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A B S T R A C T

We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed
temporal separation through the optical fibres of the proposed approach for generation of optical frequency
combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond
pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped
Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the
initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons.
We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-
velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency
separation and intensity difference). We show that the soliton crystal can be described by two quantities, its
fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The
soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to
the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton
Radiation Beat Analysis.

1. Introduction

Optical frequency combs (OFCs) are discrete optical spectra with
lines that are phase-locked and have an equidistant spacing as well as
nearly equal intensities over a broad spectral range [1,2]. Since their
discovery in mode-locked Ti:Sapphire lasers in the 90's, they have been
observed in various nonlinear optical media such as semiconductor
micro-resonators [3] and fibre-laser cavities [4]. OFCs show a wide
range of application potential in telecommunications for the generation
of high-repetition rate picosecond-pulses for ultra-high capacity trans-
mission systems based on optical time-division multiplexing [5–11],
spectroscopy [1,12], metrology, frequency synthesis, and optical clock-
ing [13].

In our group, we focus on the deployment of OFCs for the purpose
of the astronomical spectrograph calibration. The OFCs generated in
mode-locked lasers have been proposed and already successfully tested
as calibration sources for high-resolution astronomical spectrographs
used for the search for exoplanets or the measurement of the time-
variation of the fundamental constants. The spectral line spacings they
provide reach up to 50 GHz which is achieved by filtering the mode-

locked laser lines (typically ranging from 250 MHz to 1 GHz) by means
of a series of Fabry-Perot cavities [4,14–24].

However, observations of galaxy structures and detailed studies of
the Milky Way require deployment of spectrographs in the low- and
medium-resolution range. For this type of spectrograph, an OFC needs
to provide stable spacings from 50 GHz to a few hundreds of GHz
which is only hardly achievable in mode-locked lasers due to the laser
cavity geometries. As for the semiconductor micro-ring cavities and
toroids that are able to provide OFCs with spacing up to a few hundreds
of GHz, they suffer from thermal effects degrading the OFC stability
which makes them difficult candidates for application in astronomy
[25].

In our group, a fibre-based approach for the generation of OFC
suitable for spectrographs in the low- and medium resolution range has
been proposed and extensively studied experimentally and by means of
numerical simulations [25–29]. Contrary to mode-locked lasers used
for generation of OFCs, our approach is a single pass consisting of two
fibre stages with a conventional single-mode fibre as the first stage and
a suitably pumped amplifying Erbium-doped fibre with anomalous
dispersion as the second stage. The initial input field is generated by
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two equally intense continuous-wave (CW) lasers spectrally separated
by the so called laser frequency separation (LFS). The evolution of a
OFC begins in the first fibre due to cascaded a four-wave mixing
process. In the second fibre, the OFC from the first fibre stage gets
broadened due to a further four-wave mixing as well as to a soliton-
compression effect based on the extreme optical pulse amplification
[25]. Our approach is simple, robust, low-cost, and versatile: it can also
be deployed for OFC generation for spectroscopy applications as well as
for subpicosecond pulse generation for telecommunication.

The applications in the astronomy requires broadband OFCs with
sharp spectral lines. Therefore, it is crucial to precisely understand and
control the build-up of the optical pulse temporal shape in the first fibre
stage of our approach, because the temporal shapes will determine the
bandwidth and stability of produced OFCs. Moreover, the temporal
shapes of the first fibre output will directly influence the pulse build-up
in the second amplifying stage. Further, any temporal aperiodicity of
the optical pulses within the output pulse train would result in the
broadening of the OFC lines and, therefore, needs to be prevented to
achieve sharp OFC lines at the end.

However, the Generalised Nonlinear Schrödinger Equation (GNLS)
with a bichromatic initial condition that we use to model and study our
approach is not integrable which hinders us from a thorough under-
standing of the pulse shape build-up in the first fibre stage. Thus, we
apply the numerical technique called Soliton Radiation Beat Analysis
(SRBA) to get insight into the pulse formation in the first fibre [30,31].
This technique is capable of dealing with nonintegrable equations with
arbitrary initial conditions and allows to retrieve the soliton content if
the optical pulses generated in fibre-based systems.

