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a b s t r a c t

We present a computation method to accelerate the calculation of the Hamiltonian of a three-body time
independent Schrödinger equation for collisions. The Hamiltonian is constructed with one dimensional
(basis overlaps) and two dimensional (interparticle interaction) integrals that are mapped into a
computational grid in a Graphics Processing Unit (GPU). We illustrate the method for the case of an
electron impact single ionization of a two electron atom. This proposal makes use of a Generalized
Sturmian Basis set for each electron, which are obtained numerically on a quadrature grid that is used
to compute the integrals in the GPU. The optimal computation is more than twenty times faster in the
GPU than the calculation in CPU. The method can be easily scaled to computers with several Graphics
Processing Units or clusters.

© 2014 Elsevier B.V. All rights reserved.

1. Getting started

The properties of atoms and molecules can be determined by
their wave function, which is obtained as the solution of the
Schrödinger equation for non-relativistic energies. There aremany
methods to solve this second order, partial differential equation,
from simple approximations that can give a hint of the physics, to
the complete ab-initio numerical solution to predict physical quan-
tities with a high degree of precision. When the wave function of
an atomic or molecular system is written in a basis expansion, the
Schrödinger equation transforms into a linear problem described
by a dense matrix [1]. To obtain this matrix, it is necessary to com-
pute integrals between two elements of the basis (called overlaps)
and integrals of the interparticle potentials, that usually involve
four basis functions.

The details of the calculation of each element of this matrix
(called the Hamiltonian matrix) greatly depend on two factors.
First, the system of coordinates chosen to represent the positions
of the particles and their interactions, and second, the election of
the basis set for each particle. These choices are determined not
only by the number or type of particles involved, but also for the
kind of experiment and/or physical property under investigation.
For example, the simplermethodmakes use of Slater Type Orbitals
(exponentials times powers of the electronic coordinates relative
to the nuclei) as a basis set [2]. This is well suited to study bound
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atomic systems, but not to analyze problemswhere particles canbe
spread out through the space, like ionization processes. Quantum
chemistry calculations usually employ Gaussian functions to
obtain properties of molecules, and take great advantage from the
fact the systems under scrutiny are bound states [3–5].

Unlike these calculations of the quantum chemistry arena, colli-
sional problems deal with particles that can be far from each other.
In fact, themost important feature of a collision, the cross sections,
are defined in those regions, assuming that the interactions among
the particles are no longer effective and that they are far away from
where the collision took place [6]. Therefore, the basis in collision
problems should be able to accurately expand the full wave func-
tion for large interparticle distances. Moreover, if charged parti-
cles are present, the basis should take into account the long-range
asymptotic behavior of Coulomb fields [7,8]. Finally, possibly the
main shortcoming is that it is not possible to use simple analytic
basis sets for collision problems. All these factors pose several chal-
lenges to perform a numerically accurate calculation of wave func-
tions and cross sections in atomic and molecular collisions [9].

In the last few years, the computer hardware and software
have been moving fast to an heterogeneous world [10]. In the
desktop market, this meant going from a simple one-core desktop
computer to an aggregate of one to several multicore CPUs with
their corresponding accelerators. This also replicates in High
Performance Computing clusters, such as the Titan supercomputer
at Oak Ridge National Laboratory [11]. Nowadays it is not possible
to program a scientific code thinking only about the pure speed
of the calculation (i.e., floating points operations per second). In-
core and out-of-core communication layers, memory hierarchies,

http://dx.doi.org/10.1016/j.cpc.2014.03.026
0010-4655/© 2014 Elsevier B.V. All rights reserved.



Author's personal copy

1956 F.D. Colavecchia / Computer Physics Communications 185 (2014) 1955–1964

latency factors have to be taken into account at the time of
modeling a numerical calculation. Onemajor advantagewithin this
picture is that all this heterogeneity is exposed to the programmer
by software abstractions. Within the Graphical Processing Units
accelerators, Computer Unified Device Architecture (CUDA) has
been developed as a massively parallel programming tool, and is
currently considered a de-facto standard. CUDA is a C language
extension that enables one to program some GPUs for scientific
purposes [12,13]. Besides, the OpenCL [14] initiative strives to
provide an open framework to work not only with NVIDIA GPUs,
but also with any aggregate of cores and accelerators from
any hardware provider. It is still unclear whether any of these
architectures will prevail, or if they will converge into an broader
standard.

The aim of this work is to demonstrate that a careful analysis of
the structure of the Hamiltonian leads to an efficient mapping of
the calculations into the software abstractions of GPUs, resulting
in codes that can run more than twenty times faster than their
CPU’s counterparts. The paper is organized as follows. In Section 2
we review the structure of the simplest three body collisional
system, making use of a spectral method based on Generalized
Sturmian Functions [15]. In Section 3 we detail the procedure to
compute theHamiltonian in this basis, and analyze the calculations
inGPU. In Section 4we summarize our results, and envision further
enhancements that can be subject of future research. Atomic units
are used thorough the paper.

2. The structure of the three-body Hamiltonian

There is a vast amount of different collisions and reactions that
involve atoms and molecules. However, the simplest system, yet
still an active area of research, is the Three Body problem: one
particle collides with a two-body bound target, resulting in the
excitation of the target, the capture of one of the particles of the
target by the projectile, or even the dissociation of it, leading to
three free particles after the collision. Single ionization, excitation
or capture of atoms by electrons or ions, reactive scattering or
recombination chemical reactions are examples of Three Body
problems. If the particles of the system are charged, the long range
of Coulomb interactions should be taken into account [6].

Let us consider an atomic system of two electrons and a heavy
atomic nucleus. This is a simple atomic system, but showcases
most of the difficulties associated with the collisional problem.
Moreover, if one is interested in the double ionization of a mul-
tielectronic atom, one can always reduce the problem to the three-
body one, including the screening effect of the non-active electrons
in a model potential. In any case, we can assume that the nucleus
is at rest, and refer the motion of the electron relative to it. The in-
teractions between the particles are Coulomb ones, hence one can
write the electronic Hamiltonian as:

H = ∇
2
r1 + ∇

2
r2 + V (r1) + V (r2) + V (r12) (1)

which is simply the sum of the kinetic and potential energies of
the system. The coordinates set {r1, r2} determines the positions of
the electrons 1 and 2 in space, relative to the fixed nucleus, while
r12 = |r1 − r2| is the interelectronic distance. The interactions are
Coulomb potentials given by (i = 1, 2)

V (ri) = −
Z
ri

and V (r12) =
1
r12

,

where Z is the charge of the nucleus. Solutions to the time-
dependent Schrödinger equation

HΦ = i
∂Φ

∂t
(2)

determine all the quantum mechanical properties of the system.
Different solutions to this equation depend on the boundary con-
ditions set in the coordinate domain. There are basically two differ-
ent classes of solutions related to this equation: bound states, that
decay exponentially for large distances, and continuum states, that
behave as waves when particles are far from each other.

