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On Thermodynamic Consistency
of Homogenization-Based
Multiscale Theories
In this paper, the necessary and sufficient conditions for fulfilling the thermodynamic
consistency of computational homogenization schemes in the framework of hierarchical
multiscale theories are defined. The proposal is valid for arbitrary homogenization based
multiscale procedures, including continuum and discontinuum methods in either scale. It
is demonstrated that the well-known Hill–Mandel variational criterion for homogeniza-
tion scheme is a necessary, but not a sufficient condition for the micro–macro thermody-
namic consistency when dissipative material responses are involved at any scale. In this
sense, the additional condition to be fulfilled considering that the multiscale thermody-
namic consistency is established. The general case of temperature-dependent, higher
order elastoplasticity is considered as theoretical framework to account for the material
dissipation at micro and macro scales of observation. It is shown that the thermodynamic
consistency enforces the homogenization of the nonlocal terms of the finer scale’s free
energy density; however, this does not lead to nonlocal gradient effects on the coarse
scale. Then, the particular cases of local isothermal elastoplasticity and continuum dam-
age are considered for the purpose of the proposed thermodynamically consistent
approach for multiscale homogenizations. [DOI: 10.1115/1.4036243]

1 Introduction

The permanently increasing demand of high accuracy in pre-
dicting failure behavior of engineering solid materials, together
with the recent rapid growth of parallel computing power, the
experimental capabilities to characterize structure–property rela-
tionships down to atomistic level, and theories that admit multiple
length scales, has led to an extensive use and, moreover, to the
need of computational multiscale modeling methodologies. At
present, multiscale modeling has broached different disciplines
(solid mechanics, fluid mechanics, materials science, physics,
mathematics, biological, and chemistry), and different length
scales (from atoms to structure scale levels). Multiscale proce-
dures have been applied in quite different forms since the very
beginning of the scientific knowledge. One remarkable and very
old application, although purely mathematical as it has no length
involved on the smaller scale, is the Euclidean analytical proce-
dure applied for the formulation of boundary value problems.
They involve homogenization strategies to pass from the Eulerian
differential equations of the smaller of infinitesimal scale to the
final integral formulation of the larger or boundary value scale.
Nowadays, modern multiscale procedures allow the fine scale to
be explicitly modeled within really fine domains called represen-
tative volume element (RVE) where appropriated boundary condi-
tions are introduced in order to obtain accurate representation of
the involved physical problem. Multiscale schemes can be classi-
fied into hierarchical and concurrent methods. The latter involves
strong coupling between coarse and fine scales. Concurrent multi-
scale procedures were followed, among others, by Guidault et al.
[1], Hettich et al. [2], Eckardt and K€onke [3], Lloberas-Valls et al.
[4]. Hierarchical multiscale schemes and also the so-called semi-
concurrent methods involve weak kinetic and kinematic coupling.
So, in these multiscale procedures the fine-scale response obtained

from a fine-scale model solution is translated to the coarse-scale
stresses using Hill’s formulas (see Ref. [5]), or by the so-called
Hill–Mandel equations [6] and incorporated to the coarse-scale
model. Although many proposed concurrent methods involved
very small length scales, e.g., Abraham et al. [7], Khare et al. [8],
and Xiao and Belytschko [9] who considered concurrent atomis-
tic/continuum multiscale approaches, the requirements of strong
coupling between the involved scales and of domain decomposi-
tion techniques make the concurrent procedure of multiscale
schemes less attractive and computationally more demanding than
those multiscale schemes based on weak interface conditions.
This is the main reason why the application of the hierarchical
and semiconcurrent methods is growing much faster.

The weak interface conditions based approaches of multiscale
material modeling can be subdivided into continuum–continuum,
continuum–discontinuum, and discontinuum–discontinuum strat-
egies regarding the continuity of the two involved scales. Among
others, we may refer here to the continuum–continuum multiscale
model proposed by Kouznetsova et al. [10] who used a second-
order computational homogenization for both scales to enrich the
macroscopic response; by de Souza Neto and Feij�oo [6] and Peric
et al. [11], where a variational foundation of the homogenization
strategy for continuum–continuum multiscale approaches is pro-
posed; and by Gitman et al. [12]. Regarding the continuum–
discontinuum approach for multiscale models, the proposals by
Nguyen et al. [13]; Coenen et al. [14]; Karamnejad et al. [15];
and Poh et al. [16] can be referred, among others. Particularly,
Poh et al. proposed a homogenization theory which consistently
translates a crystal plasticity model with one slip system into the
macroscopic scale. Finally, and related to the discontinuum–
discontinuum strategy, it was followed by Toro et al. [17];
Verhoosel et al. [18]; Oliver et al. [19], among others.

To avoid the intrinsic loss of ellipticity of the differential con-
stitutive equations of softening materials in the fine scale, some
proposals related to continuum–discontinuum and continuum–
continuum multiscale material models did include nonlocal gradi-
ent formulations at the fine scale, see Refs. [16], [20], and [21]. It
should be noted, however, that the consideration of nonlocal
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constitutive theories at the fine-scale does not prevent the possibil-
ity for discontinuous bifurcation on the coarse-scale.

