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In the context of time series analysis considerable effort has been directed towards the implementation 
of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space 
has been introduced, namely the number of turning points versus the Abbe value. It is able to separate 
time series from stationary and non-stationary processes with long-range dependences. In this work we 
show that this bidimensional approach is useful for distinguishing complex time series: different sets of 
financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that 
takes into account the multiple time scales often involved in complex systems has been also proposed. 
This multiscale analysis is essential to reach a higher discriminative power between physiological time 
series in health and disease.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Typically, time series of measured variables are employed to 
analyze the dynamical behavior of complex systems. These tem-
poral records need to be suitably characterized in order to reach 
a more reliable comprehension of the underlying nature of the 
phenomenon of interest. Obviously, this understanding is essen-
tial for modeling and forecasting purposes. In particular, numerous 
algorithms for quantifying the disorder and complexity of time se-
ries generated from nonlinear dynamical systems have been devel-
oped. Without being exhaustive, we can mention Lempel–Ziv com-
plexity [1], correlation dimension [2,3], Lyapunov exponents [4,5], 
Kolmogorov [6], approximate [7], sample [8] and permutation [9]
entropies, fractal [10] and multifractal [11] measures, and statis-
tical complexity [12]. Moreover, combinations of these measures 
have been also proposed especially for discriminating and classify-
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ing dynamical systems. The usefulness of these multidimensional 
schemes has been confirmed for heterogeneous goals such as the 
distinction between noise and chaos [13,14], the characterization 
of a language corpus [15], the quantification of financial market ef-
ficiency [16,17], the automatic detection of epileptic seizure from 
electroencephalograms [18], the discrimination of songs in mas-
sive databases [19], and the classification of cardiac signals [10,
20,21] and texture images [22], pointing out only a few of many 
applications. Despite the existing contributions, characterizing the 
underlying dynamics of complex system from time series is still a 
challenging problem of current research.

Tarnopolski has very recently introduced a representation space 
by plotting two statistical features associated with time series: the 
Abbe value and the number of turning points [23]. Numerical re-
alizations of stationary and non-stationary long-range dependence 
stochastic processes are successfully discriminated in this plane. 
More precisely, fractional Brownian motion (fBm), fractional Gaus-
sian noise (fGn), and differentiated fGn (dfGn) were found to form 
distinct branches in the proposed space. In this work, we go one 
step further by showing that this bidimensional scheme can be 
used as a discriminator of dynamics. Analysis of financial and 
physiological time series have been included for illustrating the 
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robustness of the technique when dealing with real time series. 
A multiscale generalization, inspired by the multiscale entropy al-
gorithm proposed by Costa et al. [24], is introduced for unveiling 
hidden information over different levels of temporal resolution of 
the original signal. The higher discriminative power at particular 
time scales observed in the physiological applications confirms the 
advantages of implementing the proposed multiscale analysis. As 
it will be shown below, our results demonstrate that the Abbe 
value and the number of turning points are two distinctive features 
for identifying differences in complex systems dynamics. Conse-
quently, the location in the representation space, that results from 
computing simultaneously both quantifiers, deserves special con-
sideration for time series classification purposes.

The remainder of this paper is structured as follows. In Sec-
tion 2, the Tarnopolski’s diagram together with the proposed mul-
tiscale recipe and a couple of benchmark tests are discussed. The 
performance of the method as a diagnostic tool is analyzed in Sec-
tion 3 through several real-world applications. Finally, in Section 4, 
the main results and conclusions of this work are summarized.

2. Methods

2.1. Tarnopolski plane

Giving a time series {xi}n
i=1, the Abbe value, denoted A in this 

paper, is defined as half of the ratio of the mean square successive 
difference to the variance,

A = n

2(n − 1)

∑n−1
i=1 (xi+1 − xi)

2

∑n
i=1(xi − x̄)2

(1)

with x̄ the mean of {xi} [25–27]. The Abbe statistic quantifies the 
smoothness of a time series: it is close to zero for time series 
displaying a high degree of smoothness while it tends to one for 
white noise [23]. According to our knowledge, very few works have 
implemented this measure for practical applications. Within these 
few exceptions, the Abbe value and another related measure, the 
excess Abbe value, have been successfully applied in stellar vari-
ability studies for identifying transients in large-scale surveys [28].

