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Abstract

The dynamic light environment of vegetation canopies is perceived by
phytochromes, cryptochromes, phototropins, and UV RESISTANCE
LOCUS 8 (UVR8). These receptors control avoidance responses to
preclude exposure to limiting or excessive light and acclimation re-
sponses to cope with conditions that cannot be avoided. The low
red/far-red ratios of shade light reduce phytochrome B activity, which
allows PHYTOCHROME INTERACTING FACTORS (PIFs) to di-
rectly activate the transcription of auxin-synthesis genes, leading to
shade-avoidance responses. Direct PIF interaction with DELLA pro-
teins links gibberellin and brassinosteroid signaling to shade avoidance.
Shade avoidance also requires CONSTITUTIVE PHOTOMOR-
PHOGENESIS 1 (COP1), a target of cryptochromes, phytochromes,
and UVR8. Multiple regulatory loops and the input of the circadian
clock create a complex network able to respond even to subtle threats
of competition with neighbors while still compensating for major envi-
ronmental fluctuations such as the day-night cycles.
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1. THE CANOPY LIGHT
ENVIRONMENT
In crowded plant canopies, the upper leaves in-
tercept the radiation that would otherwise reach
lower leaf strata, and the plants become mutu-
ally shaded. Managing plant stands involves de-
cisions about sowing density, defoliation, fertil-
ization, cultivar architecture, etc., which affect
the area and position of the foliage in relation to
the angle of incoming radiation and therefore
impact the degree of shade.

Shade involves the wavelength-selective at-
tenuation of irradiance. Green leaves absorb

strongly in the range of UV radiation (280–
320 nm for UVB, 320–400 nm for UVA) and
photosynthetically active radiation (PAR) (400–
700 nm), particularly in the blue and red regions
of the spectrum; they transmit and reflect more
strongly in the far-red (700–800 nm) and in-
frared wavebands (Figure 1a).

Several elements highlight the significance
of the red (660 nm)/far-red (730 nm) photon
flux ratio (R:FR) as a signal. As noted by Smith
(128), R:FR (a) provides a highly reliable
indication of shade because it is relatively
unaffected by other environmental conditions,
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UVR8: UV
RESISTANCE
LOCUS 8 (UVB
photoreceptor)

(b) relates to the activity of the phytochrome
photoreceptor (see below), and (c) initiates
responses to shade when experimentally altered
to simulate a canopy condition. Changes in
R:FR caused by reflected light were later
shown to provide an early warning signal of the
presence of neighbors even before mutual leaf
shading is established in growing canopies (5).
The reduced irradiance (7) and blue/green ratio
(13, 118) of shade also provide signals, which
do not share all the elegant features of R:FR
but are important for plant responses to shade.

Figure 1 describes key features of the
light environment experienced by tomato
plants grown at different densities. The remote
sensor probe was placed either facing upward
to characterize the light reaching the leaves
(Figure 1c) or facing neighbor plants to
characterize the horizontally propagating light
reaching the stem (Figure 1d ). Only the leaves
of the plants grown at the highest density
mutually shaded each other and received less
PAR and a lower R:FR than isolated plants,
but the stem received signals from neighbors
even at densities lower than those required for
mutual leaf shading. In the example presented
here (Figure 1d ), compared with the controls
grown at <20 plants m−2, the R:FR reaching
the stem was reduced at 90 plants m−2 owing to
selective light reflection on neighbors, which
increased far-red light. At 120 plants m−2, the
lower stem R:FR was due to the projection
of shade from neighbor leaves. The R:FR
reaching the stem decreased gradually with
increasing plant densities (Figure 1d ), and the
plants responded to these signals (Figure 1e).

2. THE PERCEPTION OF CANOPY
LIGHT SIGNALS BY
PHOTOSENSORY RECEPTORS

The degree of shade impacts several physi-
ological processes. The lower irradiance in
the shade limits photosynthesis and reduces
the chance of damage from excess PAR and
UVB. The changed spectral composition alters
the balance between photosystems I and II.
The associated changes in temperature can

affect metabolic reactions and reduce water
demand. The direct actions of these inputs via
photosynthesis, photodamage, or temperature
are beyond the scope of this review, which is
focused on the action of specific photosensory
receptors. Related reviews are helpful to
obtain insight from different angles and gain
a perspective on the evolution of this field of
study (4, 18, 22, 47, 95, 127, 129).

The sensory photoreceptors involved in per-
ceiving differences between full light and shade
light include phytochromes, cryptochromes,
phototropins, and UV RESISTANCE LO-
CUS 8 (UVR8) (Figure 2a). The experimental
evidence in favor of the roles of these photore-
ceptors is based on (a) the use of photoreceptor
mutants, which show features of plants grown
under shade when grown under natural or
simulated sunlight conditions, and which are
less different from the wild type when grown
under natural or simulated shade light, and/or
(b) the response to selected simulated features
of the shade-light environment perceived by
specific photoreceptors (e.g., the comparison
of low and high R:FRs at equal PAR).

2.1. Phytochromes

Phytochromes are homodimeric photorecep-
tors of approximately 120-kDa monomers that
bear a single linear tetrapyrrole chromophore
(137). They have two forms. The biologically
inactive Pr form, which has a maximum ab-
sorbance in red light (660 nm), is phototrans-
formed into the biologically active Pfr form,
which shows a different conformation and has
a maximum absorbance in far-red light (730
nm). Excited Pfr relaxes into Pr. In addition,
Pfr can be degraded in the proteasome after
ubiquitination, and some pools can back-revert
to Pr in a reaction that does not require light
(thermal reversion or dark reversion). The phy-
tochrome apoproteins are encoded by a small
family of genes involving three main clades:
PHYA, PHYB, and PHYC (93). In some species,
the PHYB lineage includes different members
(PHYB, PHYD, and PHYE in Arabidopsis; PHYB,
PHYB2, and PHYE in tomato; etc.).
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phyB: phytochrome B
(R:FR and red-light
photoreceptor)

COP1:
CONSTITUTIVE
PHOTOMORPHO-
GENESIS 1 (E3
ligase)

phyA: phytochrome A
(red- and far-red-light
photoreceptor)

Phytochrome B (phyB) is clearly the
most important photoreceptor in the vast
majority of responses to shade, in some cases
redundantly with other members of its clade
(Figure 1f ). phyB Pfr migrates from the
cytosol to the nucleus—a movement facilitated
by its selective binding to transcription factors
(106)—and exerts its biological activity there.
The primary biochemical/biophysical action
of phyB has not been established. phyB is
able to perceive the low R:FR of shade light,
which increases the magnitude of the Pfr-to-Pr
reaction compared with the Pr-to-Pfr reaction,
shifting the steady-state levels toward the Pr
form (Figure 2b). Plant phytochromes are
well suited to operate in the canopy range of
R:FR (128), particularly when compared with
the microbial models (137).