A very important aspect to be considered in multiscale
approaches is the thermodynamic consistency regarding all differ-
ent scales involved. The strong coupling between the different
scales of concurrent multiscale procedures allows a direct consid-
eration of the thermodynamic consistency in the macroscopic
models. However, the requirement of homogenization procedures
in multiscale approaches based on weak interface conditions
demands special considerations for fulfilling the thermodynamic
consistency in all involved scales. This is a relevant aspect that, so
far, was not explored in detail and systematically. In fact, some
proposals in the literature, such as Refs. [6] and [22], did consider
variational aspects involved in the homogenization process that
establishes necessary and sufficient conditions for fulfilling the
homogenization of thermodynamic consistency, provided nondis-
sipative materials are considered on both scales. But such varia-
tion aspects are insufficient when dissipative materials are
involved. Other relevant contributions did deal with multiscale
homogenization strategies of thermodynamic variables, e.g., Pohl
et al. [16] who proposed a consistent homogenization procedure
to account for the grain size dependent behavior in crystalline
materials, including the homogenization of the dissipation; Miehe
et al. [23] who proposed a homogenization procedure involving
microscopic, nonisothermal inelastic deformations at large strains,
as well as the definitions of the macroscopic stresses and dissipa-
tion in terms of the volume averages of their microscopic counter-
parts; Maugin [24] who deeply discussed the homogenization
theory for elastic and elastoplastic constituents, including the
homogenization of both the plastic dissipation and macroscopic
internal energy; and finally Suquet [25].

Despite the significant progress made in the formulation of
homogenization procedures involving also the treatment of
thermodynamic variables, there is still a need for formulating a
unified and systematic procedure for thermodynamically consist-
ent homogenizations. This formulation must allow straightforward
extensions for any kind of dissipative constituents, under both iso-
thermal and temperature-dependent conditions.

This paper is aimed at formulating this unified and systematic
procedure for thermodynamically consistent multiscale homogeni-
zations related to dissipative materials. Both elastoplastic and
continue damage-based material theories are considered under
isothermal and temperature dependent conditions. After summa-
rizing the thermodynamic principles for general gradient thermo-
elastoplastic materials, the necessary and sufficient conditions
for fulfilling the thermodynamic consistency of multiscale
approaches based on weak interface conditions are deduced and
systematically formulated. The thermodynamically consistent
homogenization procedure in this work is valid for any type of
homogenization based multiscale scheme involving continuum–
continuum or continuum–discontinuum homogenization. It is
deduced and demonstrated that the Hill–Mandel criterion for
homogenization is only a necessary condition for the multiscale
thermodynamic consistency when dissipative material responses
are involved at the fine scale. When considering higher order or
gradient plasticity, it is shown that the thermodynamic consis-
tency imposes the homogenization of the nonlocal components of
the fine scale’s free energy density which, however, does not lead
to nonlocal gradient effects on the coarse scale counterpart.

2 Thermodynamic Principles

In order for any arbitrary constitutive theory to be thermody-
namically consistent it must abide the first and second laws of
thermodynamics. Both laws are generally condensed into the
Clausius–Duhem inequality, which defines the dissipation and its
condition of positiveness. Nonthermodynamically consistent
material theories may lead to spurious dissipations, or to physi-
cally incorrect energy increases during loading cycles. A

summary of the thermodynamic principles is given in the follow-
ing. Small strain kinematics is assumed.

The first law of thermodynamics for general thermomechanical
systems states

_E þ _K ¼ Pþ Q (1)

where E, K, P, and Q denote the internal energy, kinematic
energy, mechanical source, and thermal source, respectively.

Not taking into account inertia forces, and considering the law
of conservation of mass, the first law of thermodynamics can be
rewritten as

q _e ¼ r : _e þ qr �r � h (2)

with e is the internal energy per unit mass, q is the material den-
sity, r is the Cauchy stress tensor, e is the strain tensor, r is the
energy source, and h is the heat flux vector

The second law of thermodynamics establishes

_S � Qh � 0 or q _sh� qr þr � h� h � rh
h
� 0 (3)

with S and Qh are the entropy and entropy fluxes, respectively.
Combining Eqs. (2) with (3) and introducing Helmholtz’s free

energy density w ¼ e� sh, the Clausius–Duhem inequality can be
deduced

D ¼ r : _e þ qs _h � _w � h � rh
h
� 0 (4)

where D is the dissipation and s is the entropy density.
Coleman’s equations can be deduced stating that the dissipation

must be null for elastic cycles

s ¼ � @w
@h

; r ¼ @w
@ee

(5)