A turning point in a time series is observed when the mid-
dle value xi of a sequence of three consecutive observations is 
lower or higher than the other two values, xi−1 and xi+1, that sur-
round it [29]. Equal values, i.e. x j = xk for j �= k, are neglected. This 
assumption is justified whenever {xi}n

i=1 has a continuous distri-
bution. From an arbitrary time series the probability of finding a 
turning point, denoted by T , can be empirically estimated by its 
relative frequency. In particular, T is asymptotically equal to 2/3
for random time series. It is important to stress here that esti-
mating the turning points probability is equivalent to calculate the 
zero crossing rate (ZCR) of the differentiated time series. ZCR has 
been previously implemented for diverse applications, e.g. the de-
tection of voiced and unvoiced sounds in speech signals [9] and 
the automatic diagnosis of tonic-clonic epileptic seizures [30]. The 
probability of finding a turning point is also linked with ordinal 
patterns. Indeed, estimating T is equivalent to calculate the rela-
tive frequency of four of the six possible motifs when embedding 
dimension D = 3 is considered (please see permutation indices 2, 
3, 4 and 5 in Fig. 2a of Ref. [21]).

Tarnopolski introduced a model representation space by plot-
ting the fraction of turning points of a time series versus its as-
sociated Abbe value. This T vs A diagram is able to discriminate 
fBm, fGn and dfGn (please see Fig. 5 of Ref. [23]). Moreover, an 
invertible relationship is found between A and the Hurst expo-
nent H . This functional form has been then used for estimating 
the Hurst exponent of several real world data. Briefly, the Hurst 
exponent H is a scaling exponent that measures the long-range 
dependence in time series. Further details about H can be found 
in Refs. [31,32]. For illustrating the ability of the Tarnopolski plane 
to characterize long-range dependence in time series, we have an-
alyzed the location of generic 1/ f α noises in this bidimensional 
scheme. In Fig. 1 a), we depict the position of colored noises with 
α ranging from −1 to 3 in steps of size 0.1. Average and standard 
deviation (SD) (displayed as error bars) of estimated A and T val-
ues for one hundred independent realizations of length n = 214 for 
each α exponent have been plotted. The Fourier Filtering Method 
(FFM) has been implemented in Matlab for generating these long-
range power-law correlated time series. In the FFM, the Fourier 
components of an uncorrelated sequence of Gaussian-distributed 
random numbers are filtered with a suitable power-law filter in 
order to introduce correlations among the variables. We address 
the reader to Refs. [33,34] for more details about this algorithm. 
Some examples of these artificial long-range correlated time se-
ries are shown in Fig. 1 b). It can be concluded that colored noises 
with α between −1 and 1 are more noisy and better discrimi-
nated by the Abbe value. Whereas, when the power-law exponent 
is between 1 and 3, the fraction of turning points is more appro-
priate for distinguishing between them. We have also confirmed 
that a very similar evolution in the Tarnopolski plane is followed 
by longer 1/ f α artificial time series (n = 100,000). As expected, in 
this case, shorter SD error bars are obtained.

2.2. Multiscale analysis

It is widely recognized that time series arising from some rep-
resentative variable of nonlinear complex systems have a multi-
scale nature, i.e. the observed dynamics is often strongly depen-
dent on the resolution scale used to sample the signal. For il-
lustrating this multiscale phenomenon, we consider the analysis 
of time series derived from nonlinear dynamics in a numerically 
controlled situation. More precisely, we estimate A and T from 
realizations of the x-variable of the Lorenz system:

ẋ = σ(y − x), ẏ = x(ρ − z) − y, ż = xy − βz . (2)

