A systematic overview of Descolea (Agaricales) in the Nothofagaceae forests of Patagonia

Francisco Kuhar, Matthew E. Smith, Alija Mujic, Camille Truong, Eduardo Nouhra

PII: S1878-6146(17)30086-7
DOI: 10.1016/j.funbio.2017.06.006
Reference: FUNBIO 828

To appear in: Fungal Biology

Received Date: 1 March 2017
Revised Date: 16 June 2017
Accepted Date: 26 June 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A systematic overview of Descolea (Agaricales) in the Nothofagaceae forests of Patagonia

Kuhar, Francisco¹*; Smith, Matthew E.²; Mujic, Alija²; Truong, Camille²; Nouhra, Eduardo³.

¹ Centro de Investigación y Extensión Forestal Andino Patagónico (CONICET), Ruta 259 Km 16,24 CC 14 Esquel (9200), Chubut, Argentina.
² Universidad Nacional de la Patagonia S.J. Bosco, Chubut, Argentina.
³ Department of Plant Pathology, University of Florida, Gainesville, Florida 32611.

*Corresponding author: fkuhar@gmail.com, phone +54 (11) 49702360, fax +54 (2945) 453948

Research highlights

The genus Descolea is emended in light of new and historical Patagonian collections.

A new sequestrate Descolea species is described from Patagonia.

Two sequestrate species of Cortinarius (Thaxterogaster) are transferred to the genus Descolea.

Morphological variation within Descolea and key characters for delimiting this genus are discussed.
Abstract

The descolea clade includes species of ectomycorrhizal basidiomycetes in the genera *Descolea*, *Setchelliogaster*, *Descomyces*, and *Timgrovea* that are known primarily from the Southern Hemisphere. Taxa in this group produce basidiomes that range in morphology from typical epigeous mushrooms (*Descolea*) and secotioid taxa (*Setchelliogaster*) to fully gasteroid species (*Descomyces* and *Timgrovea*). High intraspecific morphological variation has been reported in several species within this clade, suggesting that careful morphological and molecular studies are needed to refine species concepts. Molecular analyses of fresh Patagonian collections in conjunction with taxonomic studies have confirmed high variability in key morphological features, including overall sporocarp form, spore shape and dimensions, universal veil remnants and cuticle configuration. Based on our synthesis, we emend the genus *Descolea* to include sequestrate species. We describe the new sequestrate taxon *Descolea inferna* sp. nov. from Nothofagaceae forests in Patagonia and we propose *Thaxterogaster squamatus* as a synonym of our new combination *Descolea brunnea*. We also formalize the identity of *Descolea pallida* as a synonym of *D. antarctica* and provide new specimens of *Thaxterogaster archeuretus*, a species that has not been encountered since the original discovery during the expeditions of Roland Thaxter in 1905-1906. Here we re-describe and transfer this species to *Descolea* as *D. archeureta*. We also discuss diagnostic features that can be used to delimitate the four known South American taxa in the descolea clade.

Keywords: *Setchelliogaster*, *Descomyces*, *Timgrovea*, secotioid, hypogeous, South America.

Introduction

Close affinities between the genus *Descolea* and the sequestrate taxa *Setchelliogaster*, *Descomyces*, and *Timgrovea* have been previously inferred based on morphology (Lago et al. 2001) and also via molecular data (Peintner et al. 2001, Tedersoo and Smith 2013). This group of fungi has been referred to as the ‘descolea clade’ by Peintner et al (2001) or the /descolea lineage by Tedersoo and Smith (2013). Multilocus phylogenetic studies suggest that this lineage belongs to the family *Bolbitiaceae* and is distantly related to other macroscopically similar, brown-spored lineages of ectomycorrhizal fungi (e.g. *Cortinarius*, *Hebeloma*, *Hymenogaster*) (Matheny et al. 2006). Taxa within the descolea clade produce basidiomes that range in morphology from typical
agaricoid mushrooms (*Descolea*) or secolioid taxa (*Setchelliogaster*) to fully gasteroid forms (*Descomyces* and *Timgrovea*). These are ectomycorrhizal fungi that are mostly restricted to forests of Australasia and southern South America. They are usually associated with *Nothofagaceae* and *Myrtaceae* host plants but at least two epigeous species have been reported from Asia with other hosts (e.g. *D. flavoannulata* in Japan and Siberia, *D. pretiosa* in India) (Horak 1971, Bougher and Castellano 1993, Tedersoo et al. 2010). Taxa in the descolea clade have brown limoniform spores that lack a germ pore but always have a more or less hyaline, ornamented utricle that covers the spores. The ornamented utricle is present in epigeous *Descolea* species (Singer 1949) but is much more developed and obvious in many of the sequestrate taxa in this group (Bougher and Castellano 1993, Danks et al. 2010). A fully developed universal veil that may remain until maturity is also frequent in some taxa within this group but it is not obvious in all collections or species (Horak 1971).

Pouzar (1958) erected the genus *Setchelliogaster* to accommodate species of the descolea clade that produce secolioid basidiomes with *Setchelliogaster tenuipes* (Setch.) Pouzar (=*Secotium tenuipes* Setch.) as the type species. The genera *Descomyces* and *Timgrovea* were originally described by Bougher and Castellano (1993) to accommodate hypogeous sequestrate taxa originally placed in the genus *Hymenogaster* (which is phylogenetically aligned with epigeous species of *Alnicola* and *Hebeloma* – Matheny et al. 2006). Bougher and Castellano (1993) recognized that *Descomyces* and *Timgrovea* shared some morphological similarities with the agaricoid species of *Descolea* as well as the secolioid species of *Setchelliogaster* but they reasoned that these fully sequestrate lineages were morphologically and ecologically unique and therefore required separate genus-level recognition. However, molecular analyses of Peintner et al. (2001) and the morphological analysis by Lago et al. (2001) have confirmed the close and complex relations between *Descolea*, *Descomyces*, *Timgrovea* and *Setchelliogaster* and suggest that further taxonomic and phylogenetic studies are needed (Lago et al. 2001, Peintner et al. 2001). Although Peintner et al. (2001) confirmed the close evolutionary relationships among these lineages, their phylogenetic analyses suggested that gasteroid and secolioid taxa (e.g. *Descomyces*, *Timgrovea* and *Setchelliogaster*) likely arose multiple times due to convergent evolution.

High morphological variation was reported for some species within the descolea clade by Lago et al. (2001), who found high variability in the spore dimensions and also in the presence...
and morphology of cystidia. They concluded that broader species concepts are needed within this
lineage to accommodate variable intraspecific morphological features. They also determined that
generic boundaries are not always clear. For example, the generic boundary between *Descolea*
(epigeous, agaricoid basidiomes) and *Setchelliogaster* (secotioid basidiomes) is transgressed by
some taxa (e.g. *Descolea maculata, D. gunni*) that can produce basidiomes of both types (Lago
et al. 2001). This exceptional intraspecific variability was previously described by Cribb (1956),
when she studied the spore morphology and development of *Descomyces albus* (Berk.) Bougher
and Castellano (as *Hymenogaster albus*).