2.1 Thermodynamic Consistency for General Higher-Order
Nonisothermal Elastoplasticity. Following Refs. [26–28], arbi-
trary thermodynamic states of nonisothermal gradient plasticity
may be defined in terms of the elastic strain tensor ee ¼ e� ep; the
relative temperature h ¼ T � To; and the internal variable j which
is the only one of nonlocal character. Under small strain kinemat-
ics, the free energy density can be expressed as

wðee; h;j;rjÞ ¼ weðee; hÞ þ wlðj; hÞ þ wgðrjÞ (6)

where we is the thermoelastic free energy density; wl is the local
thermoplastic free energy density, and wg is the gradient plastic
one, which take the following forms:

we ¼ 1

2
ee : Ee : ee � hA : ee; wl ¼ Hl

2
j2 � hsj;

wg ¼ 1

2
l2c rj �Hg � rj

(7)

where Hl is the local-plastic hardening/softening modulus, Hg is
the gradient softening tensor, lc is the gradient characteristic
length, and sj is the unrecovered entropy or frozen entropy.

The dissipations related to plastic processes, intrinsic dissipa-
tion due to heat variation, and heat transport result in
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Dp ¼ r : _ep þ Qp _j; Dh ¼ �sj _h; Drh ¼ � h � rh
h

(8)

where QP ¼ Ql
P þ Qg

P with Ql
P and Qg

P the local and gradient dis-
sipative stresses in the problem domain X

Ql
P ¼ �

dw
@j

; Qg
P ¼ hr � 1

h
@w
@rj

� �
(9)

Additionally due to the existence of gradient terms, a dissipa-
tive term on the boundary appears

DðbÞ ¼ �
ð

S

Q
ðbÞ
P _j dS (10)

being Q
ðbÞ
P the dissipative stress on the boundary S

Q bð Þ
P ¼ �n � @w

@rj
(11)

The general case of higher-order, temperature-dependent elas-
toplasticity involves the yield condition U ¼ Uðr; h;Ql

p;Q
g
pÞ, and

a plastic potential U� ¼ U�ðr; h;Ql
p;Q

g
pÞ, being the rate form of

the constitutive equations

_r ¼ Ee : _e � Ee : _k
@U�

@r
� _hA (12)

_Q
l

p ¼ �H _j þ @sj

@j
_h (13)

_Q
g

p ¼ _Q
gðh; _h;rj;r _jÞ (14)

In the particular case of isothermal and local elastoplasticity,
the terms related to h, rh; _h; rj; r _j should be neglected from
previous equations.

3 Multiscale Homogenizations of Thermodynamical

Variables

In this section, the procedures for multiscale homogenizations
of different field variables are considered. The departing concept
is the definition of free energy densities on the involved scales,
expressed in terms of admissible and independent thermodynamic
variables which are systematically considered for the purpose of
the multiscale homogenizations in this section.

3.1 Free Energy Consistency (Helmholtz’s Energy Homog-
enization). The volume average principle between the involved
scales must be hold for the involved free energy densities through

wM ¼
1

V

ð
V

wl dV or in rate form _wM ¼
1

V

ð
V

_wl dV (15)

using subindex ð•ÞM to refer to properties of the coarse scale and
subindex ð•Þl for the fine scale. Equation (15) implies that no
additional energy can be generated or lost during the homogeniza-
tion process.

The homogenization of the free energy (Eq. (15)) can be found
in the literature, among others in Refs. [16], [19], [24], and [29].
However, the thermodynamic ramifications of this equation in a
thermodynamically consistent framework are not clearly explored
in the available literature.

In the particular case of a local, nonisothermal elastoplastic
material on the fine scale [wlðee

l; hl;jlÞ], using Eq. (8) the free

energy consistency equation (15) can be reformulated as

_wM ¼
1

V

ð
V

rl : _ee
l � sj _h þ

@ _wl

@j
_j

 !
dV (16)

3.2 Strain Homogenization. Without loss of generality the
rate of the fine scale’s strain tensor _el can be additively decom-
posed into an average strain rate tensor (which is equal to the
coarse scale’s strain rate tensor) and a strain fluctuation rate tensor

_el ¼ _eM þ _eel (17)

with

_eM ¼
1

V

ð
V

_el dV and 0 ¼ 1

V

ð
V

_eel dV (18)

In regard to elastoplastic materials, the Prandtl–Reuss additive
decomposition of the total strain rates into the elastic and plastic

components is valid for each scale separately, so _eM ¼ _ee
M þ _ep

M

and _el ¼ _ee
l þ _ep

l . In turn, the microscopic elastic and plastic

strain rate tensors can be additively decomposed into the coarse
scale’s strain rate tensor and a strain fluctuation rate tensor, so

_ep
l ¼ _ep

M þ
_eep
l and _ee

l ¼ _ee
M þ

_eee
l .