Bound states are the eigenvectors of theHamiltonian. Replacing
Φ = Ψ exp(−iEt) in (2), one ends upwith the eigenvalue problem

(H − E) Ψ = 0 (3)

where E is the (unknown) energy of state Ψ .

Continuum states result from collisions, therefore, one can
assume that the complete state of the system is the sum of the
initial state Ψ0 and the scattered part Ψ :

Φ = Ψ0e−iEt
+ Ψ e−iEt (4)

and can be obtained from the solution of the time-independent
problem

(H − E) Ψ = − (H − E) Ψ0 (5)

where Ψ0 is the initial unperturbed state of the process, and E is
the total energy of the system. One can split H such that

H = H0 + W with (H0 − E)Ψ0 = 0

because the wave function Ψ0 is an eigenvalue of the unperturbed
system represented by the Hamiltonian H0. Therefore, we have

(H − E) Ψ = WΨ0. (6)

The, possibly differential, operatorW is responsible for the transi-
tions from the initial, known state Ψ0 to the continuum, collisional
stateΨ . The initial state in a ionization collision is described by the
product of the bound state of the target atom and a plane wave de-
scribing the impinging projectile. The boundary conditions for the
unknown scattering state Ψ are very complex [8,16]: it is custom-
ary to split the asymptotic regions inΩ0, where all the particles are
far from each other, and Ωi, i = 1, 2, 3, where particle i is far from
the rest of the system. When one deals with ionization problems,
themost important of these regions isΩ0. This boundary condition
can be written as an hyperspherical wave [16]:

Ψ (r1, r2) →
ρ→∞

1
(2π)5/2

K 3/2

ρ5/2
eiKρ+iλ0 ln(2Kρ)+iπ/4 (7)

where the hyper-radius is ρ =


r21 + r22 while K =


k21 + k22 is

the hyper-momentum and λ0 is a Coulomb parameter involving
charges and relative momenta of the particles.

In thiswork,wewill compute the time-independentwave func-
tion. The solution to either (3) or (6) can be computed analytically
only in very few cases, and the Hamiltonian (1) has to be repre-
sented and solved numerically. One possible numerical path is to
describe the Schrödinger equation in a numerical grid, using finite
differences or finite elements methods [17,18]. The representation
of the Hamiltonian in these methods is quite straightforward, but
themesh in both cases results in huge, sparse matrices, that can be
difficult to handle unless a powerful computer cluster is at hand.
Besides, scaling to more particles is cumbersome, and manage-
ment of boundary conditions, specially in the continuum case, is
tricky [19].

Anotherway to tackle this problemnumerically is to use a spec-
tral method, where one introduces a suitable basis set to represent
the solution Ψ . The resulting Hamiltonian matrix is usually much
smaller than direct methods, and one has the benefit that can in-
troduce physical features directly in the basis elements [20–22].
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For the atomic system in consideration, a spectral method in
the electronic coordinates introduces a basis set {Ξnm(r1, r2)} to
expand the wave function Ψ as

Ψ (r1, r2) =


nm

anmΞnm(r1, r2)

such that the Hamiltonian matrix is defined as

Hn′m′nm = ⟨Ξ n′m′ |H − E| Ξ nm⟩ ,

which is a square matrix of NH × NH elements. Therefore, the
solution of the linear system Ha = b gives the set of coefficients
a = {anm} that determines the solution Ψ of the Schrödinger
equation (6). The matrix b is the projection into the basis of the
action of operatorW on the initial state Ψ0.

The elements of the Hamiltonian matrix Hn′m′nm are a priori six
dimensional integrals in thewhole space spanned by {r1, r2}. How-
ever, they can be reduced if physical symmetries are taken into
account. Up to this point no assumption about the angular sym-
metries has been included in the basis, and the coupling between
the angular momenta of each particle can be introduced in many
different ways. Let us assume that we make use of spherical coor-
dinates for each electron: ri = (ri, θi, ϕi) for i = 1, 2. The elements
of the basis Ξnm include the product of two one-electron functions
depending on the distance to the nucleus times a function that cou-
ples the angular variables [23]

Ξnm(r1, r2) =
Sna la(r1)

r1

Snb lb(r2)
r2

YLM
la lb(

r1,r2).
The elements Snl are Generalized Sturmian Functions (GSF), eigen-
vectors of a one dimensional radial Schrödinger equation with
angular momentum l. That is, for i = 1, 2 we define the one di-
mensional Hamiltonian

hi = −
1
2

d2

dr2i
+

l(l + 1)
2r2i

+ V (ri) − Ei (8)

such that

hiSnl(ri) = −βnlV(ri)Snl(ri), (9)

where βnl are the eigenvalues of the problem. The functions Snl are
orthonormal respect to the generating potential V [24]. This is a
short range, physically sound potential, chosen according to the
problem under scrutiny: for bound state calculations, one chooses
a Yukawa potential; for scattering problems, a square well poten-
tial is usually the best choice. The generating potential must van-
ish for distances larger than a certain value Rmax, that also depends
on the features of the physical problem. The eigenvalues βnl of the
Sturmian equation (9) and can be complex numbers for outgoing
or incoming boundary conditions and real and positive energy Ei,
which are the conditions for ionization problems. The energy of
each electron Ei can be selected arbitrarily, althoughwehave found
that best convergence for ionization problems is achieved when
Ea = Eb = E [23].

The coupling among the angular variables is described by the
bipolar spherical harmonic YLM

la lb
(r1,r2) defined as:

YLM
la lb(

r1,r2) =


ma,mb

⟨la, lb;ma,mb|L,M⟩ Yla,ma(θ1, ϕ1)Ylb,mb(θ2, ϕ2)

in terms of Clebsch–Gordan coefficients and the usual spherical
harmonics [25]. We end up with the following spectral expansion:

Ψ (r1, r2) =


na,nb,la,lb

ala lbnanb
Sna la(r1)

r1

Snb lb(r2)
r2

YLM
la lb(

r1,r2). (10)

There some subtleties about the lasts equations that should be
addressed. First, indexes {n,m} that label the basis set become
composite ones {na, la, nb, lb}. This has some implications in the

order of the elements of the Hamiltonian matrix according to
them, that, as we will show in the next sections, can impact in the
numerical performance of the code.

Second, all these angular functions have a defined angular mo-
menta L and projection into a fixed axisM . This does not affect the
computation of a bound state, since they are eigenstates with well
defined angular momentum and projection. However, this could
be not the case in a collision process. It could be possible to have a
very general transition operatorW which mixes states of different
angular momenta. Therefore, summation over the indexes {n,m}

of the general Hamiltonian should be also extended to include dif-
ferent L andM . Throughout this paperwewill assume that the per-
turbationW does notmix angular momenta, and one can solve the
Schrödinger equation for each pair {L,M} independently.