There are currently 15 accepted species and five varieties of *Descolea* (according to
Index Fungorum http://www.indexfungorum.org/) but only two described species are known
from Patagonia. *Descolea antarctica* was described from the forests of Tierra del Fuego by
Singer (1951) as the type species, whereas *Descolea pallida* was later described by Horak (1971)
from Valdivian forests of coastal Chile. *Descolea pallida* was separated from *D. antarctica*
based on the geographic distribution as well as the spore size and color differences of the cap and
veil remnants. However, both Singer (1954) and Horak (1971) discussed the difficulty in
differentiating these two species by their morphological characteristics.

In addition, the sequestrate taxa within the clade are taxonomically confused for several
reasons. First, the original species descriptions for some of the sequestrate taxa are based on
specimens preserved in liquid rather than fresh collections and this made it challenging to
accurately describe these taxa (Halling 1981). Second, there are longstanding issues regarding
the proper generic names to use for gasteroid and secotioid taxa so some species have been
described in different genera. Third, some prominent taxonomists have disagreed about
nomenclatural synonyms and the proper names to use for these taxa, leaving the final number of
species in doubt. Amidst this ongoing debate Index Fungorum currently lists six species in the
genus *Descomyces*, five in *Timgrovea* and seven species plus three varieties in *Setchelliogaster*.

In the light of the morphological plasticity of basidiomes and the difficulty in establishing
limits between agaricoid and secotioid genera, some authors have responded by transferring
species with secotioid basidiomes to *Descolea* (e.g. *Descolea tenuipes* (Setch.) Neville &
Poumarat, *Descolea gunnii* (Berk. ex Massee) Horak). However the acceptance of those names is
not yet complete and currently some authors still treat hypogeous species under the sequestrate
genus names (e.g. Cortez et al. 2008, Nouhra et al. 2008, Pennington et al 2011)
The first discoveries of brown-spored, sequestrate basidiomycetes from Patagonia came from the expedition of Roland Thaxter, who visited Nothofagaceae forests in Chile and Argentina during an extended collecting trip in 1905-1906 (Halling 1981). Thaxter took notes in the field but there are no photographs of his collections. Due to the difficulties of traveling in the early 1900’s, he was unable to dry all specimens and could only keep small portions of each specimen in liquid preservatives. His preserved collections and notes were returned to the Farlow Herbarium at Harvard University and were later studied and described by Dodge and Zeller (1934) and Halling (1981).

Among Thaxter’s collections from Patagonia, Zeller and Dodge (1934) examined a sequestrate specimen (Hymenogaster No. 1, FH accession #4635) that they identified as the previously described Tasmanian species Hymenogaster albellus Massie & Rodway (Massee and Rodway 1898). Horak (1963) later described a morphologically similar taxon under the name Hypogea brunnea Horak. This species was later transferred by Singer (1971) to Setchelliogaster as S. brunneus (Horak) Singer. Although Horak (1979) identified Thaxter’s collection as S. brunneus, this material was discussed by Dodge and Zeller (1934) and morphologically characterized by Halling (1981) under the name Hymenogaster albellus.

In a detailed revision of Thaxter’s materials, Halling (1981) also described two new Thaxterogaster species, T. squamatus and T. archeuretus. Thaxterogaster squamatus was distinguished by its limoniform, utriculate spores, two-spored basidia and notable veil remnants whereas T. archeuretus was distinguished by four-sterigmate basidia, and limoniform, utriculate spores that are smaller than any other known utriculate Thaxterogaster species.

Moser and Horak (1975) suggested that Thaxterogaster was nested within Cortinarius and the paraphyly of Cortinarius and polyphyly of Thaxterogaster were later verified using molecular data by Peintner et al. (2001). Based on these studies that focused on a subset of species, all described Thaxterogaster species were subsequently transferred to Cortinarius (Peintner et al. 2002). However, some taxa such as Cortinarius squamatus (Halling) Peintner & Moser have spores and cystidia that suggest an evolutionary relationship with Descolea rather than Cortinarius. These findings suggest that a critical review of sequestrate taxa currently treated in the genus Cortinarius is needed to determine the phylogenetic and taxonomic affinities of these taxa.
Based on Thaxter’s materials, a hypogeous sequestrate species was described by Dodge and Zeller (1934) as *Hymenogaster fragilis*. However, this species was later transferred to *Thaxterogaster* (Smith apud Singer 1962) and synonymized with *Setchelliogaster tetrasporum* Singer by Horak (1979) under the new combination *Setchelliogaster fragilis* (Zeller & C.W. Dodge) E. Horak. Halling (1981) provides a detailed discussion of the morphology of this species based on Thaxter’s original collections. Peintner et al. (2001) confirmed the affiliation of this taxon within the genus *Cortinarius* under the name *C. fragilis* (Zeller & C.W. Dodge) Peintner & Moser using DNA sequences from Australian specimens. This relationship has been recently confirmed based on South American material; Chilean collections of “*Hymenogaster fragilis*” are related to *Cortinarius* and not *Setchelliogaster* (F. Kuhar, unpublished data).

Recent collecting expeditions during 2008–2016 in Patagonian *Nothofagaceae* forests have yielded numerous collections of both epigeous and hypogeous members of the descolea clade. Microscopic analyses of these specimens indicate the difficulty of using morphological features to assign these specimens to described species and suggest that molecular studies are needed to resolve these problems. Furthermore, a recent study of ectomycorrhizal fungal communities of Patagonian *Nothofagaceae* species (*Nothofagus dombeyi*, *Lophozonia obliqua*, and *L. alpina*) suggests that at least two taxa in the descolea clade can be locally common on ectomycorrhizal roots (referred to as ‘*Descomyces* sp. 1’ and ‘*Descolea* sp. 1’) (Nouhra et al. 2013).

The purpose of this study was to critically assess the morphology and molecular phylogeny of members of the descolea clade to determine their diversity in Patagonian *Nothofagaceae* forests. Our main goals were to determine the number of species that are present based on both morphological and molecular data and also to ascertain the best taxonomic names and genus-level placement for each of these phylogenetically distinct taxa. We also reviewed the published taxonomic literature and examined type specimens of hypogeous sequestrate taxa described from Patagonia to determine appropriate names and synonyms.

2. Materials and Methods

Specimens (e.g. *Descolea*, *Descomyces*, and *Setchelliogaster* among other taxa) were collected in spring and autumn 2008–2016, photographed and dried on a forced air drier.
Additional specimens were obtained from the following herbaria: Florida Museum of Natural History (FLAS), the Farlow Herbarium at Harvard University (FH), the New York Botanical Garden (NY), Herbario del Museo Botánico de Córdoba (CORD), Universidad Nacional de La Plata Herbarium (LP) and Museo Nacional de Historia Natural de Chile (SGO). New collections were deposited at FH, FLAS, SGO, and CORD. Dried material was rehydrated and mounted in water, 3% KOH, Melzer's reagent, and cotton blue. Spores were measured in 3% KOH solution. Spore measurements include the hilar appendix but do not include spore ornamentation or the utricle. Length and width measurements were used to calculate length to width ratios (Qr). At least 20 different measurements were averaged to estimate all size values. Variation in the cuticle was also observed and characterized by examining thin cross-sections from multiple specimens of each species.