In our previous work ([26]), using the SRBA and a fixed value of the
laser frequency separation of LFS = 78.125 GHz, we identified a state of
free, i.e. separated, solitons for higher laser input powers (> 3 W), an
intermediate state that denotes a continuous dissolving of a soliton
crystal into free solitons in the moderate input-power region (1.3 -
3 W) and a soliton crystal state for low input powers (< 1.3 W)
characterised by a common propagation of several optical pulses with
a fixed time separation. We stated that the intermediate state is most
suitable for generation of the OFCs for astronomical spectrograph
calibration, because it combines the properties of a soliton crystal that
guarantees stable spectral spacings of the OFC lines with simple
dynamics of separated fundamental solitons.

The discovered soliton crystal state constitutes an unusual non-
linear pattern. The strict temporal periodicity of its components that
corresponds to the value of LFS makes it an interesting object of
studies with high level of potential in applications where fixed pulse
temporal separation denoting low level of timing jitter is required.
Moreover, the soliton crystal oscillates with the fundamental frequency
Z0 over the propagation distance as we observed in our previous work
[26]. For us, the knowledge of the dependence of the soliton crystal
properties such as, for instance, its fundamental frequency on different
fibre parameters (group-velocity dispersion (GVD), nonlinearity, and
optical losses) and on the initial light source characteristics (LFS and
laser-intensity variations) is necessary for a successful experimental
realisation of our approach for generation of OFC for calibration of low-
and medium resolution spectrographs.

Here, we present our studies on the soliton crystal properties with
respect to the fibre parameters and the initial light source character-
istics. We found out that the soliton crystal can be fully described by
two quantities, namely by its fundamental frequency and the laser
input-power threshold at which the dissolution of the soliton crystal
into the state of free solitons takes place. Further, it exhibits features of
a linear and nonlinear optical pattern at the same time. Thus, the
appearance of the fundamental frequency is a purely linear effect,
whereas the crystal has similar properties as separated solitons in
terms of the dispersion and nonlinear length which represents its
nonlinear nature. Moreover, the soliton crystal is insensitive to laser
input power fluctuations which makes its experimental realisation

relatively simple to be implemented. Again, we performed our studies
using the SRBA technique.

This paper is structured as follows: in Section 2, we present the
experimental setup for generation of OFC in fibres and the correspond-
ing mathematical model, the concept of SRBA and the interpretation of
the SRBA power spectra are discussed in Section 3, the results of our
numerical studies are presented in Section 4, and a conclusion is drawn
in Section 5.

2. Experimental setup and mathematical model

Fig. 1 shows the schematic representation of the experimental setup
for generation of OFC for spectral calibration of astronomical spectro-
graphs in the low- and medium resolution range [25–29]. In this
figure, A is a conventional single-mode fibre, whereas B is a suitably
pumped Erbium-doped fibre with anomalous dispersion. The genera-
tion of a comb begins with two equally intense CW lasers (Laser 1 and
Laser 2). They are independent, free-running and feature relative
frequency stability of 10−8 over a one-hour time frame which is
sufficient for astronomical applications in the low- and medium-
resolution range. Laser 1 has a fixed angular frequency ω1, whereas
Laser 2 has frequency ω2 that is tuneable. The resulting central
frequency is ω ω ω= ( + )/2c 1 2 coinciding with the central wavelength
at 1531 nm. The laser frequency separation is given by
LFS ω ω π= | − |/(2 )1 2 .

An initial OFC arises in the first fibre due to a cascade of four-wave
mixing processes, whereas in the second fibre, the OFC is broadened
due to the strong pulse amplification and simultaneous compression.
Pulse compression in an amplifying fibres is known from the late 80's
and is an alternative technique to the compression in dispersion-
decreasing fibres [32–35]. As we discovered in our previous work
([26]), in fibre A, a common soliton crystal state arises out of the initial
laser field for low input powers. For high input powers, free, i.e.
separated, solitons are formed. In between, there is an intermediate
state that denotes a continuous dissolving of the soliton crystal into the
free solitons with increasing input power. The soliton crystal constitu-
tes a bound state of several optical pulses that propagate through the
optical fibre with a fixted temporal separation. Fig. 2 shows an example
of the temporal and spatial evolution of a soliton crystal.