Finally, it is important to note that the particular selection of
the radial functions Snl only determines the specific expression
of the Hamiltonian matrix in terms of the basis set, eigenvalues
βnl and potentials V and V . Hence, the method presented here is
completely general and will be suited for any basis set chosen.

2.1. Hamiltonian blocks

At this point, it is clear that for each pair {L,M} one needs to
define how many elements are going to be included in the basis
set. Let us assume that we include NLM pairs {L,M}. For each fixed
value of (L and M), one choses a set of PLM pairs

(la, lb)LM =

(la, lb)1, (la, lb)2, (la, lb)3, . . . , (la, lb)PLM


.

Even though the number PLM of pairs is not known a priori, it can
be determined by convergence properties on the wave function,
and is different for each process under consideration. Besides, for
each pair (la, lb), one defines also the size of the radial basis set for
each electron. For simplicity, we assume that the basis size is the
same for all pairs (la, lb)LM , that is to say, the basis size depends only
on L and M . We will define NLM

a (NLM
b ) as the number of functions

Sna la (Snb lb ) included in the basis for each electron with angular
momentum la (lb), respectively. With all these definitions, one can
compute the size NH × NH of the Hamiltonian Matrix with:

NH =

NLM
j

P j

N j
a × N j

b


,

where the index j runs across all the possible values of LM in-
cluded in the problem. This simply resembles the block struc-
ture of the Hamiltonian matrix that has NL′M ′ × NLM sub-matrices
HL′M ′LM , which are also divided in PLM

× PLM blocks hl′a l
′
b la lb of

size

N j
a × N j

b

2
each. Fortunately, in many interesting cases the

hypothesis that the perturbation does not mix the angular mo-
menta holds, and one has to deal with the diagonal blocks of the
Hamiltonian H = HL′=L,M ′

=M independently.
To fix the ideas, let us show a few of examples. First, let us con-

sider an hypothetical process for which the Hamiltonian needs to
be computed for L = 0, 1, 2, andM = 0 for all L (see Fig. 1). There-
fore NL′=2,M ′=0 = NL=2,M=0 = 3 and the Hamiltonian contains
nine blocks sub-matrices HL′0L0. Let us suppose that the perturba-
tion is such that only the diagonal blocks of theHamiltonianmatrix
are needed. Hence, we need to compute three sub-matrices H0000,
H1010 and H2020. Fixing the number of (la, lb) pairs to PLM

= 4 for
all L, and taking into account selection rules, we would have the
pairs1

(la, lb)00 = {(0, 0), (1, 1), (2, 2), (3, 3)} ,

1 The selection of which pairs (la, lb) are included in the set is given by
convergence tests, and usually unknown a priori.
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Fig. 1. Structure of the Hamiltonian matrix. Here we show a Hamiltonian matrix for L = 0, 1, 2, M = 0, that is to say NL′=2,M ′=0 = NL=2,M=0 = 3. Each of the HL′0L0

blocks contains 16 sub-blocks hl′a l
′
b la lb . We illustrate the case of the H22 block having a grid of P20

× P20 sub blocks, with P20
= 4. Finally, we show the h1113 tile, which has

(NaNb)
2

= (4 × 5)2 = 400 complex numbers. Each one of these values (black square) is obtained from a sum of two two-dimensional integrals, and six one dimensional
ones, see Eq. (17).

(la, lb)10 = {(0, 1), (1, 2), (2, 3), (3, 4)} ,

(la, lb)20 = {(0, 2), (1, 1), (1, 3), (2, 2)} .

Each of the three diagonal sub-matrices will have PL0
× PL0

=

4 × 4 = 16 sub blocks hl′a l
′
b la lb . A detailed representation for H2020

is depicted in the center of Fig. 1. If we set, for example,Na = 4 and
Nb = 5, each block hl′a l

′
b la lb will have (NaNb)

2
= (4 5)2 = 202

=

400 complex numbers. Therefore, the total memory required to
keep the Hamiltonian will be 3 × 16 × 400 × 16 bytes, which is
about 300 kB.

Second, if one is interested in the calculation of the fundamen-
tal state of He, one has to solve Eq. (3) for L = 0 and M = 0.
Due to selection rules, la = lb. In Ref. [26] we make use of thir-
teen pairs of (la, lb), therefore P00

= 13. Besides, we employed
35 functions for each electron, that is to say, N00

a = N00
b = 35.

The size of each hl′a l
′
b la lb is a matrix of (35 × 35) = 1225 rows and

columns, with 12252
= 1500625 complex numbers, which occupy

23.45MB. Since the complete Hamiltonian has a total of 13×13 of
these blocks, 3.96 GB of memory storage are needed for it, which
can be accommodated with ease in nowadays computers.

Finally, the calculation of a collision process is a different story.
Let us take for example the high energy (e, 3e) calculation. We
have shown that this process can be modeled as a three body one,
thus the Hamiltonian is the one given by Eq. (1) [27]. However, the
exact wave function contains all angular momenta L and should be
converged respect to it. Taking into account L = 0, 1, . . . , 4, (that
is, NLM

= 5) and five pairs of (la, lb) for each L, we have PLM
= 5.

We employ 84 functions for each electron, NLM
a = NLM

b = 84.
Each hl′a l

′
b la lb is a matrix of (84 × 84) = 7056 rows and columns,

with 70562
= 49, 79 × 106 complex numbers, occupying 0.78 GB.

The perturbation does notmix angularmomenta, and therefore the
Hamiltonian has a diagonal structure with NLM

= 5 blocks, each
one containing (PLM

× PLM) = 25 hl′a l
′
b la lb blocks, or 97.5 GB for the

total Hamiltonian.
From now on, we will assume that L and M are fixed, and drop

the superindex from the notation. Therefore, we need to find the

solution x of the linear system Hx = b, where H = HL′=L,M ′
=M .

The block structure of thismatrix corresponds to the distribution of
different pairs of one-particle angular momenta defined by hl′a l

′
b la lb

(see Fig. 1).