In Arabidopsis, phyB shows dark reversion
(133) (Figure 2b), which makes it a good
sensor of irradiance, at least during early stages
of seedling development (23, 108). Under the
low irradiances of shade, Pfr dark reversion
may become relatively more important because
phototransformation reactions are slow, shift-
ing the steady-state levels of phyB to Pr. Under
full sunlight, light reactions are much faster
than dark reversion, and the proportion of Pfr
is predicted to approach photoequilibrium.
phyB Pfr destruction is relatively slow (81)
and involves the E3 ligase CONSTITUTIVE
PHOTOMORPHOGENESIS 1 (COP1) (61).

Phytochrome A (phyA) Pfr migrates to the
nucleus after binding to FAR-RED ELON-
GATED HYPOCOTYL 1 (FHY1) and FHY1-
LIKE (FHL) (52). Once in the nucleus, it must
be transformed to Pr to be released from the
inhibitory action of FHY1 and FHL and then
back-transformed to Pfr for nuclear activity
(109) (Figure 2c). The destruction of phyA Pfr
is fast and involves COP1 (122), and dark re-
version depends on the genetic context (40).
Some steps between inactive phyA Pr in the cy-
tosol and active Pfr in the nucleus are favored by
red light, but others are favored by far-red light
(Figure 2c). phyA is not a good R:FR sensor, as
under mixtures of red and far-red light its activ-
ity is largely unaffected by R:FRs between 1.1
and 0.3 (118) and is actually increased by very
low R:FRs (<0.3) (130). When the low R:FRs
of shade are simulated by adding far-red light
to a PAR background, the overall stronger ir-
radiance increases phyA activity (64).

phyA is a good sensor of irradiance changes
associated with shade (118), presumably owing
to the multiple light reactions required to yield
phyA Pfr in the nucleus (109) (Figure 2c).
Although often neglected, phyA can make
a direct contribution to shade responses,
which becomes obvious in the phyB mutant
background (compare phyA phyB1 phyB2 with
phyB1 phyB2 in Figure 1f ). In the presence
of phyB, this contribution is obscured by the
effects of phyA on phyB signaling (25).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Light signals, photoreceptors, and shade avoidance for tomato plants in response to the density of neighbors. (a) Wavelength
dependence of transmittance for a green tomato leaf, scanned with an Ocean Optics USB4000-UV-VIS spectrometer configured with a
DET4-200-850 detector and QP600-2-SR optical fiber. (b) View of the canopies from above along with the plant density of each.
(c) Photosynthetically active radiation (PAR), far-red light (FR), and red/far-red photon flux ratio (R:FR) of the incoming radiation,
measured with the SKR 1850 four-channel sensor probe of a Skye Instruments SKL 904/I SpectroSense2 meter facing upward in the
place of a plant removed from the canopy. (d ) PAR, FR, and R:FR for the horizontally propagating radiation, measured with the sensor
probe facing toward the neighbors within the canopy. In panels c and d, the intensity of the gray shading matches the light reduction
compared with <20 plants m−2. (e) Mean stem growth rates for wild-type plants grown at different densities (each data point is
mean ± SE for 4 replicate plants). ( f ) Mean stem growth rates for wild-type and photoreceptor-mutant plants grown at the lowest and
highest densities (each data point is mean ± SE for 12 replicate plants). The presence (+) or absence due to mutation (−) is indicated
for phytochrome A (phyA), phyB1, and phyB2 in the left panel (GT background) and for cryptochrome 1 (cry1) in the right panel
(Moneymaker background).
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Figure 2
Perception of shade-light signals by photosensory receptors. (a) Spectral photon distribution of sunlight and
shade light and the impact of different wavebands on the status of phytochromes, cryptochromes,
phototropins, and UVR8. (b) Light (solid lines) and dark (dashed lines) reactions defining the abundance of
active phyB Pfr ( yellow circle) in Arabidopsis. (c) Light (solid lines) and dark (dashed lines) reactions defining the
abundance of active phyA Pfr in the nucleus ( yellow circle) in Arabidopsis.

cry1 and cry2:
cryptochrome 1 and 2
(blue-light and UVA
photoreceptors)

In tomato plants grown for several weeks un-
der sunlight, phyA makes little difference un-
der shade (compare phyA phyB1 phyB2 with
phyB1 phyB2 at the 600 plants m−2 density
in Figure 1f ). However, in young Arabidopsis
seedlings, phyA is critical under shade to com-
plete the transition between skotomorphogen-
esis (the developmental pattern in darkness) and
photomorphogenesis (141), a transition also
called de-etiolation.

2.2. Blue-Light and/or UV
Photoreceptors
Cryptochromes are photolyase-like blue-
light/UVA receptors (Figure 2a) that bind
a flavin adenine dinucleotide chromophore
(142). Arabidopsis cryptochrome 1 (cry1) is
present in the nucleus and cytosol, and the
amount and localization do not appear to be
significantly affected by light. In addition to
perceiving blue-light/UVA levels, cry1 would
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Photosensory receptors

Chloroplast
avoidance

Acclimation to
high light 

Photoprotective
pigments
Photoprotective
enzymes
Stomatal density
Stomatal aperture
Palisade cells
Electron transport 
Water transport 

Stem growth 
Petiole growth 
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Basal branching 
Leaf senescence 
Directional growth 
Early flowering
Seed dormancy 
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accumulation
Defense budget 
Stem respiration 
Yield potential 
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Figure 3
Plant responses to either sunlight (left) or shade light (right) perceived by photosensory receptors.

phot1 and phot2:
phototropin 1 and 2
(blue-light and UVA
photoreceptors)

Shade-avoidance
response:
shade-signal-induced
change in plant
architecture that
reduces the chances of
current or future shade

be involved in perceiving blue/green ratios (13,
118). Bouly et al. (13) have postulated that cry1
activation via blue light initiates the formation
of a flavosemiquinone signaling state that can
be converted by green light to an inactive
form, but this idea has been challenged (86).
Arabidopsis cry2 plays a key role in the response
to day length and contributes to some shade
responses.

Phototropins are serine/threonine protein
kinases activated by blue-light/UVA radiation
(29) (Figure 2a). Phototropins bear two LOV
domains that bind flavin mononucleotide chro-
mophores. Arabidopsis has two phototropins
(phot1 and phot2) with shared as well as
specific functions. They are localized to the
plasma membrane but dissociate from it upon
activation. Phototropins play a key role in
the perception of light gradients within plant
tissues.

UVR8 is a β-propeller protein homodimer
that monomerizes upon UVB irradiation ab-
sorbed by specific tryptophans proposed to act
as a chromophore (55) (Figure 2a). The UVR8
monomer migrates from the cytoplasm to the
nucleus.