Due to the strict temporal periodicity of crystal's pulse components,
its OFC spectrum exhibits sharp spectral lines with stable spacings
which makes the soliton crystal a promising nonlinear pattern for high-
quality OFC generation. However, a better understanding is still
needed about how such a soliton crystal arises. Here, we study the
build-up of a soliton crystal in detail. Specifically, we address the
question how does the soliton crystal build-up depend on different fibre
parameters (GVD, nonlinearity, and optical losses) and the initial light
characteristics (LFS and laser-intensity variation). We model the
nonlinear light propagation in this fibre by means of the GNLS for a
slowly varying optical field envelope A A z t= ( , ) in the co-moving frame
[34,36–38]:
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Fig. 1. Schematic representation of the proposed approach for generation of optical
frequency combs. LASER 1: fixed CW laser, LASER 2: tuneable CW laser, A: conventional
single-mode fibre, B: Er-doped fibre, PUMP: pump laser for B, SPEC: astronomical
spectrograph [26].
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c 2 is the nonlinear coefficient with n2 being the

nonlinear refractive index of silica, S the effective mode area, c the
speed of light, and α the linear optical losses due to the material
absorption. The response function R(t) incorporates both, the electro-
nic contribution assumed to be instantaneous and the contribution
from vibrational modes of silica molecules, the delayed Raman effect is
included into it via the function h t( )R :

R t f δ t f h t( ) = (1 − ) ( ) + ( )R R R (2)

with f = 0.245R representing the fraction of the delayed Raman
response to the total nonlinear polarisation and h t( )R defined as:
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where τ = 12.2 fs1 and τ = 32 fs2 are the characteristic times of the
Raman response of silica and fb=0.21 is the corresponding vibrational
instability with τ ≈ 96 fsb [26,36,37].

The initial condition that represents the radiation of two CW lasers
is described by [26,25,27–29]:

A z t N P ω t( = 0, ) = cos( )0 c (6)

with P0 being the initial laser power and ωc the central frequency. N is a
scale factor that plays the role of separated soliton scale order in the
case of free (separated) solitons. It is determined by the relation

N L
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where L =
π LFS βD

1
(2 · ) | |2

2
is the dispersion length and L =

γPNL
1

0
the

nonlinear length [26,29,36–38]. In the initial condition Eq. (6), N
equals 1. The dispersion length LD relates to the GVD presented via the
second order dispersion β2 in Eq. (1) and is defined as the distance in
which an optical pulse has broadened to 2 its initial width during the
propagation through the fibre [39]. The nonlinear length LNL is the
distance in which the pulse undergoes a nonlinear phase rotation of π
at its maximum [38]. This length corresponds to the self-phase
modulation that is the first effect in the second term on the right-hand
side of Eq. (1). One of the goals of this paper is to investigate if soliton
crystals have a similar behaviour as separated solitons in terms of GVD
and nonlinearity and can also be described by dispersion and nonlinear
lengths.

The numerical integration of Eqs. (1) and (6) is performed using the
fourth-order Runge-Kutta in the interaction picture method in combi-
nation with the local error method within a temporal window of 128 ps
sampled with 214 points [40].

Note that the analytic solution of the GNLS that describes a soliton
crystal can be constructed using a very tedious calculation based on a
Darboux transformation as the Ref. [41] suggests. This is, however,
only possible for an integrable form of the GNLS, i.e. for an equation
that does not contain the third-order dispersion, the Raman effect, and
the optical losses. Especially, the Raman effect expressed as a retarded
integral and the optical losses that we include into consideration here
destroy the integrability of our GNLS Eq. (1). This is why we use the
numerical technique of the SRBA to get a deeper insight into the soliton
crystal properties.