DNA was extracted from basidiomes following a modified cetyltrimethylammonium bromide (CTAB) method (Gardes and Bruns, 1993) or using the Extract n’ Amp DNA extraction kit (Sigma-Aldrich, St. Louis, MO, USA) following manufacturers protocols. PCR for the internal transcribed spacer region (ITS1–5.8s–ITS2, hereafter referred to as ITS) was performed with forward primers ITS1F and reverse primers ITS4 or ITS4B. The PCR conditions were: 94°C for 5 min followed by 35 cycles of 1 min at 94°C, 1 min at 55°C and 2 min at 72°C, followed by 7 min at 72°C. The PCR products were visualized on 1.5% agarose gels with SYBR Green I (Molecular Probes, Eugene, OR, USA) and purified with ExoSAP®-IT (USB) following the manufacturer’s instructions. Sanger sequencing was conducted at the Interdisciplinary Center for Biotechnology Research at the University of Florida and in Macrogen (Seoul, South Korea). Sequences were edited with Sequencher v.4.1 (Gene Codes Inc., Ann Arbor, MI, USA).

The obtained sequences were used as “Blastn” search queries against the UNITE database (https://unite.ut.ee/) and “Megablast” search queries against Genbank (http://www.ncbi.nlm.gov). Available high quality, vouchered ITS sequences of the genera Timgrovea, Setchelliogaster, Descomyces and Descolea were included in the analysis. We also included ectomycorrhizal (ECM) root tip sequences of ‘Descomyces sp. 1’ and ‘Descolea sp. 1’ obtained by Nouhra et al. (2013) from the roots of Patagonian Nothofagaceae species. High quality sequences of the genera Cortinarius and Hebeloma were used as outgroups, as in Paintner et al. (2001). All sequences analyzed are listed in the Table 1.
Sequences were aligned using L-INS-i strategy as implemented in MAFFT v 7.0 (Katoh and Standley 2013). The aligned matrix is available from TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S21186). Ambiguously aligned regions were eliminated using Gblocks (Castresana 2000) available from http://molevol.cmima.csic.es/castresana/Gblocks.html, allowing smaller final blocks, gap positions within the final block and less strict flanking positions for a less stringent selection. Maximum likelihood (ML) analysis was performed in PHYML as implemented on the South of France bioinformatics platform (http: //www.atgc-montpellier.fr/phyml/) (Guindon and Gascuel 2003; Guindon et al. 2010) using the GTR+G+I substitution model as estimated in PHYML. Bootstrap support values were calculated with 1,000 repetitions. Bayesian analyses were conducted with MrBayes (Huelsenbeck and Ronquist 2001). The analyses were run for 10,000,000 generations starting with a random tree and employing four simultaneous chains. The first 80,000 generations (i.e., 8,000 trees) were discarded as the burn-in. TRACER1 (http: //evolve.zoo.ox.ac.uk/software.html/tracer/) was used to ensure that stationarity was achieved after the first 100,000 generations. Maximum Parsimony (MP) analyses were performed using PAUP 4.0 (Swofford 2002). Support values given in the text correspond to Maximum Likelihood Bootstrap (BS) and Bayesian Posterior Probabilities (PP).

3. Results

3.1 Phylogenetic analysis

Analyses based on ITS rDNA confirmed that members of the descolea clade (e.g. species of Timgrovea, Descomyces, Setchelligaster and Descolea) are closely related and form a strongly supported monophyletic group (BS 1.00; PP 0.99) (Fig 1). The placement of secotioid and sequestrate taxa across multiple branches of the phylogeny indicate that sequestrate forms have arisen multiple times within the descolea clade (as previously determined by Peintner et al. 2001).

Regardless of their preliminary morphological determinations, the Patagonian sequences from sequestrate and epigeous descolea clade taxa were resolved into four different well-supported clades. Epigeous specimens from across a wide geographical range and morphologically identified as Descolea antarctica and D. pallida were resolved in just one clade.
with minimal ITS variation (0.02%) among specimens (BS 1.00; PP 0.99) (Fig 1). These results indicate that these should be treated as a single morphologically variable taxon *D. antarctica*.

Despite the high morphological variation among the sequestrate specimens, we resolved three distinct clades that can be distinguished based on both macroscopic and microscopic characters. One of the well-supported sequestrate clades BS (1.00, PP 1.00) (*Descolea brunnea*) showing 0.03% ITS variation includes morphologically variable specimens initially identified under different genera and species names. However, all collections are brownish in color, have spores >17 µm, and have two spores per basidium.

A second well-supported monophyletic clade of almost identical ITS sequences (BS 0.93, PP 0.99) (Fig 1) includes a small number of sequestrate specimens from northern Patagonia. Specimens in this group have a distinctly yellow color when fresh, have spores smaller than 17 µm in length, and four spores per basidium. Members of this clade do not fit the descriptions of any known species and are described below as *Descolea inferna* sp. nov. based on unique morphological and molecular characters.

Two other sequestrate collections form a third well supported clade. After detailed study and comparison with the *Cortinarius archeurethus* (=*Descolea archeureta* comb. nov.) holotype collection, one of them (MES1786) was matched to *C. archeurethus*. The second collection (MES1584) was too rotten at the time of collection to be morphologically characterized but is also regarded here as *Cortinarius aff. archeuretus* (=*Descolea archeureta* comb. nov. based on molecular data).

3.2 Taxonomy

Our phylogenetic results and evidence from previous studies (e.g. Lago et al. 2001, Peintner et al. 2001) indicate that the descolea clade is a monophyletic ectomycorrhizal lineage with high intraspecific morphological variation and multiple origins of secotioid and gasteroid forms. In order to avoid polyphyletic entities resulting from the process of convergent evolution to sequestrate forms, we emend the genus *Descolea* to include secotioid and sequestrate taxa that belong to the descolea clade.
We have extensively studied the Patagonian species and provide molecular evidence for the placement of these taxa as well as an overview of the synonyms that have been historically used. We also recombine other sequestrate taxa that putatively belong to the descolea clade based on available evidence, including a combination of morphological, host association, and biogeographical data. For example, several sequestrate taxa treated below were first described from South America and collected under exotic ectomycorrhizal Myrtaceae of Australasian origin. We have identified a few additional species that have been treated in various genera of the descolea clade (e.g. Descomyces) but seem likely to belong to other fungal lineages. We conservatively refrain from transferring these outlier taxa and provide a rationale for excluding these from Descolea until more data are available.

Descolea (Sing.) emend. Kuhar, Nouhra & M.E. Smith.

Basidiomes agaricoid to secotioid or fully gasteroid. Stipe sometimes reduced to a turbinate base that easily breaks apart in some secotioid basidiomes and remains only as a percurrent columella in fully gasteroid basidiomes. Spore wall ornamentation, if present, of exosporial - perisporial origin, frequently constituting an embedding utricule. Type: *Descolea antarctica* Sing., Lilloa, 23: 527. (1950).

Descolea inferna Kuhar, Nouhra & M.E. Smith sp. nov. (figs 2E and 3E-F)

MycoBank No.: MB817784

UNITE SH: SH444912.07FU

Diagnosis: Basidiomes secotioid, not exposing the hymenophore, yellow, hypogeous. Stipe turbinate and fragile. Basidia bearing 2-3-4 sterigmata. Spores 14 - 17 × 8.5 - 9.5 beaked to sublimoniform.