2.2. Integrals in the Hamiltonian

The specific structure of the Hamiltonian is determined by the
coordinate system, and by the basis functions selected in the de-
scription of the atomic process. Each choice would lead to inte-
grals of different dimensions, on particular domains defined by the
relations among coordinates. In the case of the Generalized Stur-
mian Functionsmethod, application ofHamiltonian (1) to thewave
function defined by (10), and using Eq. (8) to remove the partial
derivatives, results in one-dimensional and two-dimensional in-
tegral of the basis functions sets. If the one electron radial ener-
gies are Ea and Eb for each electron, the Hamiltonian matrix H has
elements

[Hl′a l
′
b la lb ]n′

an′
bnanb

=


YLM

l′a l′b

Sn′
a l′a

r1

Sn′
b l

′
b

r2

H − E
Sna lar1

Snb lb
r2

YLM
la lb


(11)

that can be computed after some algebra as

[Hl′a l
′
b la lb ]n′

an′
bnanb

=


−βna laVa

la la
n′
ana

Olb lb
n′
bnb

− βnb lbVb
lb lb
nbnbO

la la
nana

+ (Ea + Eb − E)Ola la
n′
ana

Olb lb
n′
bnb


δla laδlb lb

+

∞
l=0

4π
2l + 1

R
l′a l

′
b la lb l

n′
an′

bnanb
ALM
l′a l′b la lb l

, (12)

in terms of one-dimensional

Ol′ l
n′n =


∞

0
drSn′ l′(r)Snl(r) (13)

Vi
l′ l
n′n =


∞

0
drSn′ l′(r)Vi(r)Snl(r) (14)
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and two-dimensional

R
l′a l

′
b la lb l

n′
an′

bnanb
=


∞

0
dr1


∞

0
dr2Sn′

a l′a(r1)Sn′
b l

′
b
(r2)

r l<
r l+1
>

Sna la(r1)Snb lb(r2)

(15)

ALM
l′a l′b la lb l

=

l
m=−l


dr1 

dr2
× YLM∗

l′a l′b
(r1,r2)Y ∗

lm(r1)Ylm(r2)YLM
la lb(

r1,r2) (16)

integrals of the basis functions. The generating potentials for each
electron are Va and Vb, see the RHS of Eq. (9). The matrix H in-
volves the electron–electron interaction that was evaluated using
the standard spherical harmonics expansion

1
r12

=

∞
l=0

l
m=−l

4π
2l + 1

r l<
r l+1
>

Y ∗

lm(θ1, φ1)Ylm(θ2, φ2), (17)

with r< = min(r1, r2) and r> = max(r1, r2). Angular integrals
ALM
l′a l′b la lb l

can be computed in terms of Clebsch–Gordan coefficients:

AL,M
l′a,l′b,la,lb l

= ⟨l′a, l; 0, 0|la, 0⟩⟨l
′

b, l; 0, 0|lb, 0⟩

×


(2l′a + 1)(2l′b + 1)
(2la + 1)(2lb + 1)

×

min[la,M+lb]

min[l′a,M+l′b]
ma=max[−la,M−lb]

m′
a=max[−l′a,M−l′b]

⟨l′a, l
′

b;m
′

a,M − m′

a|L,M⟩

× ⟨la, lb;ma,M − ma|L,M⟩

×

l
m=−l

(−1)m⟨l′a, l; −m′

a,m|la, −ma⟩

× ⟨l′b, l;m
′

a − M, −m|lb,ma − M⟩. (18)

Only one angular integral is required for each set of values {L,M,
l′a, l

′

b, la, lb, l}, and they do not depend on the index labels {n′
a, n

′

b,
na, nb}. Therefore, for each block of repulsion integrals, one has to
compute only one angular integral. Besides, they are sums of Cleb-
sch–Gordan coefficients times normalization factors, which can be
precomputed easily and stored in a table or file. Since the number
of these integrals is small, the effect in the overall run-time calcu-
lation is negligible.

Note that Eq. (11) is the direct term of the Hamiltonian, and
exchange a ↔ b should be considered to take into account the
symmetry of the system if needed.

It should be clear by now that there are two stages in the cal-
culation of the solution Ψ of the problem, provided that one has a
numerical representation of the radial basis set Snl [28]. First, one
needs to compute theHamiltonian of the problem, Eq. (11). Second,
one has to solve a linear algebra problem: an eigenvalue calculation
for bound states, or a linear system for continuum ones. This last
step is straightforward, and can be performed with different com-
putational libraries, such as LaPACK [29], MAGMA or PLASMA [30],
FLAME [31] etc. in one desktop computer. It is important to note
that the only constrain at this point is that the complete matrix
should be in the memory of the machine to make use of one of
these advanced numerical linear algebra methods. If this is not the
case, one can make use of parallel MPI implementations of these
packages, and solve the second stage in a computer cluster.

This work is devoted to the optimization of the calculation
of the matrix elements of the Hamiltonian in a GPU. Since we
make use of CUDA capable cards, we will summarize some as-
pects of the CUDA parallel abstraction, further details can be found

elsewhere [32]. The parallel work in CUDA is organized in kernels,
which are execution units that runs on a grid of blocks of execu-
tion threads. These kernels are functions written in an extended
C Language code, that are started directly in the GPU by the card
scheduler. Kernels can take advantage of the memory hierarchy in
the GPU, that has a small number of registers, shared memory (a
small user-managed cache) per block and global memory (up to
6 GB in Tesla series cards). The grid of blocks and threads is de-
fined by the code at runtime, and can be organized as a one, two
or three-dimensional array of blocks, each one composed by one,
two- or three-dimensional array of threads. The maximum num-
ber of threads per block is 1024, however, the number of blocks
available is huge (up to 65535 per dimension of a 2D grid, for com-
pute capability 2.0). Therefore, the mapping of the calculation into
the grid of blocks and arrays is critical in the optimization of the
code.

3. Computing the Hamiltonian

The calculation of the Hamiltonian requires the computation of
one- and two-dimensional integrals. There are few aspects related
with the specific basis functions that concerns both of them. First,
all integrals range from zero to infinity, however, the basis set is
defined up to the maximum radial value Rmax. Therefore, we will
replace the upper integral limit by this value, and testwhether con-
vergences is achieved or not. This is specially important for overlap
integrals (13) and (14), since they are generally related to the or-
thogonality of the basis set. In the case of Generalized Sturmian
Functions, orthogonality is in fact given by (14), which provides a
strict test for the calculation of these integrals.Moreover, since GSF
have all the same correct asymptotic condition

Sasympt
nl (r) = lim

r→∞
Snl(r) ∝ eikr−i Zk ln(2kr),

we can easily compute these integral between 0 and Rmax numer-
ically, and add the asymptotic part of the integral between Rmax
and infinity that can be computed analytically.Wehave shown that
adding the asymptotic integral accelerates the convergence at the
wave function level [33].

Second, wewill assume that the numerical method can provide
accurate basis functions in an arbitrary radial grid. This is the case
of Generalized Sturmian Functions, that can be computed directly
in a very dense grid, and interpolated in a smaller grid, such as
Gaussian quadratures abscissas.