3. Method: soliton radiation beat analysis

As the optical field propagates through the fibre, the peak power
oscillates over the propagation distance. These oscillations contain
information about the solitons involved since they come around due to
the beating between the individual solitons or the beating between the
solitons and the dispersive-waves background. The content of these
solitons is retrieved by means of the SRBA as follows: first, the optical
field along the propagation distance, i.e. A z t( , ), is calculated for a given
value of the input power P0, then the optical power P z t A z t( , ) = | ( , ) |2 is
determined. After that, the optical power P(z) is extracted at the pulse
centre at t=0, i.e. P z P z t( ) = ( , = 0), and the power spectrum P Z( )∼

is
then obtained via a Fourier transform of P(z) with respect to the spatial
coordinate z. The coordinate Z has the meaning of the spatial frequency
in Fourier space [26]. The assembling of the P Z( )∼

data into a surface
plot for different input power values yields a typical SRBA power
spectrum graph presenting the oscillation frequencies that occur if
solitons (provided that any solitons are involved) beat with each other
or if the beating between a single soliton and the dispersive-waves
background takes place. To increase the visibility of such oscillation
frequencies in an SRBA graph, we apodise the optical power P(z) by
means of an apodisation function f(k) before Fourier transforming it
into the spatial frequency domain [30,31]:
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with b1/ being the apodisation strength and k K∈ [1,…, ], where
K=50000 is the total number of distance sampling points. For our
studies, we set b=0.2 [26]. Further, the resolution of the oscillation
frequencies in an SRBA power spectrum plot strongly depends on the
total fibre length chosen for simulation. Precisely, it scales as L1/ with L
being the total propagation length [26]. Therefore, in the course of our
studies, we set the fibre length to L = 50 km to obtain well-resolved, i.e.
sharp, frequency lines. Moreover, the input power steps for our
simulations are set to PΔ = 0.02 W0 which will also guarantee a high
level of the power spectrum resolution.

To show how to interpret an SRBA power spectrum, we choose a
spectrum for the input powers P0 W < ≤ 10 W0 (Fig. 3). This spectrum

was obtained for LFS = 100 GHz, the GVD parameter β = −152
ps
km

2
,

β = −0.13
ps
km

3
, and the nonlinear coefficient γ = 2 W km−1 −1. The optical

losses are set to 0, i.e. α = 0 dB
km .

First, the visibility of a spatial frequency in an SRBA graph is a
measure of the intensity of the involved components, i.e. the brighter or
the more visible a beating frequency is, the higher is the amplitude of
the components that constitute this frequency.

Second, one will see a strong peak for any values of P0 at the spatial
frequency Z = 0 km−1 in all the SRBA graphs presented below. This
peak arises during the Fourier transform from the optical into the
frequency domain and corresponds to the average value of the optical
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Fig. 2. Spatio-temporal evolution of a soliton crystal with input power of P0=1.3 W, laser

frequency separation LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
,

and the nonlinear coefficient γ = 2 W km−1 −1.
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power P(z). Since the origin of this peak has a purely mathematical
nature, it does not contain any information about the nonlinear soliton
dynamics. Therefore, we will exclude it from consideration.

Third, single solitons arise at a positive threshold value of the input
power, i.e. for P > 0 W0 , and evolve depending on P0 [42].
Accordingly, the beating frequency of a single soliton with other
solitons or the beating of a soliton with a dispersive-waves background
has an input-power threshold in an SRBA power spectrum. In Fig. 3,
the beating between a single soliton and the dispersive-waves back-
ground that is represented by the branch S2 arises at P = 1.8 W0 and
Z = 0 km−1. According to Eq. (7), the scale order of the corresponding
soliton is N=0.78. In the case of a Nonlinear Schrödinger Equation
without the additional terms describing the higher-order dispersion,
the shock, the Raman effect, and the optical losses, fundamental
solitons are created for N0.5 ≤ < 1.5 [42]. Since the scale order of
the S2 soliton lies in this interval, we can identify it as a fundamental
soliton.