Etym.: from the latin *infernus*, “of the lower world”, in reference to the hypogeous habit of this species.

Diagnosis: Basidiomes secotioid, not exposing the hymenophore, yellow, hypogeous. Stipe turbinate and fragile. Basidia bearing 2-3-4 sterigmata. Spores 14 - 17 × 8.5 - 9.5 beaked to sublimoniform.

Etym.: from the latin *infernus*, “of the lower world”, in reference to the hypogeous habit of this species.

Basidiomes 2 × 2.5 cm, hypogeous, globose to depressed, incurvate, not exposing the hymenophore at maturity, dry, smooth, devoid of scales or other visible velum remnants,
yellowish, turning brown in age. Pileal (peridial) trama 0.5 - 2 mm thick. Hymenophore
galiculate (fully enclosed, referred to in literature on gasteroid fungi as a gleba), hyaline to
white when immature, reddish brown in age, consisting of irregular locules up to 0.2 mm diam.

Stipe 0.4 - 1 × 0.5 1.1 cm, reduced, constituted by a fragile sterile turbinate base that easily
breaks apart, percurrent through as a narrow columella, dry, whitish to yellow.

Spores 14 - 17 × 8.5 - 9.5 µm (Qr=1.72), slightly beaked to sublimoniform, covered by a
pigmented irregular utricle of variable thickness that frequently leaves the smooth rostrum
uncovered. Cuticle consisting of inflated terminal elements interwoven with cylindrical hyphae
in a hyaline inner layer of thin walled hyphae and an outer layer of thick-walled elements with
golden yellow content. Cystidia 20 - 35 × 4 - 9 µm, claviform to capitate, rare in some
collections. Basidia 28 - 33 × 10 - 15 µm, claviform, bearing four (occasionally two - three)
sterigmata.

Habitat habit and distribution: hypogeous, in wet habitats, under Nothofagus pumilio, N.
dombeyi and N. antarctica in North Patagonia in Argentina and Chile.

Other specimens examined: Argentina: Neuquén, Nahuel Huapi National Park, 17 km north of
Villa La Angostura, near Lago Espejo, under N.dombeyi, 28 March 1988, R. Halling (Halling
5915). Río Negro, Nahuel Huapi National Park, halfway to Tronador, open N. antarctica forest,
9 May 2015, M. E. Smith, (CORD, FLAS-F-60291, MES1132), GenBank accessions: ITS
KY523086; Los Rápidos, Nantarctica forest, 11 May 2015, M. E. Smith, (CORD, FLAS-F-
60293, MES1228); near Lago Hess, open N.anantarctica forest, 16 May 2016, L. Fernandez,
(CORD, FLAS-F-60304, MES2067), GenBank accessions: ITSKY523099. Chile: Osorno,
Puyehue National Park, below Antillanca Ski Area, on the edge of the road near dry riverbed
area, with N.pumilio. 6 May 2016, R. H. Healy, (FLAS-F-60299, MES 1730, SGO 167980),
GenBank accessions: ITSKY523095.

Additional notes: Descolea inferna is one of the four Descolea species known from the
Nothofagaceae forests of Patagonia. This species is readily distinguished from the epigeous D.
antarctica by its gasteroid, hypogeous fruiting habit. Although Descolea inferna is superficially
similar to *Descolea brunnea*, the new taxon *D. inferna* is differentiated by a yellow pileus (peridium), four-sterigate basidia and spores that are 14–17 × 8.5–9.5 µm (compared to those of *D. brunnea* which are 17.5 - 22 (24) × 8.5 - 13 µm). Similar species described in the literature are *Cortinarius archeuretus* (Halling) Peintner & M.M. Moser (transferred below to *Descolea* as *D. archeureta*), with smaller spores (12-14 × 6.5-7.5) and dull purplish brown basidiomes, and the highly variable *Setchelliogaster australiensis* G.W. Beaton, Pegler & T.W.K. Young (transferred below to *Descolea* as *D. australiensis*), with larger asymmetrical spores (11 - 18.3 (20.8) × 6.3 - 9.9 (11.5) µm) and lacking hymenial cystidia. One specimen collected by Halling and deposited in NY as “*Hymenogaster*” (Halling 5915) is a specimen of *D. inferna*. This collection was annotated by Dr. Michael Castellano in 1993 as “*Descomyces* sp. nov.”

Descolea alba (Berk.) Kuhar, Nouhra, & M.E. Smith comb. nov.
MycoBank No.: MB817791
UNITE SH: SH300040.07FU
Splanchnomyces albus (Klotzsch) Corda, in Zobel, Icon.fung. (Prague) 6: 40, tab. 8: 82. 1854.
Hymenogaster klotzschii Tul. & C. Tul., Fungi hypog. 64. 1851.

Descolea albellia (Massee et Rodway) Kuhar, Nouhra, & M.E. Smith comb. nov.
MycoBank No.: MB817793
UNITE SH: SH300097.07FU
Descolea angustispora (A.A. Francis & Bougher) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817795
UNITE SH: SH281415.07FU

Descolea antarctica Singer (figs 2A and 3B)
MycoBank No.: MB296578
UNITE SH: SH300036.07FU

Descolea recedens sensu Singer, Sydowia 9: 407 (1955)

Additional notes: Both Horak and Singer identified morphological differences between Descolea specimens collected in the far south of Patagonia (‘the Fuegian region’) and those from forests of northern Patagonia (Horak 1971, Singer 1954, Singer 1969). Descolea pallida was described by Horak (1971) to accommodate collections from northern Patagonia that had smaller spores, yellow veil remnants, and lighter colored caps. However, both Horak and Singer recognized that the two ‘species’ (D. antarctica and D. pallida) were challenging to differentiate from one another. Singer (1954, in German) expressed “I’m not entirely sure if the Patagonian species (D. pallida, [not yet officially described in 1954]) is different from the Fuegian one (D. antarctica)... The form and ornamentation of the spores is the same.” Later, Singer (1969) considered D. antarctica as a synonym of the Australian species Descolea recedens (Cooke & Mass.) Sing. (= Agaricus recedens Cooke & Massee). Our phylogenetic analysis, which includes light yellow colored specimens from coastal Chile (e.g. D. pallida) and darker colored specimens from Tierra del Fuego (D. antarctica), confirms that these two species are synonyms that represent intraspecific color and size variants (Fig 2a). During field collections we also observed color variation in both the caps and partial veil remnants within individual collections, consistent with the idea that species within the descolea clade exhibit high morphological plasticity (Cribb 1956, Lago et al. 2001, Neville et al. 2004). Our phylogenetic analysis also rejects the hypothesis that D. antarctica from South America is a synonym of D. recedens from Australia (Fig1).