3. THE RESPONSES TO CANOPY
LIGHT SIGNALS MEDIATED BY
PHOTOSENSORY RECEPTORS

Dense and open canopies impose different chal-
lenges, ranging from a shortage of photoassim-
ilates under limiting PAR levels to the dam-
aging effects of excessive PAR and UV levels.
Avoidance responses tend to minimize expo-
sure to these sources of stress, and acclimation
responses tend to reduce the adverse impact
of extreme conditions that cannot be avoided
(Figure 3). Canopy light signals perceived by
photosensory receptors modulate the extent of
these responses.

3.1. Shade Avoidance

The perception of signals of current or future
shade by phytochromes (127–129) and cryp-
tochromes (68, 118) triggers changes in plant
body form that tend to reduce the degree of
shade. These are the so-called shade-avoidance
responses. Shade is more intense in the low-
est strata of the canopy and close to neigh-
bor plants and increases with the progression of

www.annualreviews.org • Signaling in Plant Responses to Shade 409
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canopy growth; i.e., shade varies in the vertical,
horizontal, and temporal dimensions. Shade-
avoidance reactions involve one or more of
these axes, and the dominant component of the
syndrome depends on the species.

In vertical shade avoidance, the average
position of the foliage is elevated by an increase
in the height of the leaves and/or a decrease in
the foliage placed at lower strata of the canopy.
Consequently, the foliage is on average less
shaded because the upper strata of the canopy
are better lit. Increased stem growth (56,
97) (Figure 1e), increased petiole growth,
and hyponasty (upward bending of the leaves
caused by their lower sides growing faster than
their upper sides) (74, 117) elevate the position
of leaf lamina. Reduced branching (45) and
increased leaf senescence (114) downsize the
foliage at the base of the canopy.

Increased stem extension growth is arguably
the most well known shade response mediated
by photosensory receptors (Figure 1e). The
selective exposure of the stem to low R:FR (97)
or to low levels of blue light or red plus far-red
light (7) is enough to promote the growth of
this organ, but leaf perception of light signals
contributes to the response (20). The growth
promotion by low R:FR is already detectable
on the order of minutes, and its magnitude
inversely relates to R:FR (30, 97). Analysis of
tomato photoreceptor mutants indicates that
the stem response is mediated by phyB (phyB1
and phyB2), phyA, and cry1 (Figure 1f ). There
is some degree of photoreceptor redundancy:
The function of phyB1 and phyB2 is revealed
by the phyB1 phyB2 double mutant, and the
function of phyA is revealed by the comparison
of phyA phyB1 phyB2 with phyB1 phyB2. These
mutants show elongated stems when grown
in isolation from neighbors but not when
grown at high densities. There is significant
genetic interspecific and intraspecific variabil-
ity in shade avoidance, which might reflect
adaptation to local conditions (12, 44, 98).

In horizontal shade avoidance, plant organs
grow away from neighbors. The heterogeneous
nature of plant canopies leads to areas with less
foliage on a horizontal plane (gaps). The pro-

jection of the foliage toward gaps by positive
shoot phototropism enhances light intercep-
tion, and the Arabidopsis phototropic-deficient
phot2 mutant shows impaired seedling survival
under dense canopies (48). In maize, the leaves
grow away from the sowing rows (where the
R:FR is reduced as a result of nearby plants)
toward the areas between rows (where PAR is
not depleted) (90). In cucumber, the hypocotyl
bends toward areas of high R:FR and high blue
light (6). Portulaca seedlings do not develop in
the direction of neighbors (100).

In temporal shade avoidance, the timing
of developmental decisions is adjusted to
minimize the impact of shade. Many seeds
remain dormant on the soil surface when
exposed to canopy shade (36, 136). The
occurrence of gaps in the canopy increases
the R:FR reaching the seeds and induces their
germination. This delay in seed germination
precludes the appearance of young seedlings in
environments with severe PAR limitations. In
growing canopies, early flowering in response
to low R:FR (24, 41) can help to complete
the cycle before canopy competition seriously
limits PAR. In rosette plants, the transition
to the reproductive stage also stimulates stem
growth and vertical shade avoidance.

3.2. Avoidance of Excess
Light Absorption

In plants exposed to high irradiance (typical of
open places), the perception of blue light by
phot2 causes the chloroplasts to move toward
the anticlinal wall of palisade cells (63, 65, 115).
This relocation decreases the amount of light
absorbed by chloroplasts and reduces the dam-
age of the photosynthetic apparatus (bleaching,
necrosis) (67).

3.3. Acclimation to Limiting
Photosynthetically Active Radiation

Under low irradiance, both phot1 and phot2
cause chloroplasts to accumulate at the per-
iclinal wall of palisade cells (115), increasing
efficient light capture (33). The responses that
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help plants cope with the limited generation
of photoassimilates under shade include a
reduced investment in defense against biotic
threats, a reduced stem respiration rate, and a
reduced generation of yield potential.

Shade signals reduce the defense budget.
Low R:FR and/or phyB mutations (either
alone or combined with other phy mutations)
enhance the growth of incompatible strains of
Pseudomonas syringae in Arabidopsis (42, 51), the
susceptibility of Arabidopsis to the necrotrophic
fungus Botrytis cinerea (26), the susceptibility of
rice to blast fungus (Magnaporthe grisea) (140),
and the growth of caterpillars on Arabidopsis or
tomato (60, 96). cry1 activity (139) and UVB
(35) also enhance plant defenses. Reduced
defense is not a consequence of resource
investment in shade avoidance (19, 39, 76).

Shade enhances stem and/or petiole growth
while reducing the level of photoassimilates
to fuel growth. However, there are mech-
anisms that reduce the energetic cost of
shade-avoidance reactions (15). In tomato,
low R:FR causes a much stronger reduction in
photosynthetic and photoprotective pigments
(anthocyanin, flavonols) and photosynthetic
capacity in the stem than it does in the leaves.
Downsizing the stem photosynthetic apparatus
reduces the cost of this organ under low R:FR,
which is manifested in lower respiration rates
(15).

Phytochrome perception of low R:FR can
reduce grain yield. This reduction may be the
consequence of shade-avoidance reactions (via,
for instance, increased carbon allocation to the
stem rather than to the grains, or reduced
branching and a lower number of grain-bearing
shoots), but there are more direct actions of low
R:FR on yield. In wheat, low R:FR can simulta-
neously reduce the growth of both the ear and
the stem, leading to reduced grain yield without
stem shade-avoidance reactions (135). This pat-
tern is not a remnant of wild wheat that breed-
ing and selection for yield have failed to elim-
inate, because the analysis of cultivars released
to the market at different times of the twentieth
century revealed stronger responses in the latest
genotypes of the series. The R:FR signal could

set yield potential according to the perceived
level of resources in crowded environments.