Fourth, the most prominent soliton branch S1 starts at the spatial
frequency Z Z P= ( = 0 W) = 0.84 km0 0

−1. For input powers of approxi-
mately P W> 20 , this branch has a similar behaviour to the branch S2
and, thus, can be identified as a beating between a single soliton and
the dispersive-waves background. For input powers P → 0 W0 , the
behaviour is, however, different: the spatial frequency changes only
insignificantly with the value of the input power. This is the behaviour
of a soliton crystal state that is formed, because the cosine-function
incorporated into the initial condition Eq. (6) provides an infinite
amount of energy for t → ± ∞ that is sufficient to create such a
collective state even for very low input powers, i.e. for P → 0 W0 . The
spatial frequency Z0 is the fundamental feature of a soliton crystal. The
soliton crystal dissolves continuously into the state of free solitons as
the input power increases. At least, there is no visible transition
between the soliton crystal and the state of free solitons (cf. Ref. [26]).

Fifth, the relative energy content of the different components can be
determined by comparing the frequencies of the branches. Thus, for
higher input powers, S1 has less energy than S2 and, therefore,
oscillates slower. So, S1 has the spatial frequency Z = 2.8 km−1 and
S2 the frequency Z = 3.6 km−1 at P = 10 W0 .

Sixth, the branches O1, O2 in Fig. 3 denote the overtones of the
branch S2. Since the overtones provide no addition information about
the soliton content, they will be also excluded from further considera-
tion in this study.

Seventh, the mixing frequencies are given as integral multiples of
the difference and sum frequencies of different branches. Thus, MF
constitutes a difference frequency of branches S1 and S2 (Fig. 3). Since
the mixing frequencies do not give us further information about the

content of the solitons involved, we will exclude them from considera-
tion [26,30,31].

4. Results

Having introduced what is the SRBA technique and how to
interpret the SRBA power spectra, we proceed with the presentation
of the results of our studies on the soliton crystal properties depending
on the GVD parameter β2, the laser frequency separation LFS, the
nonlinear coefficient γ, the optical losses α, and the difference in the
laser intensity.

4.1. Fundamental frequency Z0 depending on the laser frequency LFS
and the group-velocity dispersion GVD

A soliton crystal is characterised by its fundamental frequency at
which it arises for input power value 0, i.e. Z Z P= ( = 0 W)0 0 (Section
3). Fig. 4 shows how this frequency depends on different values of the
laser frequency separation LFS. To obtain this graph, the following fibre

parameters were chosen: β = −152
ps
km

2
, γ = 2 W km−1 −1, and α = 0 dB

km . The
laser frequency separation took the values in the range

LFS10 GHz ≤ ≤ 200 GHz. As one can see, the dependence of Z0 on
LFS is quadratic. This can be seen from the excellent fit to the parabolic
curve plotted in Fig. 4.

In Fig. 5, the laser frequency separation was fixed to
LFS = 100 GHz, whereas the GVD parameter was varied from

β = −302
ps
km

2
to β = −0.52

ps
km

2
All other system parameters were the same

as previously. The dependence of Z0 on β2 is clearly linear.
The results presented here give rise to the conclusion that the

dispersion length of a soliton crystal LD
SC obeys the same relationship as

the dispersion length of a single (separated) soliton, namely

Fig. 3. Power spectrum for different values of input power P0, laser frequency separation

LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
, and the nonlinear

coefficient γ = 2 W km−1 −1.
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Fig. 4. Fundamental frequency Z0 depending on the laser frequency separation LFS.

Fig. 5. Fundamental frequency Z0 depending on the GVD parameter β2.
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L X
π LFS β

= 1
(2 · ) | |D

SC
2

2 (9)

with X being a conversion factor with the value of X π≈ 2 .

4.2. Impact of the fibre nonlinearity

Fig. 6 shows an SRBA power spectrum for the nonlinear coefficient

γ = 10 W km−1 −1. Other fibre parameters are: β = −152
ps
km

2
and α = 0 dB

km ,
the laser frequency separation is LFS = 100 GHz.

If we compare Fig. 6 with Fig. 3, we see that the main structures
have almost the same characteristics. Thus, the fundamental frequency
of the branch S1 has the same value of Z = 0.84 km0

−1 in both graphs.
Also fundamental frequencies of the overtones O1 and O2 coincide in
both SRBA spectra. We obtained the same results – not presented here
– using other values of the nonlinear coefficient, namely γ = 1 W km−1 −1,
γ = 4 W km−1 −1, and γ = 6 W km−1 −1. This means that the fundamental
frequency of a soliton crystal Z( )0 does not depend on the fibre
nonlinearity. Its appearance is rather a linear effect that is intrinsic
to the cosine function via which the initial condition is expressed Eq.
(6).