Descolea archeureta (Halling) Kuhar, Nouhra, & M.E. Smith comb. nov. (figs 2D and 3A)
MycoBank No.: MB819433
Synonym: Cortinarius archeuretus (Halling) Peintner & M.M. Moser, Mycotaxon 81: 178. 2002

Additional notes: Halling (1981) studied historical specimens collected by Thaxter in Chile and described the new species Thaxterogaster archeuretus Halling (= Cortinarius archeuretus (Halling) Peintner & M.M. Moser). Morphological analysis of the holotype specimen at the Farlow Herbarium (FH accession #7775A, Thaxter’s “Fungus Hypogeous No. 6”) indicated that the spores have a hyaline utricle and 4-spored basidia. The spores are also distinctly smaller than those of other sequestrate Patagonian Descolea species. Although spore size has proven not to be
a conclusive feature to consistently delimit species, it can be useful when used in combination
with other diagnostic characters. One feature that can be used to separate *D. archeureta* from
other South American *Descolea* species is a thick hyaline utricle that is more translucent than the
other Patagonian species. No additional collections of *D. archeureta* were found at the herbaria
(FH, LPS, BAFC, CORD, or NY). However, two fresh collections recently found in northern
Patagonia (2016) morphologically match the type at FH.

Specimens examined: Chile: Los Lagos, Puyehue National Park, foothills of Volcan Puyehue, up
the road past El Cauille north of Rio Golgol, under *N. dombeyi*, 1 May 2016, Rosanne Healy
(FLAS-F-60300, MES1786, SGO 167981) GenBank accessions: ITS KY523096; foothills of
Volcan Puyehue, up the road past El Cauille, north of Rio Golgol, under *N. dombeyi* 4 May 2016,
Rosanne Healy (FLAS-F-60296, MES1584, SGO 167982), GenBank accessions: ITS
KY523092. Magallanes, Punta Arenas, Fungus Hypogeous No. 6, Feb 1906 (precise date
unknown), Holotype preserved in liquid, Roland Thaxter (FH accession #7775A).

Descolea australiensis (G.W. Beaton, Pegler & T.W.K. Young) Kuhar, Nouhra, & M.E. Smith
comb. nov.

MycoBank No.: MB 817800

Descolea brunnea (Horak) Kuhar, Nouhra, & M.E. Smith comb. nov. (figs 2B-C and 3C-D)

MycoBank No.: MB817785

UNITE SH: SH300035.07FU

Basidiomyc. 468. 1971

Cortinarius squamatus (Halling) Peintner & M.M. Moser, Mycotaxon 81: 182. 2002.

Additional notes: Several names have been used to refer to this common South American sequestrate *Descolea* species, including *Cortinarius squamatus*, *Hypogaea brunnea*, *Setchelliogaster brunneus*, and *Thaxterogaster squamatus*. This is a highly variable taxon that is present across a wide range of *Nothofagaceae* forests at varying altitudes and latitudes. However, a combination of molecular and morphological evidence suggests that these are the same taxon (thus we treat the names listed above as synonyms). Patagonian collections of sequestrate basidiomes with two sterigmata and large spores formed a well supported clade (Fig 1a) and include specimens with highly variable pileal (peridial) structures, including variable cuticle construction and presence of universal veil scales. Scales are present in some basidiomes but others are totally devoid of scales. For example, specimen EN214 was originally identified as *Thaxterogaster squamatus* based on the obvious and persistent scales. Rostrate (limoniform) and non-rostrate spores also occur within this highly variable species and in some cases both spore types can be observed within the same basidiome. We have also found that in some cases the apical area of the spore darkens in 3% KOH even if it does not protrude from beneath the utricle. Scales are also present in the type collection of *Hypogaea brunnea* Horak and *T. squamatus* Halling.

Descolea brunnea was first collected by Thaxter and later considered by Zeller and Dodge to be *Hymenogaster albellus* (= *Descolea albella*) from Australia. However, the specimens examined by Zeller and Dodge are fragmentary and had no stipe remnants. This morphological feature is important because it can be used to distinguish between *D. brunnea* from South America (typically with a short stipe that is easily separable from the pileus) and *D. albella* (= *H. albellus*) from Australia (typically lacking a stipe).

Horak (1964) described this species as *Hypogaea brunnea*. In Horak’s original description, the species was depicted with broadly ellipsoid to sublimoniform spores and our examination of the *H. brunnea* isotype (LPS 38225) confirms these observations. Since spores in the type of *Hypogaea brunnea* are utriculate, Singer (1971) correctly identified this taxon as a member of the descolea clade and transferred the species to *Setchelliogaster* as *S. brunneus* (Horak) Sing.

The same species was later described by Halling (1981) as *Thaxterogaster squamatus* based on Thaxter’s Fungus Hypogeous No. 7 from Punta Arenas, Chile. *Thaxterogaster squamatus* was described as having limoniform spores (and therefore seemed different from the
broadly ellipsoid spores depicted in the original publication that described *H. brunnea*).

However, the *T. squamatus* holotype at FH has urticulate spores that range in shape from limoniform to broadly ellipsoid to limoniform. Although variable, these spores match the morphology of *D. brunnea*. We have also confirmed that *D. brunnea* is a common ECM symbiont of *Nothofagaceae* species near Punta Arenas and at other coastal sites in Chile (see collections MES160 and MES538 listed below).

Descolea ferruginea (Cribb) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817790

UNITE SH: SH300052.07FU

Descolea fusispora (Trappe & Claridge) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB 817796

Descolea giachinii (Trappe, V.L. Oliveira, Castellano & Claridge) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817797

Descolea javanica (Höhnel) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817794

Synonym: Descomyces javanicus (Höhnel) Bougher et Castellano, Mycologia 85(2): 290. 1993

Additional notes: Hymenogaster javanicus was collected by F. Von Höhnel on the island of Java and described in 1909 (von Höhnel, 1909). Although the habitat of mixed tropical forest does little to illuminate the host associations, it is likely that ectomycorrhizal Myrtaceae were originally present in these forests prior to human disturbance. Smith and Schmull (2010) translated von Höhnel’s description of H. javanicus from German to English, examined von Höhnel’s collections, and provided microscopic photos as well as reproductions of von Höhnel’s original line drawings. All that remains of the H. javanicus type specimen is a single preserved slide. Smith and Schmull (2010) nonetheless confirmed the observations of von Höhnel (1909) and Bougher and Castellano (1993). Smith and Schmull (2010) and Bougher and Castellano (1993) accepted this species as a member of the descolea clade.

Descolea macrospora (Cunningham) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817788

Descolea reticulata (Cunningham) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817792

Descolea subtropica (Cribb) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817789

MycoBank No.: MB312266

UNITE SH: SH281414.07FU

Setchelliogaster tenuipes var. rheophyllus (Bertault & Malençon) G. Moreno & M.P. Martín [as 'rheophylla'], Mycotaxon 78: 262. 2001.

Additional notes: We consider the combination proposed by Neville et al. (2004) as a valid nomenclatural proposal.

Descolea varians (Trappe & Claridge) Kuhar, Nouhra, & M.E. Smith comb. nov.

MycoBank No.: MB817798

4. Discussion

4.1 Morphological Traits

The high degree of morphological convergence associated with the sequestration process has often caused confusion for taxonomists in the past. The delimitation of many genera was based on features that we now know correspond to degrees of sequestration, aligned under the concept of phylogenetic “series” as in Malençon (1931) or Bougher and Castellano (1993). This resulted in polyphyletic sequestrate taxa such as *Thaxterogaster*, *Setchelliogaster*, or *Descomyces* being nested within paraphyletic agaricoid genera such as *Cortinarius* and *Descolea*. Convergent features in the sequestrate representatives (thick walled, mostly globose and heavily ornamented spores) were also used to group these species together in large genera like *Hymenogaster sensu lato*. However, with the use of molecular data and careful microscopic study, it is often possible to see morphological features that help to clarify evolutionary relationships.