However, except for the particular case of a homogeneous
strain field, the homogenization of the elastic and plastic strains is
not the volume averages (see Ref. [30]). Then, in general,

_ep
M 6¼

1

V

ð
V

_ep
l dV and _ee

M 6¼
1

V

ð
V

_ee
l dV (19)

as well as

0 6¼ 1

V

ð
V

_eep
l dV and 0 6¼ 1

V

ð
V

_eee
l dV (20)

3.3 Stress Homogenization. From Coleman’s equation (5),
and using Eq. (17)

_rM ¼
1

V

ð
V

@ _wl

@ee
l

:
@ee

l

@ee
M

þ
@ _wl

@ eee
l

:
@ eee

l

@ee
M

 !
dV

¼ 1

V

ð
V

_rl dV þ 1

V

ð
V

_rl :
@ eee

l

@ee
M

dV (21)

Under a general thermodynamic framework, the coarse scale
stress is not necessarily a volume average of the fine scale stress.

3.4 Material Operator Homogenization. In order to calcu-
late the elastic material operator the stress tensor is differentiated
with respect to ee

M

Ee
M ¼

@rM

@ee
M

¼ 1

V

ð
V

@rl

@ee
M

dV þ 1

V

ð
V

@rl

@ee
M

:
@ eee

l

@ee
M

dV þ 1

V

ð
V

rl :
@2 eee

l

@ee
M@e

e
M

dV

(22)

Ee
M ¼

1

V

ð
V

Ee
l dV þ 1

V

ð
V

Ee
l :

@ eee
l

@ee
M

dV þ 1

V

ð
V

Ee
l :

@ eee
l

@ee
M

dV

þ 1

V

ð
V

Ee
l :

@ eee
l

@ee
M

:
@ eee

l

@ee
M

dV þ 1

V

ð
V

rl :
@2 eee

l

@ee
M@e

e
M

dV (23)
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As it can be seen, the coarse scale’s material operator is not
simply a volumetric average of the fine scale’s material operators.
The domains heterogeneity may generate variations in the kine-
matic field (eel ) of the fine scale, which in turn gives rise to very
complex nonlinear material responses.

Repeating the procedure but calculating the derivative with
respect to the total strain tensor, eM of the coarse scale, then the
tangent material operator can be obtained as

Et
M ¼

1

V

ð
V

Et
l dV þ 1

V

ð
V

Et
l :

@ eel

@eM
dV þ 1

V

ð
V

Et
l :

@ eee
l

@ee
M

dV

þ 1

V

ð
V

Et
l :

@ eel

@eM
:
@ eee

l

@ee
M

dV þ 1

V

ð
V

rl :
@2 eee

l

@eM@e
e
M

dV (24)

Finally, given the relations

drM ¼ Et : deM ¼ Ee : dee
M and drl ¼ Et : del ¼ Ee : dee

l

(25)

and considering a decoupled behavior of the elastic and plastic
operators, then the plastic material operator can be calculated as
Ep

M ¼ Ee
M � Et

M.
In the particular case of homogeneous kinematic field (Taylor

boundary conditions) el ¼ eM, so eel ¼ 0 and the coarse scale’s
material operators result in

Ee
M ¼

1

V

ð
V

Ee
l dV; Ep

M ¼
1

V

ð
V

Ep
l dV; Et

M ¼
1

V

ð
V

Et
l dV (26)

Thus, they are defined as volume averages of the corresponding
fine scale’s material operators, which are weighted means that
comply with the known rule of mixtures.

3.5 Temperature Homogenization. Without the loss of
generality, the rate of the fine scale’s temperature, _hl , can be addi-
tively decomposed into an average temperature rate (which is
equal to the coarse scale’s temperature) and a temperature fluctua-
tion rate

_hl ¼ _hM þ _ehl (27)

Then,

_hM ¼
1

V

ð
V

_hl dV and 0 ¼ 1

V

ð
V

_ehl dV (28)

3.6 Entropy Homogenization. Analogous to the stress
homogenization from Coleman’s equation (5), and using Eq. (27)

_sM ¼
1

V

ð
V

@ _wl

@hl

@hl

@hM
þ
@ _wl

@ ehl

@ ehl

@hM

 !
dV

¼ 1

V

ð
V

_sl dV þ 1

V

ð
V

_sl
@ ehl

@hM
dV (29)

Under a general thermodynamic framework, the coarse scale
entropy is not necessarily a volume average of the fine scale
entropy.

3.7 Dissipation Homogenization. From Eq. (4), under iso-
thermal condition the free energy of each scale must satisfy,
respectively,

_wM ¼ rM : _eM � DM and _wl ¼ rl : _el � Dl (30)

Replacing Eqs. (30) and (21) into the free energy consistency
equation (15)

DM ¼
1

V

ð
V

rl :
@ eee

l

@ee
M

: _eM � _eel

 !
dV þ 1

V

ð
V

DldV (31)

with

Dl ¼ rl : _el � _wl ¼ rl : _ep
l �

@wl

@jl
_jl (32)

4 Reactive Forces Constrains

In this section, the consequences of reactive forces constrain
are considered and analyzed.