The main difference between the graphs is that the significant
changes in the frequencies’ behaviour occur at lower input powers if the
nonlinear coefficient value is high. For instance, the input power
threshold at which the free soliton branch S2 arises is P = 0.36 W0 for
γ = 10 W km−1 −1 (it was P = 1.8 W0 for γ = 2 W km−1 −1). The mixing
frequency MF cuts the axis at Z = 0 km−1 for P = 0.76 W0 and
γ = 10 W km−1 −1 and for P = 3.8 W0 and γ = 2 W km−1 −1. These results
lead to the conclusion that the input-power axis scales linearly with the
value of the nonlinear coefficient γ. The evolution of the branch S1
follows this scaling. In fact, the regime of free solitons occurs for
P > 1 W0 for γ = 10 W km−1 −1, whereas it occurred at approximately
P > 2 W0 for γ = 2 W km−1 −1 (cf. Section 3). For P ≤ 1 W0 , the evolution
of S1 is the same for γ = 10 W km−1 −1 as in the case of γ = 2 W km−1 −1 and
P ≤ 2.5 W0 . Thus, we can draw a conclusion that the nonlinear length of
a soliton crystal LNL

SC has the same relationship as the nonlinear length
of a single soliton, i.e.

L
γP

= 1 .NL
SC

0 (10)

4.3. Impact of the optical losses

We have so far considered cases in which the linear optical losses
were neglected, i.e. α = 0 dB

km . Now, we analyse the impact of the losses
on the evolution of the soliton crystal. For that, we consider SRBA

spectra for α = 0.05 dB
km (Fig. 7) and α = 0.2 dB

km (Fig. 8). Whereas the

optical losses of α = 0.05 dB
km still constitute an ideal case similar to one

with α = 0 dB
km , the losses of α = 0.2 dB

km are typical for the conventional
single-mode fibres at wavelengths around 1.55 μm [34,35]. To obtain
the SRBA power spectrum graphs, the following system parameters

were chosen: β = −152
ps
km

2
, γ = 2 W km−1 −1, and LFS = 100 GHz.

If we compare Figs. 7 and 8 with Fig. 3, we see that there is no
appearance of the single soliton branch S2 when the optical losses are
present. That means that, due to the optical losses, the system does not
have enough energy to create a single soliton in addition to the soliton
crystal branch S1. As for S1 itself, it still arises at the fundamental
frequency Z = 0.84 km0

−1 for both values, α = 0.2 dB
km and α = 0.05 dB

km
meaning that the fundamental frequency does not depend on the initial
energy content of the system and its loss due to the absorption.
However, at the input power of P = 1.8 W0 , the branch S2 ‘fans out’for
the loss of α = 0.05 dB

km . This fan contains a continuum of spatial
frequencies which can be explained as follows: the spatial frequency
of free (separated) solitons scales with their energy E [43]:

Z E
π

γ
β

=
16 | |

,
2 2

2 (11)

whereas E decreases continuously with the propagation distance:
E z E αz( ) = exp( )0 with E0 being the initial energy of a soliton. This
continuous decrease of the soliton energy has the appearance of a
spatial frequency continuum as a result.

In Section 3, we stated that the soliton crystal dissolves continu-

Fig. 6. Power spectrum for different values of input power P0, laser frequency separation

LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
, and the nonlinear

coefficient γ = 10 W km−1 −1.

Fig. 7. Power spectrum for different values of input power P0, laser frequency separation

LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
, the nonlinear coeffi-

cient γ = 2 W km−1 −1, and optical losses α = 0.05 dB
km

.