The utricle, a more or less translucent discontinuous membrane that covers the basidiospores of some fungi (often treated as an “exosporium” – Lago et al. 2001), was used as a key feature to recognize sequestrate genera (*Descomyces* and *Timgrovea*) within the Bolbitiaceae by Bougher and Castellano (1993). Specifically, they recognized the sequestrate genera *Timgrovea*, *Setchelliogaster* and *Descomyces*. This utricle is structured in its exosporial layer as columns or ridges under a smooth surface. However, coarsely distributed verrucae leaving a smooth apex in limoniform spores of some *Cortinarius* (Supplementary Fig 1) were alternatively interpreted as an utricle or as individual ornamentations with the subsequent placement of species having “utricle like structure”or “densely verrucose” spores in different genera by different authors (Singer in Petersen 1971, Horak 1979). For example, the heavily verrucose limoniform spores of *Cortinarius fragilis* were the main reason that this species was treated in the genus *Setchelliogaster*, despite the cortinarioid cuticle of the cap and the absence of a true utricle (Horak 1979, Lago et al. 2001). Our results suggest that truly utriculate spores are found in all species in the descolea clade but do not occur within the genus *Cortinarius*. Increasing visual contrast with Cotton Blue or Toluidine Blue (Clemençon et al. 2012), and the use of differential interference contrast (DIC) microscopy in spore observations (Halling 1981), can...
help to differentiate the presence of dense spore ornamentation versus a continuous utricle partially covering the spore surface.

Although highly variable, sterile hymenial elements ranging from slightly capitate cystidia to protruding basidioles are common within the Patagonian species. This variation is congruent with the observations of Lago et al. (2001) that found this feature to be correlated with the hymenium maturity. The cylindrical pigmented hyphae that Horak (1971) proposed as an additional difference between the two agaricoid morphotypes (e.g. *Descolea antarctica* and *D. pallida*) are present in all collections studied but in highly variable proportions. This could be the cause of different colorations observed in the veil remnants and again, in possible correlation with maturity stages. Finally, Singer’s (1969) observation that occasional basidia bearing less than four sterigmata produce larger spores may be an explanation for the high variability of this feature.

Together this suite of morphological characters (utriculate spores, capitate cystidia, and celluloderm) can be used to consistently differentiate taxa in the descolea clade from those in the cortinarius clade. The importance of these characters was previously recognized by Singer (1969). He also suggested that the apical gap in the utricle is actually a germ pore, a feature that he interpreted as phylogenetically linking *Descolea* to the *Bolbitiaceae* (which have germ pores on their spores) and excluding the genus from *Cortinariaceae* (which lack germ pores on their spores) (Peintner et al. 2004; Mishra 2005).

4.2 Excluded Species

Several brown-spored sequestrate taxa have previously been considered members of the descolea clade (e.g. placed in *Timgrovea, Descomyces* or *Setchelliogaster*) but exhibit morphological, ecological, or biogeographical features that are not consistent with this phylogenetic placement. We know that taxa in the descolea clade: 1) have brown, utriculate spores, 2) are mostly native to Australasia and southern South America, and 3) are found primarily with host trees in the *Nothofagaceae* or *Myrtaceae*. Only a few exceptional species of *Descolea* are found in Asia with Northern Hemisphere host plants (Tedersoo et al. 2010). Taxa that are inconsistent with these three key features are likely to belong to other fungal lineages and are therefore considered here outside of the descolea clade.
Bougher and Castellano (1993) transferred the Chinese species *Hymenogaster kwangsiensis* B. Liu to the genus *Timgrovea* probably based on the reticulate spore ornamentation forming polygonal alveoli. However, this species is known only from Asia and has a spore morphology that is quite different from most other sequestrate species in the descolea clade. Specifically, it lacks the characteristic limoniform, utriculate spores. The type is unavailable for study but the combination of spore morphology and biogeography suggest that this taxon probably belongs to a different group.

Another species that does not fit well within the descolea clade is *Setchelliogaster aurantius* (Zeller) Singer & A.H. Sm. This species was originally described as *Secotium aurantium* Zeller from the Trinidad Mountains of Cuba (Zeller 1947). Although this species was transferred by Singer to *Setchelliogaster*, it was originally described by Zeller as being bright orange with a “phalloid” appearance, white rhizomorphs, and smooth brown spores (Zeller 1947). The combination of morphology and biogeography clearly excludes this taxon from the descolea clade and suggests that it is likely a member of the *Phallomycetideae*.

Setchelliogaster tetrassporus was described by Singer (1971) from Valdivian forests of *Nothofagus dombeyi* and *Araucaria araucana* in Chile and discussed by Horak (1979). This species has recently been considered by Horak (1979) to be a synonym of *Cortinarius fragilis* (Zeller & C.W. Dodge) Peintner & M.M. Moser. However, the published descriptions along with our analysis of the holotype (SGO) and fresh specimens (MES129, MES143, MES144) indicate that *Setchelliogaster tetrassporus* shows morphological affinity with *Cortinarius sclerospermus* Peintner & M.M. Moser. This taxon is retained for now in the genus *Setchelliogaster* but will be treated in a future taxonomic work to revise the sequestrate Cortinarius species of South America.

4.3 Ecological Aspects

The mycorrhizal status of *Descolea* species in Patagonia is well established. Palfner (2008) demonstrated that *D. antarctica* was the most abundant fungal symbiont on post-fire seedlings of *Lophozonia alpina*, suggesting that *D. antarctica* behaves as an early stage symbiont in the *Nothofagaceae* forests. Both *D. antarctica* and *D. brunnea* were also common on ECM root tips of three *Nothofagaceae* species sampled by Nouhra et al. (2013) (see also Fig 1). These two species are also among the most common ECM species on seedlings of *Nothofagus* (F.
Kuhar, unpublished data). *Descolea brunnea* also produces abundant basidiomes from high elevation sites down to sea level, as well as over a wide latitudinal range (Nouhra et al. 2012 as *Thaxterogaster squamatus*). This suggests that these two *Descolea* species are strong competitors and can be dominant in many different types of *Nothofagaceae* ECM communities. Alberdi et al. (2007) found that *N. dombeyi* seedlings were more photosynthetically active when inoculated with *D. antarctica* or *Pisolithus tinctorius* than non-ECM seedlings, and that plants colonized by *D. antarctica* were less physiologically stressed than seedlings inoculated with *P. tinctorius*. Since the sequestrate basidiomes of *D. brunnea* may constitute an important source of spore inoculum, a deeper knowledge of the ecology of *D. brunnea* could facilitate its use as a greenhouse inoculant to produce ectomycorrhizal *Nothofagaceae* seedlings for reforestation.

