
octanyl)-sn-glycerol

4177 14.81 889.7234 0.36 0.0075 [M−H]− C58H98O6 889.7290 5.6 TG(55:7) 48
4466 13.73 625.4240 0.26 0.73 [M−H]− C42H58O4 625.4262 2.2 Lignan 79
2615 12.60 297.2414 0.23 0.015 [M−H]− C18H34O3 297.2435 2.1 ricinoleic acid 23
2489 13.37 476.2772 0.22 0.27 [M−H]− C23H44NO7P 476.2783 1.1 LysoPE(18:2) 17,23,60
3302 11.76 163.0578 0.11 0.40 [M−H]− N/A
3154 17.31 780.5530 0.061 0.77 [M−H]− C44H80NO8P 780.5550 1.9 PE(39:4) 18,23,59
2537 13.33 219.1724 0.0059 0.40 [M−H]− C15H24O 219.1750 3.0 terpene derivative 82
4509 16.85 627.5034 −0.99 0.018 [M−H]− C40H68O5 627.4994 4.0 DG(37:5) 49
4933 11.49 583.2555 −0.74 0.011 [M−H]− C33H36N4O6 583.2557 0.7 bilirubin 21
2550 14.70 711.3057 −0.63 0.025 [M−H]− N/A
4590 1.23 345.1557 −0.52 0.29 [M−H]− C16H26O8 345.1555 0.2 uroterpenol-O-

glucuronide
78

C17H22N4O4 345.1568 1.1 Ala-Trp-Alae 18
C14H26N4O4S1 345.1602 4.5 Lys-Cys-Proe 18

3226 1.22 173.0810 −0.42 0.43 [M−H]− C8H14O4 173.0820 0.9 suberic acid 23,50
2619 13.43 327.2295 −0.37 0.013 [M−H]− C22H32O2 327.2330 3.5 fatty acid, terpene, or other

phenol derivative
23,82

2501 13.68 452.2783 −0.33 0.033 [M−H]− C21H44NO7P 452.2783 2.1 LysoPE(16:0) 17,23,60
3338 13.33 903.6231 −0.33 0.021 [M−H]− C49H93O12P 903.6332 10.1 PI(O-18:0/22:2) 23,56

PI(P-18:0/22:1)
PI(O-20:0/20:2)
PI(P-20:0/20:1)

2845 0.46 402.7997 −0.33 0.0090 [M−H]− N/A
aMetabolites confirmed by retention time matching with commercially-available standards are highlighted in bold font. bThese reported values were
obtained after data processing with MZmine 2.0 software, which generates average values calculated using all samples. cFold change was calculated as
the base 2 logarithm of the average peak area ratios for ET DKO mouse samples and control samples. dP values calculated using Mann−Whitney U
test. eOther polypeptide isomers are not listed; tandem MS data could not be acquired to confirm true isomer identity because their ion abundances
were not high enough for quadrupole selection.
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from dietary intake, thus hinting that fatty acid catabolism could
be occurring at a decreased rate in ET DKO mice.
Suberic acid, a metabolic breakdown product of oleic acid, had

decreased serum levels (Table 1; fold change: −0.42) in ET
DKO mice. Menendez et al. found that oleic acid suppresses the
transcriptional activity of the Her-2/neu oncogene in the SK-
OV3 ovarian cancer cell line by up-regulating polyomavirus
enhancer activator 3 (PEA3), a Her-2/neu promoter transcrip-
tional repressor.50 The detected decrease in suberic acid may
thus be indirectly connected to the anticancer properties offered
by oleic acid. Additionally, conjugated linoleic acid has been
shown to suppress epidermal and mammary carcinogenesis in
mice.51,52 The detected increase in serum levels of ricinoleic acid
(Table 1; Figure 3; fold change: +0.23) in ET DKO mice could
thus be related to its increased production for further conversion
into other fatty acids such as conjugated linoleic acid, as reported
for bacteria.53,54 In a metabolomics study, Denkert et al. detected
decreased levels of free fatty acids (nonadecanoic acid, stearic
acid, heptadecanoic acid) in invasive ovarian carcinoma tumors
compared with borderline ovarian tumors.23 Correspondingly,
the serum levels of the unidentified possible C22H32O2 fatty acid
(Table 1; Figure 3; fold change: −0.37) were also decreased in
the ET DKO mice.