Following the example included in Ref. [23], time series of 
length n = 214 data points were generated with initial conditions 
(x0, y0, z0) = (1, 5, 10), and standard parameters σ = 10, ρ = 28
and β = 8/3 for which the system exhibits chaotic behavior. The 
time series were numerically integrated by using the Matlab’s 
ode45 function, that implements fourth and fifth order Runge–
Kutta numerical integration algorithms, with an integration step 
equal to 0.001. Sampling periods δt ranging from 0.001 to 1 with a 
step equal to 0.001 are considered. We analyzed time series with 
n = 214 data points for each δt . The first 105 iterations were dis-
carded to avoid possible transients. The evolution of the location in 
the Tarnopolski plane of these one thousand numerical realizations 
of length n = 214 with different temporal resolutions is depicted in 
Fig. 2. It is worth remarking here that a very similar behavior is 
obtained by analyzing longer numerical realizations (n = 100,000). 
On the one hand, for low values of δt , an artificial regular behavior 
is spuriously observed due to oversampling and both quantifiers 
are near zero. This oversampling generates redundancy in the in-
formation contained in the signals. On the other hand, for high 
values of the sampling period, the signal appears to be stochas-
tic and fully uncorrelated. Essentially, relevant information about 
the nonlinear temporal correlations is lost due to undersampling, 
and the value of quantifiers are close to that expected for a white 
noise, i.e. A ≈ 1 and T ≈ 2/3. Through this toy example it is easily 
concluded that the estimated value for A and T , and consequently 
the location in the bidimensional scheme, is strongly dependent on 
the temporal resolution. These findings imply the need to explic-
itly include the time scale notion in the implemented measure to 
reach a more proper characterization.
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Fig. 1. a) Location in the Tarnopolski representation space of generic 1/ f α noises with α ∈ {−1, −0.9, ..., 3}. One hundred numerical realizations of length n = 214 data 
points for each α exponent were generated with FFM. Mean and standard deviation (displayed as error bars) of estimated values for both quantifiers, A and T , over these 
one hundred simulations are shown. Positions of quantifiers move gradually from the right upper corner to the left bottom corner as α increases. Horizontal and vertical 
dashed lines indicate the theoretical value of quantifiers for white noise stochastic processes. b) Some examples of the numerically generated long-range power-law linearly 
correlated time series. Only 103 data points are plotted for a better visualization.
Multiscale entropy [24] and scale-dependent Lyapunov expo-
nents [35] are two generalized quantifiers introduced precisely 
with the aim of characterizing the different signal behaviors on a 
wide range of scales simultaneously. Bearing in mind the inherent 
scale-dependent nature of the physiological systems we will ana-
lyze in the next section, a multiscale tool is proposed by construct-
ing coarse-grained time series at multiple temporal scales and esti-
mating the statistical quantifiers A and T for each of these trans-
formed time series. Coarse-grained sequences are reconstructed by 
following the same procedure introduced in Ref. [24]. That is, the 
original record of length n is divided into non-overlapping seg-
ments of length τ , and the mean value is calculated for each 
segment generating smoothing sequences {yτ

j } of length �n/τ�,

yτ
j = 1

τ

jτ∑

i=( j−1)τ+1

xi, 1 ≤ j ≤ �n/τ� (3)

with �n/τ� the largest integer not greater than n/τ . The analysis of 
the location of both quantifiers, A and T , in the Tarnopolski plane 
as a function of the temporal scale factor τ allows detection of 
intrinsic complex structures across multiple temporal resolutions. 
Furthermore, the identification of optimal time scales for the clas-
sification of complex systems could be achieved by implementing 
this approach. For checking the usefulness of this multiscale recipe, 
we have analyzed an oversampled long numerical realization of 
the x-variable of the Lorenz system with the same parameters and 
initial conditions detailed previously. The chosen sampling period 
was δt = 0.001 and the time series length n = 224. A multiscale 
analysis with temporal scale factors 1 ≤ τ ≤ 1000 has been per-
formed. Evolution of the location of quantifiers for these temporal 
scales is depicted in Fig. 3 (blue curve). The evolution obtained for 
the original analysis for different sampling period developed pre-
viously is also plotted (black curve) for the sake of comparison. 
Overall, the results are qualitatively similar. The observed quan-
titative differences are attributed to the non-overlapping moving 
average filter (Eq. (3)) proposed for constructing the coarse-grained 
time series.