Being _eel ¼ elð _eul Þrs _eul , and using the divergence theorem
results ð

V

_gelðeulÞ : rl dV ¼
ð

S

_eul � te dS�
ð

V

_eul � b dV (33)

As stated in Ref. [6], Eq. (33) is equal to zero only if each inte-
gral vanish individually

0 ¼
ð

S

_eul � te dS and 0 ¼
ð

V

_eul � b dV (34)

and each integral is zero if the forces on the RVE are purely
reactive.

Concerning the surface force, only places where displacements
are prescribed do work, as in any other point the traction force te

is zero. If it is purely reactive, it means that the work is zero in
average, and this condition is verified by the boundary conditions.
Trivially, under the absence of body forces b, the second term
vanishes as well. Furthermore, if the body force is constant in the
volume it can be also seen that the integral vanishes, as ifð

V

_grsul dV ¼ 0 then

ð
V

_eul dV ¼ 0 (35)

In an analogous form

ð
V

rl :
@ eee

l

@ee
M

dV ¼
ð

S

@ eue
l

@ee
M

� te dS�
ð
@ eue

l

@ee
M

� b dV (36)

As eul is equal to zero on all boundaries where te 6¼ 0 for any
value of ee

M, then the first integral of the last equation is also equal
to zero under reactive surface forces. However, the same argu-
ment cannot be made for the body force term in case of elastoplas-
tic materials. The integral vanishes only under the absence of
body forces, as

ð
V

_grsue
l dV 6¼ 0 then; generally

ð
V

_eue
l dV 6¼ 0 (37)

If Eqs. (36) and (33) are null then the homogenization equations
(21), (23), (24), and (31) from the subsections of Sec. 3 can be
rewritten as

rM ¼
1

V

ð
V

rl dV (38)
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Ee
M ¼

1

V

ð
V

Ee
l dV þ 1

V

ð
V

Ee
l :

@ eee
l

@ee
M

dV (39)

Et
M ¼

1

V

ð
V

Et
l dV þ 1

V

ð
V

Et
l :

@ eel

@eM
dV (40)

DM ¼
1

V

ð
V

Dl dV (41)

The stress homogenization in Eq. (38), which is derived in this
work within a complete thermodynamic framework, agrees with that
used in the classical (not-necessarily thermodynamically consistent)
stress homogenization generally used in the literature. Here, it is pro-
ven that this equation complies with the thermodynamic laws only
when the RVE traction and body forces are purely reactive.

In regard to the dissipation, Eq. (41) is also commonly used in
the literature. However in most cases, for example Ref. [23], it is
assumed or proposed by the author. Here, this equation is deduced
from the free energy homogenization equation (15) as a require-
ment for fulfilling thermodynamic consistency.

Finally, it is important to mention that in Ref. [6] it can be also
seen that satisfying Eq. (34) is equivalent to satisfying the
Hill–Mandel principle. The principle states an energy balance, see
Ref. [5], among others, which establishes that the macroscopic
energy density per unit volume must be equal to the average
microscopic energy density per unit volume, i.e.,

rM : _eM ¼
1

V

ð
V

rl : _el dV (42)

However, the power balance is only valid for total the total
power and not valid for the decomposed elastic and plastic power
in elastoplastic materials, i.e., in general

rM : _ee
M 6¼

1

V

ð
V

rl : _ee
l dV and rM : _ep

M 6¼
1

V

ð
V

rl : _ep
l dV

(43)

and instead, in order to calculate the elastic and plastic strain ten-
sors the following relation must be used:

_ee
M ¼ ðEe

MÞ
�1 : _rM and _ep

M ¼ _eM � ðEe
MÞ
�1 : _rM (44)

5 Conditions for Thermodynamic Consistency in

Multiscale Homogenization Schemes

In this section, the necessary and sufficient conditions for ther-
modynamically consistent multiscale homogenization procedures
are established.

In order to maintain thermodynamic consistency between scales
the only necessary conditions is

wM ¼
1

V

ð
V

wl dV (45)

Provided the forces on the RVE are purely reactive, the last
equation leads to

DM ¼
1

V

ð
V

Dl dV (46)

rM : _eM ¼
1

V

ð
V

rl : _el dV (47)

Under the conditions stated in Sec. 4, the stress homogenization
in Eq. (38) will automatically ensure the power balance of Eq. (42).
This equation together with the dissipation in Eq. (41) will ensure

the free energy consistency. These are the necessary and sufficient
conditions to ensure the consistency of the free energy between
scales.

Hence, satisfying the Hill–Mandel principle (Eq. (47)) on its
own is not enough to achieve a thermodynamically consistent
homogenization between scales. Most of the proposed multiscale
theories use homogenization procedures which abide this princi-
ple, e.g., see Ref. [31]. Therefore, an appropriate and simple pro-
cedure to turn these multiscale theories thermodynamically
consistent is to include the additional constrain of Eq. (46) repre-
senting the dissipation homogenization.