3.4. Acclimation to High
Photosynthetically Active Radiation

The responses that help plants cope with the
high irradiance of open places include increased
stomatal conductance, photosynthetic capacity,
stem water transport capacity, and protection
against UV. phyB perception of low R:FRs (10)
and low irradiances (23) reduces stomatal den-
sity in the leaves. The cry1 cry2 mutations have a
similar effect (9, 66). These responses involve a
reduction in the number of guard cells per total
number of epidermal cells (stomatal index). In
addition, cry1 cry2 mutants show reduced stom-
atal opening (9, 91). The classical induction of
stomatal opening in response to blue light is
mediated by phot1 and phot2 (71), and a full re-
sponse requires the high irradiances typical of
open places (9). The combined effects of phot1,
phot2, phyB, cry1, and cry2 on stomatal density
and/or opening increase stomatal conductance
in open places, which implies a cost in terms of
increased transpiration under conditions where
atmospheric water demand is more intense.
However, this cost would be overcompensated
for by the additional influx of carbon dioxide,
which allows a higher proportion of the energy
derived from absorbed PAR to be diverted to
photosynthesis rather than to the generation of
damaging reactive oxygen species. These pho-
toreceptors also have nonstomatic effects, such
as enhanced light-saturated rates of electron
transport per unit area (11), which promote
photosynthesis at high PAR (9, 10). The devel-
opment of leaf palisade parenchyma cells, a fea-
ture typical of sun leaves, depends on phot1 and
phot2 (75). Both phyB and phyA enhance stem
xylem development, favoring water transport to
the leaves, which is particularly critical under
the high water demands of open places (2, 19).

UVB causes DNA damage and generates
reactive oxygen species. UVR8 perception of
UVB stimulates the transcription of genes
involved in UV-protective responses and
induces the synthesis of flavonoids (14, 73).
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PIF:
PHYTOCHROME-
INTERACTING
FACTOR (bHLH
transcription factor)

Because UVB levels are significantly attenuated
under shade (Figure 2a), UVB could act as
a signal of foliage density (35). Under high
PAR, cry1 also promotes the synthesis of
flavonoids and the expression of genes involved
in photooxidative stress tolerance, such as
those encoding glutathione S-transferases and
glutathione peroxidases (124).

4. PIFs CONTROL GROWTH
DURING SHADE AVOIDANCE

Having provided a description of the different
responses to sunlight and shade-light condi-
tions mediated by photosensory receptors, the
following sections will focus on the signaling
network controlling stem growth in response
to shade signals.

4.1. Phytochromes Negatively
Regulate the Abundance of PIFs

PHYTOCHROME-INTERACTING FAC-
TORS (PIFs) belong to a subfamily of the
basic helix-loop-helix (bHLH) transcription
factor superfamily. Seven members of this
subfamily [PIF1/PIF3-LIKE 5 (PIL5), PIF3,
PIF4, PIF5/PIL6, PIF6/PIL2, PIF7, and
PIF8] have been shown to interact physically
with phyB through the conserved N-terminal
sequence, called the active phyB-binding
motif; two members (PIF1/PIL5, PIF3) also
interact with phyA via a separate motif (83).
As a result of this direct interaction, PIF1
(102, 125), PIF3 (1, 8, 104), PIF4 (88), and
PIF5 (88, 126) become phosphorylated and
degraded via the ubiquitin-proteasome system,
with degradation half-times in the range of
5–20 min (83). PIF7, in contrast, becomes
phosphorylated but not strongly degraded (81,
85). There is a residual pool of PIF proteins
even when prolonged light is perceived by
the phytochromes. PIF3 (82, 84), PIF4 (88),
and PIF5 protein levels increase rapidly when
plants grown under high R:FRs become
exposed to low R:FRs that reduce phyB activity
(Figure 4b,c).

4.2. Phytochrome Inhibits the Binding
of PIFs to Their Target Promoters

Binding of PIF7 to its target gene promoters
increases significantly 1 h after transfer from
high to low R:FR (85). Because R:FR rapidly
and significantly modifies PIF7 phosphory-
lation without concomitant changes in PIF7
protein levels, Pfr-induced phosphorylation
has been proposed as the primary mechanism
reducing PIF7 binding to its targets under
high R:FR (85). phyB releases PIF1 and PIF3
from their DNA targets (105). A truncated
version of phyB retaining the N-terminal
domain is biologically active and releases PIF3
from its targets, but it is unable to induce
PIF3 degradation, implying that the primary
inactivation of PIF activity by phyB involves its
negative regulation of promoter binding (105).

4.3. PIFs Promote Shade-Avoidance
Responses

Plants overexpressing PIF5 show enhanced
stem and petiole growth even under high
R:FR (88). Truncated PIF5, lacking the active
phytochrome-binding domain that mediates
PIF interaction with active phytochrome,
shows impaired degradation but efficiently
promotes stem and petiole growth (88). Full
shade-avoidance responses require PIF3 (82,
84, 120), PIF4, PIF5 (82, 88, 120), and PIF7
(85) under low R:FR (82, 85, 88) or natural
shade light (120) (Figure 4a). These results
are consistent with a model where the low
R:FRs of shade reduce the levels of active
phyB, increasing the activity of PIFs, which
in turn induce growth responses to shade
(Figure 4b). PIFs control the expression of
some cell wall–associated genes by binding
their promoters (34, 58, 84). The latter genes
include XYLOGLUCAN ENDOTRANSGLY-
COSYLASE 7 (XTR7)/XYLOGLUCAN EN-
DOTRANSGLUCOSYLASE/HYDROLASE 15
(XTH15), which is required for the growth
responses to shade (117) (Figure 4c). However,
many other growth-related genes are indirectly
controlled by PIFs.
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Figure 4
Signaling network in shade-avoidance responses. (a) Arabidopsis seedlings grown for one week under either a dense canopy (shade light)
(left) or sunlight (right). Shade-avoidance responses require PIF and COP1 genes. The wild type (Col) shows a long hypocotyl under
shade compared with sunlight conditions, but this response is reduced in the quadruple pif1 pif3 pif4 pif5 ( pifq) and cop1 mutants. (b)
Schematic representation of the PIF module and the putative COP1 module. (c) Details of the PIF module. The main pathway (black)
and the regulatory loops (blue) are indicated. Proteins are in orange; hormones are in purple. Abbreviations: BR, brassinosteroid; GA,
gibberellins.