From a computational point of view, it is evident that the two-
dimensional integrals are the most time-consuming part of the
whole calculation, since they involve four GSF compared to the
two GSF in the overlap integrals (13) and (14). Besides, there is
an explicit sum in l that is associated with the interelectronic
repulsion expansion (17). This sum runs up to the maximum value
of the pairs (la, lb) admitted by selection rules, for a given L. Since
mapping of integrals to the CUDA abstraction is the same for all
angular integrals, we will restrict our attention to the particular
case of a fixed value of l in Eq. (17). This example will provide all
the features of the optimized calculation in the GPU.

3.1. Overlap integrals

Computation of overlap integrals can be performed in two
stages. First we compute the one electron integrals, and then we
compute the products of them present in the first three terms of
the Hamiltonian, Eq. (12).

Since GSF can be obtained accurately in a numeric grid, we will
compute one-dimensional integrals as a sum over Gauss–Legendre
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Fig. 2. An illustration of the overlap matrices Eq. (20). The full overlap matrix is constructed as a Kronecker product of one-electron overlaps. In this Illustration, assume
that Na = Nb = 4, and TILEW = 2 the kernel that computes one-electron overlaps Il′a la and Il

′
b lb make use of a grid of (Ni/TILEW × Ni/TILEW = 2 × 2) blocks. Once these

matrices are obtained in the GPU, the kernel that computes the Kronecker product is run in a grid of (8 × 8) blocks of 2 × 2 threads per block. For example, the element

(10, 6) of the two-electron overlap (dark blue) is the product of I l
′
a la
32 and I

l′b lb
22 is computed by thread (1, 1) of block (4, 2). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Nq quadrature points {rj} with weights {wj}, with j = 1, . . . ,Nq

I l
′ l
n′n[f ] =

 Rmax

0
Sn′ l′(r)f (r)Snl(r)dr

=

Nq
j=1

Sn′ l′(rj)f (rj)Snl(rj)wj. (19)

In this expression the basis sets are computed at Gaussian points
{rj}, and the functional I l

′ l
n′n is equal to the overlaps for f (r) = 1,

(I l
′ l
n′n[1] = Ol′ l

n′n) or to the orthogonality relation for f (r) = Vi(r),
(I l

′ l
n′n[Vi] = Vi

l′ l
n′n). Therefore, the products of one-electron integral

in the Hamiltonian can be written as:

Ola la
n′
ana

Olb lb
n′
bnb

= I la lan′
ana

[1]I lb lbn′
bnb

[1]

Va
la la
n′
ana

Olb lb
n′
bnb

= I la lan′
ana

[Va]I
lb lb
n′
bnb

[1]

Vb
lb lb
n′
bnb

Ola la
n′
ana

= I lb lbn′
bnb

[Vb]I
la la
n′
ana

[1].

Each one of these one-electron integrals can be organized in
a matrix Il′ l[f ] of size Ni × Ni with i = a, b labeling each of the
two electrons of the system. This identification into a one-electron
matrix enables a straightforward mapping to a grid of blocks and
threads in the GPU.

We divide the matrix Il′ l[f ] in blocks of size TILEW × TILEW.
This naturally defines a two-dimensional grid of (Ni/TILEW ×

Ni/TILEW) blocks of TILEW × TILEW threads per block. We will
also assume that Ni mod (TILEW) = 0, that is, the size of the one-
electron basis Ni is a multiple of the thread tile size TILEW per
block. This is not usually a very stringent restriction, but if this is
not the case, the simplest solutions is to pad the basis and matrix
with zeros until the next multiple of TILEW is reached, a common
strategy in massively parallel computing. Even though this seems
to be a waste of memory, GPUs excel in very uniform calculations,
and often is better to compute a block with many zeros than
conditioning the code to deal with the, possibly exceptional, case
of rectangular blocks of threads. Note also that since themaximum
number of threads per block is 1024, then TILEW ×TILEW < 1024,
therefore, one can choose a smaller TILEW to mitigate the effect of
the padding.

Another way to see this calculation scheme is to note that the
Ni basis functions were computed in Nq quadrature points. Then,
one can organize the numerical basis in a matrix S of Nq rows by Ni
columns. Then, the matrix representing the elements (19) can be
computed as a weighted matrix product

Il
′ l
[f ] = STFS

where F is a diagonal matrix with elements Fjj = f (rj)wj, j =

1, . . . ,Nq. The product of two matrices in a GPU is one of the
textbook examples of a typical massively parallel calculation, and
can be applied here with small modifications. Note also that one
can compute both the overlap and the orthogonality matrices with
one kernel, since the only difference between them is the specific
value of the function f , which is precomputed over the grid of
quadrature abscissas.

Once the one-electron integrals are computed, one can use
them to obtain the corresponding Hamiltonian terms. We make
use of the matrices Il′ l[f ] and write the products I l

′ l
n′n[f ]I

l′ l
n′n[f ] as

Kronecker tensor products, for example:

Ola la
n′
ana

Olb lb
n′
bnb

=


Il

′
a la [1] ⊗ Il

′
b lb [1]


n′
anan′

bnb
, (20)

and so on. Note that the resulting matrices have Na × Nb rows and
columns, i.e., the same size as each Hamiltonian block hl′a l

′
b la lb . Care

must be taken to address the sorting order of the basis elements in
the Hamiltonian, as stated in previous section. The calculation of
these Kronecker products in the GPU proceeds as follows.

The two-electron matrix is computed in a 2D grid of (Na ×

Nb/TILEW)×(Na×Nb/TILEW) blocks of TILEW×TILEW threads per
block in the GPU. In this way, each thread computes one element
of the two-electron overlap (see Fig. 2). For example, let us assume
that the one-electron basis has 96 elements. The Hamiltonian, as
well as the two-electron overlap matrices, has 96 × 96 = 9216
rows and columns. If we choose 16×16 threads per block, the ker-
nelwouldneed to process 576×576blocks. Even for the biggest ba-
sis sets (256 elements per electron) and smallest number of threads
per block, the block grid iswell below the limits of the architecture.

The flux of the calculation starts by transferring the basis sets,
quadrature weights, eigenvalues and potentials to the GPU. Mem-
ory is allocated for two one-electron overlap matrices, and one
two-electron matrix. Then, a loop over the three overlap terms in
(17) is performed. In each step, one call to the overlap kernel and
one call to the Kronecker product kernel is included, obtaining the
two-dimensional overlap inGPU. Then, this two-dimensional over-
lap is transferred back to the CPU, and addedup to theHamiltonian.
All the calculation is performed in double precision. The number of
bytes sent toGPU can be computed from theNq(Na+Nb)+(Na+Nb)
complex double precision numbers (two one-electron basis and
eigenvalues), and 3Nq double precision numbers corresponding
to potentials and Gauss weights, totaling [(Nq + 1)(Na + Nb) ×

16 + 3Nq × 8) bytes. The number of bytes send back to CPU is
(NaNb)

2
× 16 bytes. For example, for the biggest calculation per-

formed, Nq = Na = Nb = 256, about 2 MB are sent to GPU, and
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Table 1
Computing times, speed-ups for Overlaps calculation, for different basis sizes and computing grid configuration in the GPU, with Nq = 256. The computing times in CPU are
44 s. For Na = Nb = 128 and 277 s. For Na = Nb = 256.