It can be concluded that the Hill–Mandel principle is only a
sufficient condition for the thermodynamic consistency of multi-
scale homogenization procedures when elastic materials are
involved. However, when any dissipative material is considered,
the Hill–Mandel principle is unable to provide a sufficient condi-
tion for thermodynamic consistency, as the homogenization of the
additional dissipative terms is beyond the definitions involved in
the Hill–Mandel principle.

Furthermore, as shown in Sec. 3, when working on a thermody-
namically consistent framework additional constrains arises

0 ¼
ð

S

te �
@ eee

l

@ee
M

dS and 0 ¼
ð

V

b �
@ eee

l

@ee
M

dV (48)

These equations also need to be fulfilled so that the resulting
thermodynamically consistent stress tensor complies with Hill’s
formula.

6 Remarks on Continuum-to-Continuum

Homogenization Schemes Related to Nonlocal Materials

If the nonlocal gradient elastoplastic material behavior is only
assumed on the fine scale, then from Eq. (6) result

wl ¼ we
l þ wl

l þ wg
l and wM ¼ we

M þ wl
M (49)

Thus, from the free energy homogenization follows:

we
M ¼

1

V

ð
V

we
l dV and wl

M ¼
1

V

ð
V

wl
l dV þ 1

V

ð
V

wg
l dV (50)

In Eq. (50), it can be observed that, although the dissipative com-
ponent of the free energy density of the coarse scale is based on local
or classical plasticity, it involves the nonlocal term of the fine scale’s
free energy density. In other words, being the characteristic length of
the fine scale too small in relation to the coarse scale, the regulariza-
tion capabilities of the fine scale’s constitutive theory cannot be
transferred to the coarse scale one. This is due to the principle of
scale separation in which multiscale theories are based on the funda-
mental assumption that the characteristic length of the microscale is
much smaller than the macroscale discretization.

The most general case of thermodynamically consistent
approaches for multiscale homogenizations related to gradient-
based constitutive laws correspond to the situation when both
scales involve nonlocal materials. In this case, the coarse scale’s
free energy density is defined in the form

wM ¼
1

V

ð
V

we
l þ wl

l þ wg
l

� �
dV þ wg

M (51)

being wg
l and wg

M the nonlocal dissipative free energy densities of
both the fine and the coarse scales which, in turn, are related to
completely independent characteristic lengths.

7 Multiscale Homogenization Procedures Based

on Discontinuous Materials

One of the most important current applications of multiscale
homogenization schemes deals with discontinuous-to-discontinuous
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or continuous-to-discontinuous scales transformations. Discontinu-
ous materials are evaluated in the framework of the so-called dis-
crete crack approach. In this case, cracks are represented by means
of jumps in the velocity field, or displacement rate field, but not in
terms of the velocity gradient jumps as in case of the smeared-crack
approach. Several authors have proposed models based on the dis-
crete crack approach to predict failure behavior of quasi-brittle
materials.

Once the discontinuity is activated, a “tension–displacement”
function is proposed, e.g., see Refs. [32] and [33]. The curve dic-
tates the tension per surface area of the crack as a function of the
crack opening displacement, with the total area under the curve
being equal to the fracture energy of the involved material, also
referred as toughness (see Fig. 1). An example of discontinuous
approaches based on energy potentials can be seen in Refs. [16]
and [34], among others.

Following Ref. [35], the joint displacement vector u can be
decomposed into elastic and plastically controlled fracture compo-
nents, ue and uf , respectively. Being wc ¼ wcðue; jf Þ the cohesive
free energy, from Coleman and Noll’s method, the traction vector
at the interface must be (Fig. 2)

t ¼ @w
c

@ue
(52)

And analogously to the inelastic dissipation in Eq. (8)

Df ¼ t � _u f � @w
c

@jf
_jf � 0 (53)

being _u f ¼ _u f ð _jf Þ the crack opening rate in terms of the rate of
the corresponding state variable and Qf ¼ �ð@wc=@jf Þ the dissi-
pative force due to the crack opening.

In the cases where one of the scales uses a discontinuous
approach, this dissipation needs to be correctly associated with the
other scale in order for the multiscale model to be thermodynami-
cally consistent. In the most general case of homogenization
schemes related to discontinuous-to-discontinuous scale transfor-
mations, the dissipation on the fine scale RVE may be decoupled
into the dissipation in the discrete crack and the dissipation in the
surrounding continuum, i.e.,

Dl ¼ Dc
l þ Df

l (54)

where Dc
l is the dissipation of the continuous portion of the RVE

as defined by Eq. (8), while Df
l represents the dissipation on the

discrete cracks in the same RVE.
The dissipation on the coarse scale involves the dissipation in

the injected discrete crack which can be expressed as

DM ¼ Dc
M þ Df

M ¼
1

V

ð
V

Dl dV with Df
M ¼ tM � _uM

f þ QM _jM
f

(55)

where Dc
M is the contribution of the plastic dissipation of the con-

tinuum in the coarse scale, and Df
M the dissipation associated to

the discontinuous part.
In case of continuous-to-discontinuous homogenization

schemes, the dissipation in the finer scale is defined solely by
Eq. (8) which corresponds to the first term on the right-hand side
of Eq. (54). The dissipation on the coarse scale is defined as in
Eq. (55). Depending on the material model used for the coarse
scale, the term Dc