In addition to being common in the environment, many *Descolea* species can also be grown in pure culture on diverse media types. Cultures of *Descolea* species typically produce whitish colonies with a yellow center and have capitate cystidia (Bougher and Castellano, 1993). Valenzuela et al. (2008) successfully cultured *D. antarctica* on malt extract agar and report capitate cystidia on the mycelium, a feature that we have also confirmed (F. Kuhar, unpublished data). Álvarez et al. (2004) reported that *D. antarctica* also has highly adaptable enzymes (i.e. phosphatases, amylases, cellulases) that are active over a wide pH and temperature range. In a later experiment Valenzuela et al. (2008) characterized several enzyme activities and suggested that *D. antarctica* can utilize a wide range of nutrient sources for growth in axenic culture. The importance of the enzyme machinery of ectomycorrhizal fungi has been extensively discussed (e.g. Baldrian 2009) and conclusive evidence of their role as important degraders of organic matter has been summarized and emphasized by Lindahl and Tunlid (2015). Available data suggest that species of *Descolea* may be among the most saprotrophically active ectomycorrhizal fungi.

5. Conclusion

The genus *Descolea* is represented in Patagonia by four species. Here we have placed the hypogeous, secotioid taxa (*D. archureta*, *D. brunnea* and *D. inferna*) in the genus *Descolea* along with the epigeous agaricoid type species *Descolea antarctica*. We found that several features constitute excellent criteria to recognize members of the genus *Descolea*: capitate
cystidia, inflated cuticular elements, perisporial utricle with an apical gap, limoniform to
sublimoniform spores and the tendency towards fewer sterigmata in the sequestrate species. The
high intra-species or even intra-individual morphological variation is a common feature that
makes some species challenging to differentiate without molecular data. Despite the taxonomic
difficulties that are caused by this variation, it is also possible that this morphological plasticity
might contribute to the ecological adaptability of species in this group to different environmental
conditions.

6. Acknowledgments

This work was supported by the US National Science Foundation grant DEB 1354802 (to
MES), a Friends of the Farlow Fellowship from Harvard University (to FK), a MINCyT grant
(PICT 3457/14 to FK), an Advanced Postdoc Mobility Fellowship from the Swiss National
Science Foundation (to CT), and the University of Florida Institute for Food and Agricultural
Sciences (to MES). Financial support was provided by CONICET (Consejo Nacional de
Investigaciones Científicas y Tecnológicas), grant PIP No 6193. Donald H. Pfister, Friends of
the Farlow Herbarium, and staff members of the Harvard Herbaria provided funding, logistical
support, and helpful comments throughout the course of this study as well as facilitating access
to important type collections at FH. The David Rockefeller Center for Latin American Studies at
Harvard University also supported this work via funding to D. H. Pfister for collecting
expeditions in Patagonia. The Administración de Parques Nacionales of Argentina kindly
authorized our collecting expeditions in Parque Nacional Nahuel Huapi and Parque Nacional
Lanín under Projecto 2016/720 (to E. Nouhra). In Tierra del Fuego, Dr. Alicia Moretto provided
guidance in obtaining research permits and the Secretaría de Desarrollo Sustentable y Ambiente
graciously authorized the collection of specimens under Resolución S.D.S. y A. NRO.0218/2015
(to C. Truong). The Chilean Corporación Nacional Forestal (Gerencia de Areas Silvestres
Protegidas) provided permission to collect fungi in Chilean National Parks under permit No.
014/2014 (to MES). Patagonia Sur graciously provided access to natural reserves for collecting.
Giuliana Furci and Natalia Fernández offered critical guidance and logistical support during
fieldwork, while Lisandro Fernández, Brandon P. Matheny, Hugo Pereyra, Pablo Sandoval,
Donald H. Pfister, Roy Halling, and Rosanne Healy provided collections and photographs of
fresh specimens. Curators from the herbaria of CORD, FH, SGO, LPS, and NYBG kindly helped
to facilitate access to collections.

5. References

water deficit of *Nothofagus dombeyi* plants inoculated with a specific (*Descolea antarctica*
Sing.) and non-specific (*Pisolithus tinctorius* (Pers.) Coker & Couch) ectomycorrhizal fungi.
Revista Chilena de Historia Natural **80**: 479-491.

Baldrian P, 2009. Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for

Bougher NL, Castellano MA, 1993. Delimitation of *Hymenogaster* sensu stricto and four new

Castresana J, 2000. Selection of conserved blocks from multiple alignments for their use in

Borntraeger Verlagsbuchhandlung, Berlin.

Horak E, 1979. Flora criptogámica de Tierra del Fuego. Fungi: Basidiomycetes agaricales y Gasteromycetes secotioides, 11. in Guarrera SA, Gamunid de Amos I, Rabinovich de Halperin D, eds

Captions to the figures

Figure 1: Phylogenetic Analyses

One of three most parsimonious trees (722 steps) showing the phylogenetic placement of the Patagonian species within the monophyletic genus *Descolea*. Significant parsimony bootstrap, maximum likelihood bootstrap values and Bayesian posterior probabilities are indicated as well as basidiome morphologies. Species of *Cortinarius* and *Hebeloma* were used as the outgroup.

Figure 2: Basidiomes

Fresh specimens of the Patagonian *Descolea* species. A, *Descolea antarctica*; B and C, *Descolea brunnea*; D, *Descolea archeureta*; E, mature specimen of *Descolea inferna* with missing stipe. Scale bar = 10 mm.

Figure 3: Microscopy

Light micrographs at 1000X magnification showing microscopic features of Patagonian *Descolea* collections: A, *Descolea archeureta*; B, *Descolea antarctica*; C, mature spores of *Descolea brunnea*; D, bispored basidium of *D. brunnea*; E, tetrasporic basidium of *Descolea inferna*; F, mature spore of *D. inferna*. Scale bar = 10 µm.

Supplementary Figure 1: Sequestrate *Cortinarius* spores

Light micrographs at 1000X of sublimoniform to limoniform spores of two sequestrate *Cortinarius* species showing the lack of utricle: A-B, *Cotrinarius sclerospermus* LPS38212; C and D, *Cortinarius sphaerocephalus* FK14036 (CORD) Scale bar = 5 µm.
Table 1: List of sequences analyzed

Specimen and location data is provided for each sequence used in the phylogenetic analyses. Personal collections are indicated with surnames and herbarium acronyms are from Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/.