Fig. 8. Power spectrum for different values of input power P0, laser frequency separation

LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
, the nonlinear coeffi-

cient γ = 2 W km−1 −1, and optical losses α = 0.2 dB
km

.
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ously into the state of separated solitons with the input power when the
optical losses are neglected. Due to this continuity, we were not able to
provide information on the input-power at which the soliton crystal is
dissolved into free solitons, we could only make statements about the
behaviour tendencies for higher powers, i.e. P → 6 W0 , and lower input
powers, i.e. P → 0 W0 . Since the appearance of a spatial frequency
continuum is typical for separated solitons if there are any absorption
losses present, but the soliton crystal itself (i.e. its existence and the
fundamental frequency) does not depend on the optical losses, we can
mark the input-power (P → 1.8 W0 ) at which the spatial frequency fan
begins to evolve as a point at which dissolution of a soliton crystal into
free (separated) solitons occurs. Note that, if the optical losses are
neglected, the emergence of the free soliton branch is also observed at
P → 1.8 W0 (Fig. 3) which supports the idea that the free soliton
generation starts at this specific P0-value (threshold) for the chosen
set of parameters. According to the results presented in Section 3, this
input power threshold depends on the fibre nonlinearity. Due to the
presence of a clear threshold value, the intermediate state that features
the properties of both, the soliton crystal and free solitons, is only
possible in a very close vicinity of this input-power point and not in a
larger P0-interval as stated in Ref. [26] and Section 1 of this paper.

As the value of optical losses increases, the continuous fan of spatial
frequencies disappears: the spatial frequencies of branches S1, O1, and
O2 reach a limit that is predefined by the fundamental frequency Z0

(Fig. 8). Also for higher values of α (α = 0.4 dB
km , α = 0.8 dB

km ) – the results
are omitted here – the behaviour of S1, O1, and O2 is very similar to
the case when α = 0.2 dB

km . That means that, if any (realistic) optical
losses are present, the pulse build-up is governed by the system
characteristics at low input powers: the soliton crystal extends its
range of existence to any input-powers considered, it exists even for
P = 6 W0 and α = 0.2 dB

km (Fig. 8).

4.4. Impact of the laser intensity difference

Since it is impossible to stabilise the laser intensities such that they
are exactly equal over the duration of the calibration time (some
statistical fluctuation will always occur even if the lasers exhibit a very
high level of stability), we need to check what impact the difference of
laser intensities has on the build-up of the soliton crystal. For that, we
change the initial condition (Eq. (6)) so that the lasers have a spectral
intensity difference of 10%. We consider the soliton crystal build-up in
two cases, for α = 0 dB

km and for α = 0.2 dB
km . All other system parameters

are the same as previously used: β = −152
ps
km

2
, γ = 2 W km−1 −1, and

LFS = 100 GHz.
The SRBA spectra obtained when the spectral laser intensities

differed in the value of 10% are presented in Fig. 9. If we compare
Fig. 9(A) with Fig. 3 and Fig. 9(B) with Fig. 8, we do not see any
significant differences: the fundamental frequencies of the soliton
crystal and the overtones as well as the evolution of different types of
spatial frequencies with the input power P0 are the same. So, provided
the laser intensity difference is lower than 10%, we will see no impact
on the soliton crystal build-up and the evolution of free solitons, any
intensity fluctuations that are smaller than 10% will therefore be of no
importance within the spectrograph calibration process, i.e. the laser
intensity stabilisation is not a critical point in order to generate well-
behaving pulses with high-quality OFC.

5. Conclusion

A fibre-based approach for the generation of optical frequency
combs for spectral calibration of astronomical spectrographs in the
low- and medium-resolution was proposed and studied in our group.
This approach consists of two concatenated fibres and uses two
continuous-wave lasers in the near infrared as a light source. The first
fibre is a conventional single-mode fibre, the second one is a suitably

pumped Erbium-doped fibre. It is crucial to precisely understand the
pulse build-up in the first fibre, since the pulse shape after the first fibre
will influence the pulse build-up in the second amplifying fibre.

To get deep insight into the pulse build-up in the first fibre, we used
the numerical technique of the Soliton Radiation Beat Analysis. In the
previous work [26], we discovered that, for low input powers, a
common soliton crystal state characterised by a bound propagation
of several optical pulses with a fixed temporal separation arises out of
the initial deeply modulated cosine-wave that represents the radiation
of both continuous-wave lasers. As the input power increases, the
soliton crystal continuously dissolves into free (separated) solitons.
Here, we proceeded with the Soliton Radiation Beat Analysis of the
pulse build-up in the first fibre and worked out the properties of the
soliton crystal with respect to different fibre parameters (group-velocity
dispersion, nonlinearity, and optical losses) and the light source
characteristics (laser frequency separation and laser intensity differ-
ence).