M might vanish.
If a discontinuous-to-discontinuous scheme is used where an

absolute decoupling between continuous and discontinuous terms
is used the dissipation homogenization results

Dc
M ¼

1

V

ð
V

Dc
l dV and Df

M ¼ tM � _uM
f þ QM _jM

f ¼ 1

V

ð
V

Df
l dV

(56)

8 Final Remarks

8.1 Dissipation Homogenization. The homogenization of
the dissipation is decidedly important when formulating multi-
scale constitutive theories. Particularly, the dissipation on the fine
scale needs to be correctly taken into account for formulating that
of the coarse scale due to the direct dependence of the last one
on the fine scale dissipation. Nevertheless, as indicated in Sec. 6,
additional degrading mechanisms may appear on the coarse scale,
which do not depend on that of the fine scale. This means that the
material of the coarse scale is characterized by multiple thermody-
namic variables, some of them depend on the fine scale mechani-
cal response by means of the homogenization process, while
others are fully independent of the fine scale behavior.

8.2 Weak Thermodynamic Consistency in the Fine Scale.
The Clausius–Duhems inequality for the coarse scale can be
defined as

DM ¼
1

V

ð
V

Dl dV > 0 (57)

This inequality on the coarse scale is automatically fulfilled if
Dl > 0 is satisfied in a strong form on the fine scale, i.e., on each
point of the RVE. However, the fulfilment in a weak form, i.e.,Ð

VDl dV > 0, is also valid. In other words, material formulations
on the fine scale which do not necessarily satisfy the
Clausius–Duhem inequality at each point of the fine scale RVE
are allowed as long as this inequality if fulfilled in an integral or
weak form on the RVE.

9 Conclusions

The thermodynamic consistency of computational homogeniza-
tion schemes related to hierarchical and semiconcurrent multi-
scale procedures was analyzed and defined in the framework of
dissipative constitutive theories. It was demonstrated that the Hill–
Mandel principle is only a sufficient condition for thermodynamic
consistency of multiscale homogenization procedures when elastic
or perfectly plastic materials theories are considered. When any
other type of dissipative material is considered, an additional condi-
tion to the Hill–Mandel principle is required to fulfil the thermody-
namic consistency of the involved multiscale homogenization
scheme. In this work, it was also demonstrated that this additional
condition is the homogenization of the dissipation which establishes
that the coarse scale’s dissipation is the RVE volume average of that
of the fine scale. A relevant consequence of imposing the thermody-
namic consistency to multiscale homogenization schemes is that the
fulfilment of the Clausius–Duhem inequality on the coarse scale
requires only the satisfaction of this inequality in an integral or weakFig. 1 Tension–displacement function for crack opening
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form on the RVE domain. The conditions for thermodynamically
consistent multiscale homogenizations were developed for general
nonlocal and nonisothermal inelastic constitutive theories. Then the
discontinuous-to-discontinuous multiscale transformations in the
framework of the discrete crack procedure were also considered.
Thereby, it was shown that the most general forms of the dissipations
on both the fine and coarse scales were deduced when the dissipative
energy takes place on both the discrete crack and the surrounding
inelastic continuum. All together, the results and demonstrations in
this paper clearly establish the substantial differences between classi-
cal and thermodynamically consistent homogenization schemes of
multiscales material theories, and define the necessary conditions to
be fulfilled regarding thermodynamic consistency.
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Appendix: Thermodynamically Consistent

Constitutive Relations for Continuum-to-Continuum

Multiscale Models

In this section, the constitutive equations for thermodynami-
cally consistent continuum-to-continuum multiscale schemes
based on homogenization are derived, for the conditions seen in
Sec. 4. The particular cases of continuum damage and elastoplas-
tic material theories are contemplated.

A.1 Continuum Damage Material

Material behavior based on the continuum damage is character-
ized by a progressive stiffness deterioration. In this case, the field
variables which define any possible thermodynamic state of the
material are the elastic strain field and the damage parameter d.
Therefore, the Helmholtz free energy density of the material on
the fine scale may be expressed as

wl ¼ wlðel; dlÞ (A1)

The secant material operator, Es
l (see Fig. 2)

Es
l ¼ ð1� dlÞE0

l (A2)

Hence, the material operator of the coarse scale is

Es
M ¼

1

V

ð
V

Es
l dV þ 1

V

ð
V

Es
l :

@ eel

@eM
dV (A3)

Es
M ¼

1

V

ð
V

1� dlð ÞE0
l

h i
dV þ 1

V

ð
V

1� dlð ÞE0
l

h i
:
@ eel

@eM
dV (A4)