4.4. PIFs Enhance Auxin Synthesis to
Promote Stem Growth
Plant responses to R:FR involve changes in the
status of hormone signaling (Table 1). Sev-
eral features of the shade-avoidance syndrome,
such as increased stem growth, leaf hyponasty,
and apical dominance, are characteristic of high
auxin levels. After 1–2 h of low R:FR, Arabidopsis
plants can exhibit elevated auxin levels (58, 85,

134). Auxin-related genes are overrepresented
among those showing promoted expression in
response to low R:FR (37, 74, 123). The expres-
sion of the DR5-GUS reporter, indicative of
auxin signaling, is promoted in the cotyledons
and hypocotyl by low R:FRs given to the whole
seedling, but the hypocotyl response is blocked
by the addition of the auxin transport in-
hibitors, suggesting that auxin produced in the
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Table 1 Hormone levels and associated processes in response to the red/far-red photon flux ratio
(R:FR)

Hormone Levels under low R:FR Processa

Auxin ↑ Arabidopsis seedlings (58, 85, 134),
sunflower stems and leaves (77)

— Arabidopsis petioles (74), tomato stems
and leaves (15)

Shade avoidance (growth, branching) (45,
69, 85, 134)

Gibberellins ↑ Cowpea stems (92), sunflower stems
and leaves (77)

Shade avoidance (growth) (38)

Brassinosteroids — Sunflower stems (78) Shade avoidance (growth) (74, 89)
Ethylene ↑ Sorghum (46), tobacco (107), tomato

(15)
Shade avoidance (growth) (107)

Cytokinins ↑ Sunflower leaves (77) Shade avoidance (growth) (16)
Strigolactones ? Shade avoidance (branching)
Jasmonic acid ↓ Tomato stems (15)

—Tomato leaves (15)
Defense (26, 96), growth, pigments (15,
111)

Salicylic acid ↑ Sunflower stems (79)
—Arabidopsis seedlings (51)b

Defense (51)

Abscisic acid ↑ Arabidopsis leaves (53),b sunflower
leaves (77), tomato leaves (15)

Water relations (53)

↑, increased; ↓, decreased; —, not affected.
aMutants or inhibitors impairing hormone synthesis or signaling affect the indicated responses to R:FR.
bphyB or phyA phyB mutant seedlings compared with the wild type under high R:FR.

cotyledons is transported to promote hypocotyl
growth in response to shade (134). Mutations
at genes involved in auxin synthesis (85, 134),
perception, or transport (69) impair shade-
avoidance responses. Increased free auxin lev-
els in the hypocotyl require the presence of
the auxin efflux regulator PIN-FORMED 3
(PIN3), which in response to low R:FR shows
increased abundance and predominantly lateral
cellular localization in the endodermis cells,
potentially redirecting the auxin flow to the
growth-limiting epidermal cells (69). Changes
in auxin levels are not observed under every
condition where auxin signaling plays a signif-
icant role in shade-avoidance responses (74).

The identification of genome-wide PIF5
binding sites in seedlings harvested 2 h after
transfer from high to low R:FR has revealed
that 96% of the 200-base-pair sequences cen-
tered to a binding peak summit contain an E-
box (5′-CANNTG-3′), the majority of which
are a G-box DNA motif (5′-CACGTG-3′) (58),

which is known to be bound by PIF5 (59) and
other PIFs (83). Many of these genes are in-
volved in the response to hormone stimulus, es-
pecially the response to auxin stimulus. Genes
bound by both PIF4 and PIF5 that exhibit re-
duced expression in the pif4 pif5 double mu-
tant include YUCCA 8 (YUC8), which encodes
a rate-limiting enzyme in auxin synthesis (58).
Similarly, the pif7 mutant shows reduced pro-
motion of YUC2, YUC5, YUC8, and YUC9
genes in response to low R:FR, and at least the
YUC8 and YUC9 promoters bind PIF7 (85).
It is interesting that a genome-wide associa-
tion study has identified variants at the YUC5
and YUC9 genes as potentially underlying vari-
ations in shade avoidance (44). Both pif4 pif5
and pif7 mutants show impaired auxin-level in-
crease in response to low R:FR (58, 85). The
backbone of the shade-avoidance signaling net-
work involves the reduction of active phyB by
low R:FR, the subsequent increase in PIF bind-
ing, and the activation of auxin-synthesis genes,
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which lead to increased auxin levels. PIF7 is
also required for low R:FR to promote the ex-
pression of the auxin transporter genes PIN3
and PIN4 (85). Low R:FRs shift the location of
PIN3 transporters from the basal to the lateral
side of the membrane of the endodermal cells,
but this could be an indirect consequence of the
increased auxin levels (69).

4.5. PIFs Reduce the Abundance
of phyB

The residual pool of PIFs present under high
R:FR promotes the polyubiquitination of active
phyB by COP1, which leads to the degradation
of phyB in the proteasome (61, 81) (Figure 4c).
Under high R:FR, young Arabidopsis pif1 pif3
pif4 pif5 seedlings contain approximately three
times the level of PHYB observed in the wild
type (82). When seedlings grown under high
R:FR are transferred to low R:FR, the PHYB
levels increase and become largely independent
of PIFs 12 h later (82). Although PIFs are more
abundant under low R:FR, under this condi-
tion they have little effect on phyB levels, likely
owing to their reduced interaction with the Pr
form of phyB, which predominates under low
R:FR. Therefore, PIFs do not enhance shade-
avoidance responses by further reducing the ac-
tive phyB levels; rather, keeping the phyB level
under the control of PIFs helps to sustain basal
stem growth under high R:FR.

4.6. Negative Feedback Loop
Involving PIFs and HLH

PIFs have multiple connections with other
players in shade avoidance (Figure 4c).
LONG HYPOCOTYL IN FAR-RED 1
(HFR1), PHYTOCHROME RAPIDLY
REGULATED 1 (PAR1), and PAR2 are HLH
proteins that lack the typical basic domain
necessary for binding to gene promoters (50).
HFR1 forms non-DNA-binding heterodimers
with PIF4 and PIF5 (59), and PAR1 and
PAR2 do so with PIF4 (54). This interaction
reduces shade-avoidance responses (54, 59,
113, 123). PIF5 binds the promoter of HFR1,

PAR1, and PAR2 (58), and PIFs promote
the expression of at least HFR1 and PAR1
(58, 84, 88). This defines a negative feedback
loop where, via PIFs, low R:FRs promote the
expression of genes involved in the repression
of shade-avoidance responses (Figure 4c).