Phospholipids

Cancer cells need a continuous supply of phospholipids for
generation and maintenance of membrane integrity as well as for
protein modifications.55 Four features in our discriminant subset
were tentatively identified as phospholipids (Table 1; Figure 5):
LysoPE (18:2), PE(39:4), LysoPE(16:0), and C49H93O12P
[PI(O-18:0/22:2), PI(P-18:0/22:1), PI(O-20:0/20:2), or
PI(P-20:0/20:1)]. The detected changes in phospholipids
suggest membrane degradation or morphological changes in
HGSC-affected cells because these lipids play a role in
maintaining cellular membrane integrity. However, the inter-
pretation of both increased and decreased levels is not
straightforward and could be the result of membrane instability
and the subsequent attempt of cancer cells to repair them.
The PIK3CA oncogene, whose encoded protein phosphor-

ylates phosphatidylinositols, as well as increased PI3-kinase

activity have been implicated in ovarian carcinogenesis.56 Links
between PI3-kinase activation and increased cell survival due to
the suppression of apoptosis have also been established.57,58

Moreover, increased PI3-kinase activity may aid in cancer
proliferation by increasing cellular motility.56 The observed PI
(C49H93O12P) decrease (Table 1; Figure 3; fold change: −0.33)
in ETDKOmice could thus be attributed to increased PI3-kinase
activity. As the conditional deletion of Pten from ET DKO mice
activates the PI3-kinase signaling pathway, increased PI3-kinase
activity could also be an artifact of the genetic manipulation of the
mice.30

Serum levels of PE(39:4) (Table 1; fold change: +0.061) were
increased in ET DKO mice. Previous work by our group also
found that a collection of phosphatidylethanolamines aided in
combined early- and late-stage HGSC detection in human
subjects.18 Moreover, choline kinase, an enzyme needed for the
synthesis of phosphatidylethanolamines and phosphatidylcho-
lines, has been shown to be increased in the EOC cell lines SK-
OV3 and OVCAR-3.59 Lysophosphatidylethanolamine has been
shown to increase intracellular calcium concentrations and
stimulate an unknown membrane receptor, causing chemotactic
migration and cell invasion in the SK-OV3 ovarian cancer cell
line.60 Although there are no definite conclusions to be drawn
from the increased (Table 1; fold change: +0.22) and decreased
(Table 1; Figure 3: fold change: −0.33) levels of lysophospha-
tidylethanolamines detected in ET DKO mice, these changes
could be related to the initiation of migration and invasion of
HGSC to neighboring tissue during proliferation. Moreover,
LysoPE(18:2) has recently been shown to aid in the detection of
prostate cancer, another hormone-related cancer.61

Sphingoid Bases

Sphingoid bases, particularly sphingosine, have been long
implicated in playing a role in cancer biology. One of the
features in the discriminating subset was an unidentified
C18H33NO2 sphingoid base (Table 1; Figure 5). Sphingosine
facilitates and triggers apoptosis, while sphingosine 1-phosphate
promotes cellular survival/profileration in response to apoptotic
stress.62 Illuzzi et al. found that inhibiting sphingosine kinase,
thereby suppressing the production of sphingosine 1-phosphate

Figure 5.Overview of key altered metabolic/catabolic pathways observed in early stage tumor (ET)Dicer-PtenDKOmice. Arrows are colored based on
their corresponding altered pathways and represent both direct and indirect relationships between metabolites/metabolite classes. Metabolites from the
18 discriminant feature subset are italicized, and their corresponding metabolite class is in bold. Metabolites in red text have increased levels in ETDKO
mice, while those in blue text have decreased levels in ET DKO mice. Metabolite relationships were derived from Kyoto Encyclopedia of Genes and
Genomes,83 MetaCyc,84 and existing scientific literature.
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from sphingosine, reduced cell proliferation in ovarian cancer cell
lines.63 Research by Hong et al. suggested that sphingosine 1-
phosphate is a vital component of cellular growth and adhesion
modulation for ovarian cancer cell lines HEY and OCC1.64

Increased levels of the C18H33NO2 sphingoid base in ET DKO
mice (Table 1; Figure 3; fold change: +1.23) therefore hint at a
“biochemical fight response” toward the developing carcinoma.
Supporting this hypothesis, Fan et al. detected increased plasma
levels of the sphingolipids phytosphingosine, ganglioside, and
ceramides in a cohort combining early- and late-stage EOC
patients that were compared with healthy controls.17 Addition-
ally, Chen et al. observed an increase in phytosphingosine in the
urine of a combined early- and late-stage EOC patient cohort.13

Bile Acids, Alcohols, and Derivatives

Bile acids cause apoptosis as well as oxidative stress in cells,
resulting in the generation of reactive oxygen species (ROS) that
subsequently damage DNA. Recurring DNA damage can
increase mutation rates of onco- and tumor suppressor genes.
Therefore, cells exposed to bile acids can proliferate, leading to
carcinogenesis.65 Two features in our discriminant feature subset
were tentatively identified as bile acids and related substances
(Table 1; Figure 5): 24-nor-5β-cholane-triol and bilirubin.
Serum levels of 24-nor-5β-cholane-triol were found to be
increased (Table 1; Figure 3; fold change: +0.46) in ET DKO
mice. It is plausible that ROS generation by 24-nor-5β-cholane-
triol aided in the development of ovarian carcinoma in ET DKO
mice. In agreement with these findings, Chen et al. identified 27-
nor-5β-cholestane-3,7,12,24,25 pentol glucuronide (CPG) as a
serum biomarker for combined early- and late-stage EOC, which
was also accompanied by increased levels of glycocholic acid.21