Basis size Tile size Overlap matrix size Threads per block Number of blocks GPU time Speed up
Na = Nb TILEW Na × Nb TILE2

W
Na×Nb
TILE2W

s

128 8 16384 64 256 0.92 47
128 16 16384 256 64 1.32 33
128 32 16384 1024 16 2.31 19

256 8 65536 64 256 3.41 82
256 16 65536 256 64 4.73 58
256 32 65536 1024 16 5.84 47

Table 2
Computing times, speed-ups for tensorial Kronecker product calculation, for different basis sizes and computing grid configuration in the GPU. The computing times in CPU
are 0.035 s. For Na = Nb = 128, 0.92 s. For Na = Nb = 64, 5.32 s. For Na = Nb = 96 and 32.94 s. For Na = Nb = 256.

Basis size Tile size Full overlap matrix size Threads per block Number of blocks GPU time Speed up
Na = Nb TILEW (Na × Nb)

2 TILE2
W

(Na×Nb)
2

TILE2W
s

32 16 10242 16 × 16 64 0.003 12
64 16 40962 16 × 16 256 0.015 61
96 16 92162 16 × 16 1296 0.057 93

128 16 163842 16 × 16 4096 0.147 224

32 32 10242 32 × 32 1 0.003 12
64 32 40962 32 × 32 16 0.021 44
96 32 92162 32 × 32 81 0.075 71

128 32 163842 32 × 32 256 0.219 150

4 GB are dispatched back to CPU. Clearly, the size in memory of
the basis and precomputed potentials, eigenvalues and weights is
negligible compared to the full Hamiltonian size.

In Tables 1 and 2 we present the computing time of these two
kernels compared to the performance in one CPU core. GPU is a
Tesla C2070with 6GBof RAM, running in a computerwith a Intel i7
960 CPU and 24 GB of RAM.We explore different TILEW sizes, basis
sizes, which are the two limiting parameters in the calculation. For
all cases, the speed up shown by the calculation in the GPU are
excellent.

There are several aspects that deserve further discussion. First,
the TILEW parameter is tightly related to the number of threads
that can concurrently run in the GPU. For the overlap case, best
results are obtained with TILEW = 8, with a total of 64 threads per
block, while the worst one is for TILEW = 32, for a total of 1024
threads per block. In the last case, only one block can be computed
at a time in the GPU, while the best case can accommodate many
more at a given time. This is consistent with the GPU operation:
its better to saturate it with a lot of blocks, without reaching the
limit of themaximumnumber of threads, 1024 in this architecture.
TheKronecker product results are also along this line, obtaining the
best calculation with less threads (256 total), but a bigger number
of blocks (1024) for the one-electron basis set of 128 elements.

Second, note that the relative time of the Kronecker product
compared to the overlap calculation is also reduced compared to
the CPU: while in the CPU case, the Kronecker product consumes
about 43% of the whole calculation (overlap plus Kronecker), this
reduces to a mere 14% in the GPU. Third, note that the product
of the eigenvalues βnl that appear in the Hamiltonian are also
included in these performance times.

Note that the times included in the tables are calculation times
only, and does not include the overhead of starting the kernels, and
the transfer time to/from the GPU.

3.2. Repulsion integrals

Calculation of two-dimensional repulsion integrals is a lot
different story. First, there are several ways to decouple the

two-dimensional integral into two nested integrals. We use the
following decoupling

R
l′a l

′
b la lb l

n′
a,n′

b,na,nb
=


∞

0
dr1


∞

0
dr2Sl′a,n′

a
(r1)Sl′b,n′

b
(r2)

×
r l<
r l+1
>

Sla,na(r1)Slb,nb(r2)

=


∞

0
dr2Sl′b,n′

b
(r2)Slb,nb(r2)r

l
2

×


∞

r2
dr1

1

r l+1
1

Sl′a,n′
a
(r1)Sla,na(r1)

+


∞

0
dr1Sl′a,n′

a
(r1)Sla,na(r1)r

l
1

×


∞

r1
dr2

1

r l+1
2

Sl′b,n′
b
(r2)Slb,nb(r2) (21)

which is more stable from a numerical point of view [34]. Recall
that these integrals are computed up to a maximum value of the
radial coordinates Rmax. Let us define the inner integral as

g
l′i li l
n′
ini

(r) = r l
 Rmax

r
du

1
ul+1

Sn′
i l
′
i
(u)Sni li(u).

Then, the two-dimensional integral can be cast in terms of the
functional (19)

R
l′a l

′
b la lb l

n′
a,n′

b,na,nb
= I

l′b lb
n′
bnb

[g l′a la l
n′
ana

] + I l
′
a la
n′
ana

[g
l′b lb l
n′
bnb

] (22)

which enables one to use the same Gauss–Legendre quadrature to
compute the external integral of the two-dimensional calculation.
The inner integral is a function of the lower limit of the integration
domain. Since the functionals in (22) are evaluated at the
Gauss–Legendre abscissas, we need to compute the inner integral
at those values. Let us consider the extended set ofNq+1 abscissas
defined by T = {r1, r2, . . . , rNq , Rmax}, that is, the Gauss–Legendre
set including the upper limit of the integrals Rmax. We define the
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Table 3
Computing times, speedups and number of repulsion integrals computed per second. The GPU calculation was performed in Tesla C2070 card, in double precision. The CPU
calculation was performed in one core of an Intel i7-960 processor. Computing times are were averaged over 10 runs. The number of quadrature points is Nq = 128, and the
number of Simpson points is Ns = 9.