4.7. DELLA Proteins Link PIFs to
Signaling by Gibberellins

The promotion of stem and petiole growth is
also a typical response to the application of gib-
berellins, and low R:FR can increase the lev-
els of gibberellin A1 (Table 1) (77, 92), in
some cases by reducing its inactivation (92).
Gibberellins cause the degradation of DELLA
proteins (132). Canopy shade light, low R:FR,
and low blue irradiance reduce the stability of
DELLAs, likely as a consequence of increased
gibberellin levels (38). Canopy-light-induced
DELLA degradation appears to be a prereq-
uisite for shade-avoidance responses, because
mutants bearing stable DELLA versions (i.e.,
mutated at the DELLA domain required for
degradation) show reduced responses to low
R:FR or low blue-light signals, and mutants
combining loss-of-function alleles at multiple
DELLA loci show elongated stems even in the
absence of shade signals (38). DELLAs bind
PIF3, PIF4, and likely other PIFs (34, 43).
The first conserved heptad leucine repeat of
DELLA and the PIF DNA-recognition do-
main mediate this interaction, which prevents
PIFs from binding to their target gene pro-
moters and regulating gene expression (34, 43).
It is noteworthy that PIF5 directly binds the
promoters of the GIBBERELLIC ACID IN-
SENSITIVE (GAI) DELLA gene and the GIB-
BERELLIN 2-OXIDASE 6 gene, the latter of
which is involved in a major gibberellin inacti-
vation pathway (110). PIFs promote the expres-
sion of these genes under low R:FR (84), appar-
ently generating a negative regulatory loop.

4.8. DELLA Proteins Link PIFs to
Signaling by Brassinosteroids

The promotion of stem growth by far-red
light reflected from neighbors requires
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brassinosteroid synthesis (89). This is also
the case for petiole growth through the low-
ering of phytochrome (74) or cryptochrome
(68, 70) activity. The transcription factor
BRASSINAZOLE-RESISTANT 1 (BZR1),
which is involved in brassinosteroid responses,
and PIF4 physically interact and synergistically
control the expression of common target
genes, including those encoding PACLOBU-
TRAZOL RESISTANCE (PRE) HLH
proteins, which promote stem growth (103)
(Figure 4c). DELLAs also negatively regulate
brassinosteroid signaling by binding BZR1
and impeding its binding to brassinosteroid-
responsive genes (3, 49). DELLAs, BZR1/2,
and PIFs could form the central command
system in the control of growth processes
(3), potentially including those connected to
shade avoidance. PRE1, PRE5, and PRE6 are
direct targets of both BZR1 and PIF4 that
synergistically promote their expression (3).
PRE1 binds PAR1 and apparently prevents
PAR1 from interacting with PIF4 (54).

4.9. PIF Feed-Forward Loops

AUXIN/INDOLE-3-ACETIC ACID IN-
DUCIBLE (AUX/IAA) proteins are tran-
scription factors that repress the expression
of auxin-responsive genes, including those
related to growth (28). TRANSPORT IN-
HIBITOR RESPONSE 1 (TIR1) is an auxin
receptor with E3 ligase activity, which upon
activation by auxin targets AUX/IAA proteins
to degradation, thus releasing the expression
of auxin-responsive genes. PIFs promote auxin
synthesis under low R:FR, and therefore they
are predicted to induce the degradation of
AUX/IAAs as they promote stem growth
(Figure 4c). Mutants bearing stable forms
of AUX/IAA show impaired shade-avoidance
responses (117).

Auxin promotes the expression of AUX/IAA
genes. One of the most distinctive responses to
low R:FR is the promotion of AUX/IAA gene
expression (37, 74, 123); not surprisingly, this
promotion shows robust dependency on PIFs
(58, 84, 85, 88). Interestingly, PIFs directly bind

the promoter of many of these genes, indicating
that to a large extent the control is direct and
not just mediated by altered auxin levels. This
generates a negative feed-forward loop, where
PIFs promote the expression of downstream re-
pressors of growth both directly and via changes
in auxin levels (Figure 4c).

Additional direct PIF targets include
the homeodomain–leucine zipper transcrip-
tion factor ARABIDOPSIS THALIANA HO-
MEOBOX PROTEIN 2 (ATHB2) (58, 76) and
PIL1 (58), which are promoted by low R:FR at
least partially via PIFs (84, 85, 88). ATHB2 ap-
parently promotes stem growth by modifying
the responsiveness to auxin (131). PIL1 can be
a positive (116) or negative (112) regulator of
shade-avoidance responses to low R:FR.

5. THE COP1 PATHWAY IN
SHADE AVOIDANCE

Full shade-avoidance responses require both
COP1 and PIF (Figure 4a). A low-resolution
image of the signaling network leading to
shade-avoidance responses could show two ma-
jor pathways involving PIFs and COP1, respec-
tively (Figure 4b). However, whereas the ma-
jor events linking PIFs to shade avoidance have
been established, crucial questions concerning
COP1 remain unanswered.

During the transition between full darkness
and light that seedlings experience upon emer-
gence from the soil, the activity of COP1 is re-
duced by cry1, phyA, and phyB (80). Compared
with full darkness, light perceived by cry1,
phyA, and/or phyB induces the slow migration
of COP1 from the nucleus to the cytosol, but
more rapid effects have been documented. In
response to blue light, cry1 disrupts the SUP-
PRESSOR OF PHYA-105 1 (SPA1)/COP1
complex and hence COP1 activity (87). In
contrast to cryptochromes and phytochromes,
UVR8 increases the activity of COP1 (55).
Because shade reduces phyA, phyB, cry1, and
UVR8 activity, it is not clear whether shade
should increase or decrease COP1 activity.

During skotomorphogenesis, COP1
ubiquitinates and targets to degradation
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transcription factors like ELONGATED
HYPOCOTYL 5 (HY5), which are required
for photomorphogenesis (80). However, the
putative pathway by which COP1 could induce
responses to shade is not established. The cop1
mutant does respond to shade in the b-box
domain protein 21 (bbx21) bbx22 double-mutant
background, lacking two B-box-containing
zinc-finger transcription factors (BBX) (31).
BBX21 and BBX22 are negative regulators
of shade-avoidance responses. COP1 recruits
BBX22 into nuclear speckles in onion epider-
mal cells and is able to ubiquitinate BBX22
in vitro, but these proteins show no direct
physical interaction (32). BBX22 is degraded
in the proteasome; this reaction is faster in
darkness than under light and requires COP1
(27). It is tempting to speculate that shade
allows COP1 to recover activity and that,
in turn, COP1 targets BBX22 and other
negative regulators of shade avoidance to
degradation. COP1 is also required (likely
indirectly) for the accumulation of PIF3 in the
dark (8), suggesting that it could be required
for the accumulation of PIFs in response to
shade.

6. SHADE-AVOIDANCE
RESPONSES IN FLUCTUATING
LIGHT ENVIRONMENTS

6.1. Owing to the Evening Complex
and Light-Derived Signals, For Plants,
Night Is Not the Same as Shade

Some features of the light environment that
provide signals of canopy status also respond
to unrelated atmospheric factors. Irradiance is
reduced by shade but also changes with cloudi-
ness, time of day, season, and latitude. R:FR
is stable for most of the day but drops at the
extremes of the photoperiod (57). Plants have
mechanisms to discriminate between canopy
signals and at least some of the latter sources
of noise.