In the course of our studies, we have identified two quantities that
describe a soliton crystal. The first one is the fundamental spatial
frequency, i.e. the frequency at the zero input power value
(Z Z P= ( = 0 W)0 0 ), at which a soliton crystal arises. The second
quantity is the input power threshold at which the soliton crystal
dissolves into free (separated) solitons. The appearance of the funda-
mental frequency is a purely linear effect that is intrinsic to the cosine-
function via which the initial condition represents the radiation of two
continuous-wave lasers. Accordingly, the fundamental frequency value
is not dependent on the fibre nonlinearity. The input power threshold
for the dissolution of the soliton crystal into free solitons depends,
however, on the fibre nonlinear coefficient: for higher values of the

Fig. 9. Power spectrum for different values of input power P0, laser frequency separation

LFS = 100 GHz, group-velocity dispersion parameter β = −152
ps2

km
, the nonlinear coeffi-

cient γ = 2 W km−1 −1, and optical losses α = 0 dB
km

(A) α = 0.2 dB
km

(B).
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nonlinear coefficient, the dissolution occurs at lower input powers. In
fact, the evolution of the soliton crystal and the subsequent free
solitons scales linearly with the nonlinear coefficient γ which leads to
the conclusion that the nonlinear length of the soliton crystal is similar
to the definition of the nonlinear length of separated solitons:

L
γP

= 1 .NL
SC

0
Further, the fundamental frequency depends linearly on the

absolute value of the fibre group-velocity dispersion parameter β2
and quadratically on the initial laser frequency separation LSF. The
dispersion length obeys, accordingly, the relationship that is also

typical for free solitons, namely L X
π LFS β

= 1
(2 · ) | |D

SC
2

2
with β2 being

the group-velocity dispersion parameter and X a conversion factor of
X π≈ 2 . Our results show that the fibre parameters β2 and γ can be
changed over a broad range without a significant impact on the soliton
crystal behaviour.

The value of the soliton-crystal fundamental frequency does not
depend on the optical losses. If weak optical losses of α = 0.05 dB

km are
included into the analysis, the input power threshold at which the
soliton crystal dissolves into free solitonsis characterised by the
appearance of a spatial frequency continuum that is typical for free
solitons. At higher and more realistic values of the optical losses (for
example, α = 0.2 dB

km ), the soliton crystal extends its range of existence to
the full range of input powers considered, i.e. to P0 W < < 6 W0 . That
means that, if the optical fibre losses are not prevented, e.g., by
additional fibre pumping as described in Ref. [44], the soliton crystal
will always be present in the experimental realisation. Since the soliton
crystal has a simpler dynamics as compared to a train of free solitons
that may be subjected to the soliton fission resulting in the appearance
of additional frequency components in the comb if the fibre nonlinear-
ity or the input power is too high, the presence of a soliton crystal for a
wide range of input powers makes the proposed approach less critical
to the unwanted effect of the pulse break-up, the resulting optical
frequency combs are well-behaved.

Moreover, our studies showed that neither the fundamental fre-
quency of the soliton crystal nor the input power threshold for the
dissolution of the crystal into free solitons are sensitive to the laser
intensity difference. Here, we chose a difference in the intensities of
10% and have not observed any impact on the characteristics of the
soliton crystal and the free solitons in both cases, when the optical
losses of α = 0.2 dB

km are present and when they are set to zero. This
makes the proposed approach robust in respect to the laser intensity
fluctuations of less than 10%. The fluctuation of the laser frequencies
will, however, lead to the appearance of new frequency components in
the optical frequency comb, whereas a high level of the optical pulse
timing jitter will result in the comb line broadening. The state-of-the-
art diode lasers provide, however, a sufficient level of the intensity and
frequency stability to be effectively deployed for calibration of astro-
nomical spectrographs [26].
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