Basis size Tile size CPU time GPU time Speed up Number of integrals Number of integrals in Number of integrals in
Na = Nb TILEW ms ms CPU (106/s) GPU (106/s)

16 2 109 21 5 216 0.60 3.12
16 4 109 8 14 216 0.60 8.19
16 8 109 6 18 216 0.60 10.92

32 2 1852 252 7 220 0.57 4.16
32 4 1852 86 22 220 0.57 12.19
32 8 1852 88 21 220 0.57 11.92

64 2 29270 3720 8 224 0.57 4.51
64 4 29270 1229 24 224 0.57 13.65
64 8 29270 1491 20 224 0.57 11.25

128 2 475910 58712 8 228 0.56 4.57
128 4 475910 19389 25 228 0.56 13.84
128 8 475910 24728 19 228 0.56 10.86

Fig. 3. Scheme of the mapping of the repulsion matrix onto the computing grid.
This is an example of the mapping of the first term of Eq. (21), where the inner
integrals corresponds to basis elements of the first electron, labeled by subindex
a. The matrix in the figure is Rl′a l

′
b la lb l , with fixed values of la, lb, l′a, l

′

b and l, while
the basis set has a size of Na × Nb = 4 × 4 = 16 elements. Rows are labeled by
the pairs (n′

a, n
′

b) whereas columns by (na, nb). The computational grid has 4 × 4
blocks of 2× 2 threads per block, as shown. The distribution of threads per block is
illustrated for block (2, 1) where each thread is labeled by tid. In the first stage of
the calculation, all the threads in eachblock collaborate to compute an inner integral
g l′a la l
n′
ana

(rj), which is saved in sharedmemory. In the second stage, each block uses this
integral to compute the outer ones, and each thread takes care of 4 integrals. Note
that the computational grid on the GPU starts at block (0, 0).

integral between these two adjacent abscissas in T :

h
l′i li l
n′
ini

(rj) = r lj

 rj+1

rj
du

1
ul+1

Sn′
i l
′
i
(u)Sni li(u), (23)

so we can compute

g
l′i li l
n′
ini

(rj) =

Nq+1
k=j

h
l′i li l
n′
ini

(rj) (24)

which is simply the cumulative sum of integrals between adjacent
points from the upper limit Rmax. Note that the domain of
integration in (23) is usually small, and the integrand is smooth
enough such that a simple Simpson rule with a very small number
of points Ns is very accurate. However, all the basis set should
be interpolated at these Simpson points to obtain the integrand.
Therefore, we assume that we have each one-electron basis set Snl
precomputed in Nq + 1 + (NqNs) points.

Calculation of all two-dimensional repulsion integrals runs over
four Sturmians, two coming from the expansion of the wave
function, and two from the projection onto the basis set. Since the
integrals do not factor, four loops are needed in a CPU. The best
performance is achieved when one computes one inner integral,
and use that result with all the possible outer counterparts. Let
us assume that we need to compute NO × NO outer integrals, and
NI × NI inner integrals, such that for the first term in (21) we have
NO = Nb,NI = Na, while NO = Na, NI = Nb, for the second term.

The calculation in the GPU has two stages. In the first one the
inner integrals are computed, while the outer integral is evaluated
in the second one.We define a grid ofNI ×NI blocks, with TILEW×

TILEW threads per block. This setup is useful for both stages of
the calculation. In the first stage, each block of threads computes
one inner-integral in two steps. In the first step, each thread of
the block computes the Simpson integral (23) between adjacent
points, filling in an array in shared memory with them. In the
second step, all threads in the block collaborate to compute the
prefix-sum (24) also in sharedmemory.When this first stage ends,
each block will have the inner integral at hand in shared memory,
and ready to obtain the outer integral. In this second phase, each
thread computes NO/TILEW × NO/TILEW outer integrals using a
quadrature, similar to the calculation of the overlap matrices. An
schematic of this mapping is shown in Fig. 3.

The total memory required to keep all the data is [(NqNs +Nq +

1)(Na + Nb) × 16] bytes that account for all the complex basis set
values computed at the Legendre quadrature and Simpson’s rule
abscissas plus [2(NqNs +Nq + 1) × 8] bytes, which corresponds to
the factors r l and 1/r l+1 and (Nq + Ns) × 8 bytes for the weights
of the integral scheme. Using a large basis set, for example, 128
elements for each one electron basis, Nq = 256 and Ns = 9,
we have just 3 MB in memory for these data, which is negligible
compared to (NaNb)

2
× 16 bytes of the matrix Hamiltonian, which

is about 4 GB that are returned to CPU.
In Tables 3 and 4 we present the calculation of these repulsion

integrals for different basis sizes, using two values for the number
of quadrature abscissas, Nq = 128 or Nq = 256. For all cases we
get double digits speed ups respect to one-core CPU calculation.
The only exception is the case for TILEW = 2, and Na,Nb < 32. In
that case, blocks of threads are too small to be managed efficiently
by the GPU. For a given basis size, the best performance is obtained
using TILEW = 8, that is to say, 64 threads per each block.

Assuming onemakes use of the best mappings to compute each
kind of integral, and for the largest basis set used (Na = Nb = 128),
most of the time of the code is spent in the calculation of repulsion
integrals (92% of the time, 45.23 s). Comparing the results from
all tables, one can see that the best computing times of Overlaps
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Table 4
Same as Table 3, for Nq = 256 and Ns = 9.

Basis Size Tile size CPU time GPU time Speed up Number of integrals Number of integrals in Number of integrals in
Na = Nb TILEW ms ms CPU (106/s) GPU (106/s)

16 2 240 44 5 216 0.27 1.47
16 4 240 15 16 216 0.27 4.29
16 8 240 10 25 216 0.27 6.84
16 16 240 9 25 216 0.27 6.93

32 2 3720 614 6 220 0.28 1.71
32 4 3720 213 17 220 0.28 4.92
32 8 3720 172 22 220 0.28 6.08
32 16 3720 186 20 220 0.28 5.63

64 2 59880 9414 6 224 0.28 1.78
64 4 59880 3221 19 224 0.28 5.21
64 8 59880 2706 22 224 0.28 6.20
64 16 59880 3336 18 224 0.28 5.03

128 2 1006350 149706 7 228 0.27 1.79
128 4 1006350 51490 20 228 0.27 5.21
128 8 1006350 45232 22 228 0.27 5.93
128 16 1006350 59153 17 228 0.27 4.54

integrals and Kronecker is 1.32 + 0.147 = 1.46 s, or about 3% of
the total time. The remaining time corresponds to the transfer from
GPU to CPU of theHamiltonian is about 2.6 s, which accounts for 5%
of the run. Time of copies fromCPU to GPU are negligible compared
to the total time of calculation.

3.3. Overall performance

In the precedent sections it has been shown that the perfor-
mance of the calculation of the Hamiltonian for a general three-
body process can be dramatically increased by the use of GPUs. Let
us illustrate the overall gain in performance with two examples.
First, let us go back to the calculation of a ground state of Helium,
a two-electron atom. In this case, L = 0,M = 0 and we choose five
different values of single-electron angular momenta, PLM

= 5:

(la, lb)00 = {(0, 0), (1, 1), . . . , (4, 4)} .

Therefore, the full Hamiltonian matrix contains 5× 5 = 25 hl′a l
′
b la lb

blocks. Angular momenta selection rules determine the number of
repulsion integrals that are needed for each block. For example,
h00la lb require only one repulsion integral, while five are needed to
compute in h4444. The total number of repulsion blocks needed is
55. For a moderate size basis set, N00

a = N00
b = 64, the calculation

reduces from more than one day (28 h) in CPU to a mere 1.45 h in
GPU. These times also includes overheads due to I/O operations, but
do not consider the diagonalization of the Hamiltonian performed
by LaPACK.