Plants do not take the night for shade. Par-
ticularly during the first part of the night and in
plants well beyond the process of de-etiolation,

stem growth rate does not increase compared
with the growth rate during the day, and it may
actually decrease (21). In Arabidopsis, nights of
up to 9–12 h make little difference compared
with continuous white light (99). Although
nights beyond that duration do yield longer
stems (resembling a shade-avoidance response),
in nature these long nights are normally as-
sociated with lower temperatures that would
minimize their shade-like effect. phyA and cry1
are predicted to be largely inactive during the
night. Active phyB is certainly more stable, as
demonstrated by classical experiments where
stem growth is promoted by a brief pulse of
far-red light that transforms Pfr into Pr several
hours into the night (39). phyB is necessary
to maintain low growth rates during the night
(99). Therefore, phyB stability is a first com-
ponent of the mechanisms that help to extend
the daytime no-shade signal into the night
(Figure 5).

The arrest of stem growth during the night
is established by the synergistic interaction
between phyB and cryptochromes (119). Blue
light perceived by cryptochromes during
the day enhances the expression of SPA1,
SPA4, HY5, and HY5 HOMOLOG (HYH)
independently of phyB. In turn, SPA1, SPA4,
HY5, and HYH enhance phyB-mediated
signaling independently of cryptochromes.
This creates a hysteretic switch that extends
light signaling beyond the presence of light
(119).

Although phyB stability is required to
restrain the induction of shade avoidance by
night, phyB is not fully stable, and Pfr-to-Pr
dark reversion can cause physiologically rele-
vant reductions of Pfr levels during the night
(Figure 5a). Furthermore, the R:FR declines
at the extremes of the photoperiod to levels that
would induce shade avoidance if they had oc-
curred during the day. Therefore, to preclude
taking the night for shade, plants require a
second layer of control, which involves reduced
sensitivity to decreased phyB activity during
the night. In plants grown under high R:FR,
transfer to low R:FR is much more effective at
promoting stem growth during the night if this
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Figure 5
Owing to the evening complex and light-derived signals, for plants, night is not the same as shade. (a)
Diurnal variation of the predicted levels of the three elements—active phyB, the evening complex
(ELF4-ELF3-LUX), and a putative signal derived from phyA and cry1 activity—that inhibit the occurrence
of shade avoidance in response to the night. (b) Differences between shade and night. During the day, shade
light allows the accumulation of active PIFs that promote the expression of auxin-synthesis genes. During
the night, there is residual active phyB, which reduces the activity of PIFs. In addition, clock-controlled
expression of ELF3, ELF4, and LUX sets the formation of the evening complex to the first hours of the
night, repressing the expression of PIF4 and PIF5.

transfer occurs during the day rather than im-
mediately before the night (21). Similarly, a low
R:FR pulse gradually loses effectiveness during
the night (17, 39). These are true effects on
sensitivity and not the result of reduced growth
capacity during the night, because the stem
grows rapidly during the night if the signals
are provided early. This control of sensitivity
to low R:FR involves clock- and light-derived
signals.

Night occurs at a time predicted by the
circadian clock, and repression of stem growth
in darkness requires the correct function of
the circadian clock. In plants with severe clock
dysfunction like the pseudo-response regulator
9 ( prr9) prr7 prr5 mutant or CIRCADIAN
CLOCK ASSOCIATED 1 (CCA1) overex-
pressor, the stem is long, particularly when
grown at nights of 9–12 h (which in the wild
type causes little difference compared with
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continuous light), and the expression of PIF4
and PIF5 is high throughout the night (99).
The clock controls the coordinate expression
of EARLY FLOWERING 3 (ELF3), ELF4,
and the transcription-factor-encoding gene
LUX ARRHYTHMO (LUX), which under
short days show a peak of high expression
close to the end of the photoperiod (101).
Acting as an adaptor protein, ELF3 bridges an
interaction between ELF4 and LUX to form
a tripartite complex, the so-called evening
complex, which accumulates during the early
part of the night (Figure 5a,b). The LUX
transcription factor recruits the complex to
the full consensus LUX-binding sites present
in the 5′ untranslated region of both PIF4
and PIF5 and reduces the expression of these
genes (101). PIF4 and PIF5 mRNA levels are
elevated in elf3, elf4, and lux mutants compared
with the wild type, particularly during the early
evening, and this causes the long-hypocotyl
phenotype of these mutants (101). The lux
mutant, at least, shows elevated expression
of hormone-related, growth-correlated genes
during the night (94), and some of these genes
are targets of PIF4 and PIF5 (58). Because
full expression of shade-avoidance reactions
requires PIFs (88), the evening complex would
repress early-night-induced shade-avoidance
responses. Following this rationale, the elf3,
elf4, and lux mutants would have a constitutive
shade-avoidance phenotype under day-night
cycles because they take the night for shade.

In addition to the action of the clock,
the sensitivity to low R:FR signals is posi-
tively affected by light perceived by phyA
and cryptochromes (17) (Figure 5a). In a
photoperiod of 10 h, the most effective time
to promote stem growth with a shade event is
the afternoon (120). However, shade signals
given at this time are not effective if phyA
or cryptochromes are not active during the
preceding hours. The mechanisms involved
in this light sensitization to shade signals
are unknown, but it is interesting that the
promotion of stem growth by auxin shows the
same pattern of light sensitization (120).

6.2. HY5 Stops Shade-Induced
Signaling in Response to Sunflecks
Depending on the angle of incidence, sunflecks
can penetrate through canopy gaps without
much interference. Therefore, a plant can be
shaded at a given time and become exposed to
sunlight (high R:FR, high irradiance) at a dif-
ferent time. In Arabidopsis plants grown under
shade, a transient (2-h) exposure to sunlight
to simulate a sunfleck is perceived primarily by
phyB and secondarily by phyA. Sunflecks can
severely reduce the hypocotyl shade-avoidance
response; promote the expression of genes
involved in fatty-acid metabolism, pigment
metabolism, and responses to red and far-red
light; and reduce the expression of genes
involved in hormone-related functions such as
auxin stimulus response, ethylene stimulus re-
sponse, brassinosteroid stimulus response, and
the jasmonic acid–mediated signaling pathway
(121). Sunflecks increase the expression of the
basic leucine zipper transcription factors HY5
and HYH (121). The inhibition of hypocotyl
growth by sunflecks is reduced in hy5 and
absent in hy5 hyh. Under sunfleck conditions,
the hy5 mutant shows elevated expression of
several genes repressed by sunflecks, such as
auxin-related genes and PHYTOCHROME
KINASE SUBSTRATE 4 (PKS4), some of
which are direct targets of HY5.