<table>
<thead>
<tr>
<th>GenBank Accession Number</th>
<th>Species</th>
<th>Origin</th>
<th>Voucher</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>KY523092</td>
<td>Cortinarius archeuretus</td>
<td>Continental Patagonia</td>
<td>MES1584</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523096</td>
<td>Cortinarius archeuretus</td>
<td>Continental Patagonia</td>
<td>MES1786</td>
<td>FLAS</td>
</tr>
<tr>
<td>NR131815</td>
<td>Cortinarius badiovinaceus</td>
<td>Austria</td>
<td>IB19500061</td>
<td>IB</td>
</tr>
<tr>
<td>NR130311</td>
<td>Cortinarius caesiocolor</td>
<td>Europe</td>
<td>Kytö00-029</td>
<td>H</td>
</tr>
<tr>
<td>NR130313</td>
<td>Cortinarius obsoletus</td>
<td>Europe</td>
<td>G00262069</td>
<td>CJB</td>
</tr>
<tr>
<td>KY523078</td>
<td>Cortinarius squamatus</td>
<td>Patagonia</td>
<td>EN214</td>
<td>FLAS</td>
</tr>
<tr>
<td>AF325646</td>
<td>Descolea antarctica</td>
<td>Tierra del Fuego</td>
<td>IB19630883</td>
<td>IB</td>
</tr>
<tr>
<td>MF085056</td>
<td>Descolea antarctica</td>
<td>Tierra del Fuego</td>
<td>CT4235</td>
<td>FLAS</td>
</tr>
<tr>
<td>MF085057</td>
<td>Descolea antarctica</td>
<td>Tierra del Fuego</td>
<td>CT4237</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523077</td>
<td>Descolea antarctica</td>
<td>Patagonia</td>
<td>EN382</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523088</td>
<td>Descolea antarctica</td>
<td>Patagonia</td>
<td>MES1195</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523089</td>
<td>Descolea antarctica</td>
<td>Patagonia</td>
<td>MES1242</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523098</td>
<td>Descolea antarctica</td>
<td>Patagonia</td>
<td>MES2016</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523081</td>
<td>Descolea antarctica</td>
<td>Patagonia</td>
<td>MES917</td>
<td>FLAS</td>
</tr>
<tr>
<td>AF325647</td>
<td>Descolea antarctica</td>
<td>New Zealand</td>
<td>NZ5182</td>
<td>Horak</td>
</tr>
<tr>
<td>KY523083</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1048</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523084</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1102</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523085</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1113</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523087</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1155</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523091</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1515</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523093</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1586</td>
<td>FLAS</td>
</tr>
<tr>
<td>KY523094</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1687</td>
<td>FLAS</td>
</tr>
<tr>
<td>Accession</td>
<td>Species</td>
<td>Location</td>
<td>GenBank Accession</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>KY523097</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES1894 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523079</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES538 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523080</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES565 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523082</td>
<td>Descolea brunnea</td>
<td>Patagonia</td>
<td>MES996 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523086</td>
<td>Descolea inferna</td>
<td>Patagonia</td>
<td>MES1132 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523090</td>
<td>Descolea inferna</td>
<td>Patagonia</td>
<td>MES1315 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523095</td>
<td>Descolea Inferna</td>
<td>Patagonia</td>
<td>MES1730 FLAS</td>
<td></td>
</tr>
<tr>
<td>KY523099</td>
<td>Descolea inferna</td>
<td>Patagonia</td>
<td>MES2067 FLAS</td>
<td></td>
</tr>
<tr>
<td>JX968155</td>
<td>Descolea maculata</td>
<td>Europe</td>
<td>WU21819 WU</td>
<td></td>
</tr>
<tr>
<td>AF325657</td>
<td>Descolea phlebophora</td>
<td>Australia</td>
<td>E4912 Bougher</td>
<td></td>
</tr>
<tr>
<td>JX178627</td>
<td>Descolea phlebophora</td>
<td>New Zealand</td>
<td>OTA60177 OTA</td>
<td></td>
</tr>
<tr>
<td>AF325649</td>
<td>Descolea recedens</td>
<td>Australia</td>
<td>E4459 Bougher</td>
<td></td>
</tr>
<tr>
<td>JX178628</td>
<td>Descolea recedens</td>
<td>New Zealand</td>
<td>OTA60312 OTA</td>
<td></td>
</tr>
<tr>
<td>AF325645</td>
<td>Descomyces albellus</td>
<td>Australia</td>
<td>Tr17168 OSC</td>
<td></td>
</tr>
<tr>
<td>GU479276</td>
<td>Descomyces albus</td>
<td>Europe</td>
<td>it53 DSMZ</td>
<td></td>
</tr>
<tr>
<td>DQ328125</td>
<td>Descomyces angustisporus</td>
<td>Australia</td>
<td>H7216 H</td>
<td></td>
</tr>
<tr>
<td>DQ328058</td>
<td>Descomyces angustisporus</td>
<td>Australia</td>
<td>H7216 H</td>
<td></td>
</tr>
<tr>
<td>AF325644</td>
<td>Descomyces sp.</td>
<td>New Zealand</td>
<td>Tr12624 OSC</td>
<td></td>
</tr>
<tr>
<td>DQ328211</td>
<td>Descomyces sp.</td>
<td>Australia</td>
<td>TRAPPE14397 OSC</td>
<td></td>
</tr>
<tr>
<td>NR119686</td>
<td>Hebeloma plesiociustum</td>
<td>Europe</td>
<td>LIPJVG1021214 LIP</td>
<td></td>
</tr>
<tr>
<td>NR120177</td>
<td>Hebeloma theobrominum</td>
<td>Europe</td>
<td>HJB1000080 HJB</td>
<td></td>
</tr>
<tr>
<td>KC110674</td>
<td>Hebeloma velutipes</td>
<td>New Zealand</td>
<td>PDDPL3404 PDD</td>
<td></td>
</tr>
<tr>
<td>JX316330</td>
<td>Patagonia root tip</td>
<td>Patagonia</td>
<td>- CORD</td>
<td></td>
</tr>
<tr>
<td>JX316348</td>
<td>Patagonia root tip Setchelliogaster australiensis</td>
<td>Patagonia</td>
<td>- CORD</td>
<td></td>
</tr>
<tr>
<td>AF325627</td>
<td>Setchelliogaster australiensis</td>
<td>Australia</td>
<td>Cla.2679 Trappe&Claridge</td>
<td></td>
</tr>
<tr>
<td>AF325628</td>
<td>Setchelliogaster australiensis</td>
<td>Australia</td>
<td>Cla.2621 Trappe&Claridge</td>
<td></td>
</tr>
<tr>
<td>DQ328184</td>
<td>Setchelliogaster sp.</td>
<td>Australia</td>
<td>TRAPPE14175 OSC</td>
<td></td>
</tr>
<tr>
<td>DQ328214</td>
<td>Setchelliogaster sp.</td>
<td>Australia</td>
<td>TRAPPE14281 OSC</td>
<td></td>
</tr>
<tr>
<td>AF325624</td>
<td>Setchelliogaster tenuipes</td>
<td>Australia</td>
<td>Tr24776 OSC</td>
<td></td>
</tr>
<tr>
<td>AF099363</td>
<td>Setchelliogaster tenuipes</td>
<td>Europe</td>
<td>BCC-MPM2703 M&R.GenBank</td>
<td></td>
</tr>
<tr>
<td>DQ328083</td>
<td>Timgrovea ferruginea</td>
<td>Australia</td>
<td>H5803 H</td>
<td></td>
</tr>
<tr>
<td>DQ328116</td>
<td>Timgrovea ferruginea</td>
<td>Australia</td>
<td>H5803 H</td>
<td></td>
</tr>
<tr>
<td>DQ328128</td>
<td>Timgrovea ferruginea</td>
<td>Australia</td>
<td>H5803 H</td>
<td></td>
</tr>
<tr>
<td>KP191836</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>MELKV636 MEL</td>
<td></td>
</tr>
<tr>
<td>DQ328180</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>H4162 H</td>
<td></td>
</tr>
<tr>
<td>DQ328182</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>H4574 H</td>
<td></td>
</tr>
<tr>
<td>DQ328207</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>H4146 H</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Species</td>
<td>Country</td>
<td>Accession Code</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>KP191843</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>MEL2364426</td>
<td>MEL</td>
</tr>
<tr>
<td>DQ328219</td>
<td>Timgrovea sp.</td>
<td>Australia</td>
<td>H5655</td>
<td>H</td>
</tr>
</tbody>
</table>