The second example is the calculation of double ionization of He
by high energy electron impact. This is a full four body process, but
can be reduced to a three-body one within the First Born Approx-
imation [27]. The Hamiltonian has three blocks of L = 0, 1 and 2,
and we choose P00

= 5, P1M
= 4 and P2M

= 4. Again, number of
repulsion blocks for L = 0 is 55 (this does not depend on the pro-
cess), while for L = 1 is 50, and for L = 2 is 34, such that the total
number of repulsion integral blocks is 139. The calculation in one
CPU takes 3 days, while the GPU version lasts 4 h, for a basis size of
64 elements, and also including I/O operations.

Finally, let us summarize some details about the code. Themain
code (which is called IonExc, for Ionization–Excitation processes)
of this collision calculation is being written in Fortran 90. To
connect with the C Language Code of CUDA we make use of
iso_c_bindings module, which is a feature of almost all new
Fortran compilers [35]. Thismodule provides a cleanway towrap C
functions and call them from Fortran. Besides, copying to and from
the devices is performed within the Fortran code making use of

FortCuda [36]. This is also a Fortranmodule that provideswrappers
to all CUDA API functions using iso_c_bindings. In this way,
the code can be compiled easily with or without GPU support.
IonExc uses double precision calculations, for both CPU and GPU.
Intel Fortran Compilers were used for CPU, and Nvidia nvcc for
GPUCUDA. Serial code on CPUwas compiledwith all optimizations
enabled by the -O3 option.

4. Summary and outlook

In thisworkwehave shownan effectiveway tomap the calcula-
tion of the collisionHamiltonianmatrix into aGPU. This calculation
implies the computation of millions of one and two-dimensional
integrals with functions obtained numerically over a coordinate
grid. One dimensional integrals are computed by Legendre Gaus-
sian quadratures, while two-dimensional onesmake use of a Simp-
son rule for the inner part of the integral. A careful analysis of the
structure of this matrix shows that it has very uniform patterns of
computation that can be conveniently adapted to massively paral-
lel processors, such as GPUs. One dimensional integrals related to
the overlaps among basis elements are easily mapped to a scheme
of one-integral per thread, and can be related to a weighted prod-
uct ofmatrices. Two dimensional repulsion integrals are computed
with only one kernel, that progresses along the calculation in two
stages. The first one computes the inner part of the integral and
saves their results in shared memory. The calculation of outer in-
tegrals make use of these explicitly cached results. We have devel-
oped different kernels for each calculation, because the mapping
of the data is different for overlaps and repulsion matrices.

The speed ups in performance are excellent for all cases, cutting
computing times at least by an order of magnitude compared to
one-core CPU calculations. Using the best values for each of the
kernels for the biggest basis set, the CPU complete time is about
1068 s (almost 18 min), that transforms into a mere 49 s in GPU.
Repulsion integrals takemost of these times, 93% in CPU, and92% in
GPU. This means that the speed ups of overlap matrices is greater
than the repulsion ones. Therefore, the percentage of time spent
in the overlap calculation is smaller in GPU compared to CPU. The
same behavior is observed for the Kronecker product respect to the
overlap calculation: while in CPU this tensor product takes 43% of
the overlap calculations, it reduces to 14% in GPU.

The optimization procedure for GPUs was presented for one
particular block hl′a l

′
b la lb of the Hamiltonian, and taking into account

only one term of expansion in Eq. (17). In one desktop computer
with one GPU, one can compute all the l terms in the GPU one
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after another, and add up the blocks in CPU. If a cluster is available,
one can compute each of the terms in different processors, and
combine them using MPI routines. The present approach in this
case has the benefit that the load of the work is perfectly balanced
among nodes, since all the calculations for each l term of Eq. (17)
demand the same memory and computing resources. Therefore,
there is no need to increase the complexity of the kernels to include
other parts of the Hamiltonian.

The present optimization scheme can be applied to any three-
body problem, regardless the masses of the particles or the
coordinate system chosen to describe the position of them. For
three-body systems of general masses, a non-orthogonal kinetic
energy term emerges in the Hamiltonian. However, it is the
product of one dimensional integrals that involve the gradients of
the basis functions, which can be cast into overlap-style integrals.
The method presented here to compute integrals is unaware of
these details, since the inputs are interpolated functions in a
quadrature grid.

A possible drawback one can find in the present approach is that
formoderately large basis sets (60–100 elements per electron), one
runs out of memory in the GPU. Even though GPUs devised for
scientific purposes usually have 6 GB of RAM or more, this is not
the case for consumer cards. In that case, it is easy to split each
block hl′a l

′
b la lb in smaller tiles, and dispatch them to the GPU.

Our method is fully implemented in our code for calculation
of bound states, double photoionization, and electron single
ionization of atoms. Also, it is being used in the double ionization
of atoms by high energy electron impact, which can be reduced to
a three-body problem [27]. The extension to four or more bodies is
cumbersome, however, one should be able to reuse the basic codes
for integration in the radial variables. Angular integrals become
more complex, due to the coupling among them.

The Sturmian method is being successfully applied to compute
Fully Differential Cross Sections (FDCS) of the processesmentioned
above. This cross section is differential in the ejected angles of the
electrons, and their momenta, and in the total energy of the colli-
sion. Other cross sections (double differential or single differential)
can be computed integrating the FDCS. Integration on the angles do
not require the recalculation of the Hamiltonian, however, for dif-
ferent ejected momenta and total energies, different basis should
be used to optimize convergence, and therefore, different Hamil-
tonians have to be computed. The calculation of many Hamiltoni-
ans can be easily parallelized in a cluster, for example, setting each
CPU+GPUnodeof the cluster to compute one of them. It is not clear
that this straightforward parallelization scheme would be the op-
timal one.

Our aim in this work was to show that finding a good map be-
tween the data and the abstraction layer of the CUDA architecture,
it is possible to increase the performance of a collision code signif-
icantly. However, there is still room for more improvements. For
example, even though the computation of overlaps is extremely
fast in GPU, one can compute them in the CPU while the repulsion
integrals are obtained in GPU. Also, one can also proceed further
and perform the calculation of the basis directly at the GPU. Be-
sides, overlapping computation and transfer of data from the GPU
to CPU can also contribute to further accelerate the code. One im-
portant step in speeding up the code further would be to use single
precision arithmetics in the calculation,whenever is possible, since
GPUs can perform single precision calculations sometimes three
times faster than double precision ones. Some results coming from
the quantum chemistry arena are promising in mixing single and
double precision calculationwithout losing accuracy [37].Whether
these methods can be applied to collisions will be a matter of sub-
sequent studies.
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