While the tangent material operator results

Et
M ¼

1

V

ð
V

@rl

@eM
dV (A5)

Et
M ¼

1

V

ð
V

@ Es
l : el

� �
@el

:
@el

@eM
dV (A6)

Et
M ¼

1

V

ð
V

@Es
l

@el
: el :

@eM

@eM
þ Es

l :
@eM

@eM

" #
dV

þ 1

V

ð
V

@Es
l

@el
: el :

@ eel

@et
M

þ Es
l :

@ eel

@et
M

" #
dV (A7)

Et
M ¼ Es

M þ
1

V

ð
V

@ E0
l � dlE0

l

� �
@el

: el dV

þ 1

V

ð
V

@ E0
l � dlE0

l

� �
@et

l

: el :
@ eel

@et
M

dV (A8)

Et
M ¼ Es

M þ
1

V

ð
V

@ �dlð Þ
@el

E0
l : el dV

þ 1

V

ð
V

@ �dlð Þ
@et

l
E0

l : el :
@ eel

@et
M

dV (A9)

and finally

Et
M ¼ Es

M �
1

V

ð
V

@dl

@el
� rl

1� dl
dV � 1

V

ð
V

@dl

@el
� rl

1� dl
:
@ eel

@eM
dV

(A10)

From Eq. (41), being ep
l ¼ 0, the dissipation results in this case

DM ¼
1

V

ð
V

�
@wl

@dl

_dl dV (A11)

In the particular case of homogeneous damage, with the scalar
damage al ¼ el : E0

l : el, then Eq. (A10) results

Et
M ¼ Es

M �
1

V

ð
V

@dl

@al

rl � rl

1� dlð Þ2
dV � 1

V

ð
V

@dl

@al

rl � rl

1� dlð Þ2
:
@ eel

@eM
dV

(A12)

A.2 Elastoplastic Material

Under consideration of the flow theory of plasticity and in the
framework of the Prandtl–Reuss additive decomposition of the
total strain rate tensor, both the fine and coarse scales are as
follows:

_eM ¼
1

V

ð
V

_ee
l þ _ep

l

� �
dV ¼ _ee

M þ _ep
M (A13)

consequently the tangent or continuum material operator of the
fine scale takes the form

Et
l ¼ Eep

l ¼ Ee
l �

Ee
l : nl �ml : Ee

l

ml : Ee
l : nl þ

@Ul

@Qj
l

@2wp
l

@j2
l

@U�l
@Qj

l

(A14)

Fig. 2 One-dimensional representation of continuum damage-
based material behavior
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where U�l is the plastic potential, nl ¼ ð@U�l=@rlÞ is the flux ten-
sor, Ul is the yield function

ml ¼
@Ul

@rl

Qj
l ¼ �ð@w

p
l=@jlÞ is the dissipative stress, Ep

l ¼ Ee
l � Eep

l is the
plastic material operator.

Perfect Plasticity. In this case there is no hardening/softening
parameter, so the fine scale’s material operator results

Ee
l ¼ Ep

l ¼
Ee

l : nl � Ee
l : ml

ml : Ee
l : nl

! Eep
l ¼ 0 (A15)

while the coarse scale’s material operator

Eep
M ¼

1

V

ð
V

Eep
l dV þ 1

V

ð
V

Eep
l :

@eel

@eM
dV ¼ 0 (A16)

From Eq. (41), the dissipation results

DM ¼
1

V

ð
V

rl : _ep
l dV (A17)

Associated Plasticity (Ul ¼ U�l) With Isotropic Hardening/
Softening. The free energy density can be expressed as

wl ¼ ee
l : Ee

l : ee
l þ

ð
j
/ðjlÞ djl (A18)

being the yield function

Ulðrl;jlÞ ¼ U0
lðrlÞ þ /lðjlÞ (A19)

and nl ¼ ml ¼ ml

Qj
l ¼ �

@wp
l

@jl
¼ �/l jlð Þ

@Ul

@Qj
l
¼
@U�l
@Qj

l
¼ �1

The fine scale’s tangent material operator results

Eep
l ¼ Ee

l �
Ee

l : ml � Ee
l : ml

ml : Ee
l : ml þ

@/l jlð Þ
@jl

(A20)

For the coarse scale Eep
M ¼ Ee

M � Ep
M with

Ee
M ¼

1

V

ð
V

Ee
l dV þ 1

V

ð
V

Ee
l :

@ eel

@eM
dV (A21)

Ep
M ¼

1

V

ð
V

Ee
l : ml � Ee

l : ml

ml : Ee
l : ml þ

@/l jlð Þ
@jl

dV

þ 1

V

ð
V

Ee
l : ml � Ee

l : ml

ml : Ee
l : ml þ

@/l jlð Þ
@jl

:
@ eel

@eM
dV (A22)

Using Eq. (41) the dissipation results

DM ¼
1

V

ð
V

rl : _ep
l � /l jlð Þ _jl

� �
dV (A23)
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