Also supporting this finding is previous work by our group,
showing that bile acids, specifically isomers of 5β-chol-9(11)-en-
24-oic acid, can aid in the detection of human HGSC.18

Although bilirubin is not a bile acid, it is a component of bile
and the end product of heme catabolism. Furthermore, increased
bilirubin has been associated with low cancer mortality.66

Bilirubin acts as an endogenous antioxidant that reduces
oxidative stress damage by scavenging peroxyl67 and hydroxyl
radicals.68 Moreover, mutations in the tumor suppressor gene
p53 can be caused by ROS,69 and p53 mutations are found in
many cancers, including ovarian cancer.70,71 Lowered concen-
tration levels of bilirubin, as detected in the ET DKO mice
(Table 1; Figure 3; fold change: −0.74), possibly imply
diminished protection against ROS, thus leading to carcino-
genesis. Supporting this hypothesis, Chen et al. tentatively
detected decreased levels of bilirubin in the serum of both early-
and late-stage EOC patients and increased levels of bilirubin
mono- and diglucuronic acids.21

Peptides

One member of the discriminant feature subset was tentatively
identified as a tripeptide isomer of Ala-Trp-Ala or Lys-Cys-Pro
(Table 1). TandemMS data could not be acquired to confirm the
tripeptide sequence as the precursor ion abundances were not
sufficiently high. Blood serum levels of these peptides were
decreased in ET DKO mice (Table 1; fold change: −0.52).
Previous work by our group has also found that tripeptides,
specifically Gln-His-Ala or its isomers, aided in human HGSC
detection.18 However, a survey of the literature revealed no
mechanism by which small circulating peptides could play a
biological role in ovarian cancer. Some proteases have been
reported to be overexpressed in ovarian carcinoma,72−74 but we
would expect liberated peptides to have an increased

concentration in ET DKO mice if their presence resulted from
increased protease activity.

Phytochemicals - Terpenes

Three features in our discriminant subset were tentatively
identified as terpenes (Table 1; Figure 5): a C15H24O terpene
derivative, uroterpenol-O-glucuronide, and an unidentified
terpene (C22H32O2). Many terpenes enter metabolic networks
from food sources. Although both ET DKO and control mice
were fed the same diet, it is plausible that the presence of HGSC
in ET DKO mice altered the metabolism of dietary metabolites.
Uroterpenol is a metabolic product of limonene, a terpene
component of citrus fruits, vegetables, herbs, and spices, and has
been shown to lengthen tumor latency and decrease tumor yield
in mice with mammary cancer.77 Interestingly, uroterpenol-O-
glucuronide has been found to have urinary excretion patterns
resembling those of estriol, pregnanediol, and pregnanetriol, and
increased excretions have been associated with increased
placental, ovarian, or adrenal activity.78 The decreased serum
levels of uroterpenol-O-glucuronide observed in ET DKO mice
(Table 1; fold change: −0.52) might thus relate to increased
ovarian activity or to decreased serum uroterpenol concen-
trations.

Phytochemicals - Lignans

One feature in our discriminant subset was an unidentified
C42H58O4 lignan. Lignans are phytoestrogens that are abundant
in diets of people living in regions of low cancer incidence.79 An
increased dietary lignan intake, measured by urinary excretion,
has been correlated with reduced breast cancer risk.80 Ovarian
cancer tumors contain type II estrogen binding sites,81 and it has
been suggested that lignans inhibit cancer cell growth by
competing with estradiol for type II estrogen binding sites.79

Because there was a detected increase in the unidentified
C42H58O4 lignan (Table 1; fold change: +0.26) in the serum of
ET DKO mice, it is possible that binding of lignans to type II
estrogen sites was somehow decreased, thereby not aiding in the
inhibition of HGSC proliferation.

■ CONCLUSIONS
Early-stage HGSCwas successfully detected in aDicer-PtenDKO
mice model utilizing UPLC−MS untargeted metabolic profiling.
After down-selection of spectral features with maximum
discriminatory power, 18 metabolites differentiated DKO mice
with early stage tumors from control mice with 100% accuracy,
sensitivity, and specificity. Altered metabolic pathways included
those of fatty acids, bile acids and alcohols, glycerophospholipids,
peptides, and phytochemicals. These alterations impact cellular
energy storage and membrane stability as well as defenses against
oxidative stress. This work is the first step toward understanding
the underlying metabolic changes resulting from the progression
of early HGSCs originating in the fallopian tube. Exploration of
the overlap between DKO mice and humans in early stages of
HGSC development will be pursued in the future.
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