Compared with uninterrupted shade during
the photoperiod, sunflecks are effective at
enhancing HY5 expression and inhibiting
shade-avoidance reactions if they occur in the
afternoon but not if they occur in the morning
(121). In the morning, HY5 expression increases
in response to the transition between night and
day, but this response is similar if the seedlings
begin the day under sunlight or under shade.
In the afternoon, HY5 expression is again low
in both seedlings exposed to sunlight and those
exposed to shade during the preceding hours of
the photoperiod, suggesting the occurrence of
desensitization, but transfer from shade light
to sunlight (i.e., sunfleck conditions) promotes
HY5 expression. In other words, sunflecks
inhibit hypocotyl growth compared with shade
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conditions only when they are able to promote
HY5 expression compared with the expression
level under shade. HY5 expression responds
more to the fact that a change in light conditions
has occurred (night to day, shade to sunlight)
than to the magnitude of that change. Correct
circadian clock function is necessary for the
growth response to afternoon sunflecks, appar-
ently through the establishment of a permissive,
low-auxin signaling state in the afternoon.

7. CONCLUDING REMARKS

Plastic plant responses to shade involve
phytochromes, cryptochromes, phototropins,
and UVR8. These sensory receptors partially
differ in photoperceptive function and target
processes. All of them can perceive changes
in irradiance, but phyB and other members
of its clade perceive R:FR. phyB dominates in
growth and developmental shade-avoidance
and shade-acclimation responses, phot2 in
rapid and reversible positional adjustments of
chloroplasts and leaves, cry1 in photoprotective
mechanisms, and UVR8 in UVB screens.

In response to the degree of shade, photore-
ceptor signaling targets master transcription
factors to regulate diverse processes. For
instance, in response to R:FR, phyB directly
regulates the abundance/activity of the tran-
scription factors PIF3, PIF4, PIF5, and PIF7 to
control stem growth (83) and PIL5 to control
seed germination (102). phyB also regulates the

morning abundance of CONSTANS (62) to
control flowering (138) and the expression of
BRANCHED 1 (BRC1) and BRC2 to control
branching (45). phyB opposes PIF4 activity in
growth responses, but phyB and PIF4 act in
the same direction in stomatal-index responses
(23). Under high light levels, cry1 uses HY5
to induce anthocyanin synthesis (72) and
ZINC-FINGER PROTEIN EXPRESSED
IN INFLORESCENCE MERISTEM–LIKE
1 (ZML1) and ZML2 to enhance the expres-
sion of antioxidative enzymes (124). Some
of these transcription factors are shared by
different receptors and/or different responses.
For instance, cry1 (72) and UVR8 (55) use
HY5 for anthocyanin synthesis, whereas phyB
and phyA use HY5 for growth responses to
sunflecks (121).

A very simple pathway links shade signals
to target shade-avoidance genes. The low
R:FR caused by neighbors reduces phyB Pfr.
PIFs are then released from phyB binding and
phyB-induced phosphorylation, allowing them
to bind and activate auxin-synthesis genes to
promote stem growth. Wired to this simple
pathway are a complex set of regulatory loops
that includes links to gibberellins, brassino-
steroids, the circadian clock, and light-derived
signals (signals perceived by photosensory
receptors that sensitize the response to shade).
We can intuitively guess that this complexity
relates to the complex environment that plants
face.

FUTURE ISSUES

1. The primary light-driven action of phytochromes leading to the phosphorylation of PIFs
and the release from their DNA targets remains to be investigated.

2. The primary targets and downstream players in cryptochrome action during shade avoid-
ance have not been fully elucidated.

3. The molecular mechanisms involved in the action of COP1 in shade-avoidance responses
require further investigation.

4. The mechanisms by which photoreceptors control the levels and/or signaling status of
ethylene, gibberellins, cytokinins, jasmonic acid, salicylic acid, strigolactones, and abscisic
acid have not been established.
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5. The functional consequences in complex light environments of the regulatory loops
involved in the shade-avoidance network will require detailed analysis.

6. The molecular mechanisms involved in the control of sensitivity to shade signals by
light-derived signals remain largely unknown.
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19. Casal JJ, Ballaré CL, Tourn M, Sánchez RA. 1994. Anatomy, growth and survival of a long-hypocotyl

mutant of Cucumis sativus deficient in phytochrome B. Ann. Bot. 73:569–75
20. Casal JJ, Smith H. 1988. The loci of perception for phytochrome control of internode growth in light-

grown mustard: Promotion by low phytochrome photoequilibria in the internode is enhanced by blue
light perceived by the leaves. Planta 176:277–82

21. Casal JJ, Smith H. 1989. The “end-of-day” phytochrome control of internode elongation in mustard: ki-
netics, interaction with the previous fluence rate, and ecological implications. Plant Cell Environ. 12:511–
20

22. Casal JJ, Smith H. 1989. The function, action and adaptive significance of phytochrome in light-grown
plants. Plant Cell Environ. 12:855–62

23. Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM. 2009. Phytochrome
B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 19:229–34

24. Cerdán PD, Chory J. 2003. Regulation of flowering time by light quality. Nature 423:881–85
25. Cerdán PD, Yanovsky MJ, Reymundo FC, Nagatani A, Staneloni RJ, et al. 1999. Regulation of phy-

tochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Plant J. 18:499–507
26. Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, et al. 2012. Low red/far-red ratios reduce

Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic
acid-independent mechanism. Plant Physiol. 158:2042–52

27. Chang CSJ, Maloof JN, Wu SH. 2011. COP1-mediated degradation of BBX22/LZF1 optimizes seedling
development in Arabidopsis. Plant Physiol. 156:228–39

28. Chapman EJ, Estelle M. 2009. Mechanism of auxin-regulated gene expression in plants. Annu. Rev.
Genet. 43:265–85

29. Christie JM. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58:21–45
30. Cole B, Kay SA, Chory J. 2011. Automated analysis of hypocotyl growth dynamics during shade avoidance

in Arabidopsis. Plant J. 65:991–1000
31. Crocco CD, Holm M, Yanovsky MJ, Botto JF. 2010. AtBBX21 and COP1 genetically interact in the

regulation of shade avoidance. Plant J. 64:551–62
32. Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, et al. 2008. LZF1/SALT TOLER-

ANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene
expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324–38

33. Davis PA, Caylor S, Whippo CW, Hangarter RP. 2011. Changes in leaf optical properties associated
with light-dependent chloroplast movements. Plant Cell Environ. 34:2047–59

34. De Lucas M, Daviere JM, Rodrı́guez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008. A molecular
framework for light and gibberellin control of cell elongation. Nature 451:480–84
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49. Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, et al. 2012. Molecular mech-
anism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc.
Natl. Acad. Sci. USA 109:13446–51

50. Galstyan A, Cifuentes-Esquivel N, Bou-Torrent J, Martinez-Garcia JF. 2011. The shade avoidance
syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional
cofactors. Plant J. 66:258–67
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