3. Real-world applications

Time series generated in a wide range of fields ranging from 
physiology to economy result from very complex dynamics and/or 
from coupled dynamics of many dimensional systems. Besides, 
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Fig. 2. Location in the Tarnopolski plane of one thousand numerical realizations of 
the x-variable of the Lorenz system (σ = 10, ρ = 28, β = 8/3, and (x0, y0, z0) =
(1, 5, 10)) with different sampling periods (δt ∈ {0.001, 0.002, ..., 1}). Time series 
of length n = 214 data points were generated with initial conditions (x0, y0, z0) =
(1, 5, 10). Positions of quantifiers move gradually from the left bottom corner to 
the right upper corner as δt increases. Simulations of the x-variable for the two 
extreme sampling periods, i.e. δt = 0.001 and δt = 1, are shown in the lower and 
upper insets, respectively. A similar evolution has been confirmed for longer nu-
merical realizations (n = 100,000).

Fig. 3. Evolution of location in the Tarnopolski plane for an oversampled (δt = 0.001) 
and long (n = 224) numerical realization of the x-variable of the Lorenz system 
(σ = 10, ρ = 28, β = 8/3, and (x0, y0, z0) = (1, 5, 10)) by implementing a multi-
scale analysis with temporal scale factor τ ranging from 1 to 1000 (blue curve). 
Positions of quantifiers move gradually from the left bottom corner to the right up-
per corner as τ increases. The original evolution obtained for different sampling 
periods is also displayed (black curve) for easy comparison. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

these real signals are often contaminated by noise and other ar-
tifacts. Thus, the extraction of meaningful information from them 
is usually a challenging task. Taking this into account, next we will 
test the efficiency of the Tarnopolski representation space in real 
situations.

3.1. Efficiency of developed, emerging and frontier stock markets

It is well-known that a stock market is considered efficient 
whenever its prices follow a random walk. That is, the incre-
ments of the prices should be independent and obey a Gaussian 
distribution. However, it is also widely accepted that this is only 
an idealized first approximation, and deviations from this white 
noise model, violating either the independence or Gaussian as-
sumptions, have been found in many empirical studies since the 
revolutionary paper of Benoit Mandelbrot [36]. In particular, cor-
related markets open the door to arbitrage opportunities because 
past prices can help to predict future prices. Indeed, it has been 
shown that emerging markets have greater correlations than de-
veloped ones, suggesting more predictability [37,38]. Moreover, the 
Hurst exponent has been widely proposed to quantify the stock 
market efficiency [39–43].

Given the link found between the Hurst exponent and the two 
statistical quantifiers that define the Tarnopolski plane, we propose 
to use this representation space to distinguish the stage of stock 
market development. With this aim in mind, we analyze the price 
returns of forty-eight stock market indices for different countries. 
Codes and names of these indices, collected from the Datastream 
platform (http://financial.thomsonreuters.com/en/products/tools-
applications/trading-investment-tools/datastream-macroeconomic-
analysis.html), are detailed in Table 1. Daily prices beginning on 
January 3, 2000 and ending on May 27, 2016 are considered (4,280 
observations). Following the classification provided by the Morgan 
Stanley Capital Index (MSCI) methodology (https :/ /www.msci .com), 
there are twenty developed, seventeen emerging and eleven fron-
tier stock markets.

Locations in the T vs A diagram of the daily price returns of 
the forty-eight stock market indices are plotted in Fig. 4. Mean 
and standard deviation (displayed as error bars) of one thou-
sand numerical independent realizations of fGn with Hurst expo-
nents H ∈ {0.05, 0.10, ..., 0.95} and the same length of the returns 
(n = 4,279) are also shown. These simulations were obtained by 
consecutive differences of fBm generated via the MATLAB function 
wfbm. On the one hand, it is observed that positions of indices 
associated with developed countries (blue circles) are, in average, 
closer to the ideal efficiency point, i.e. A ≈ 1 and T ≈ 2/3, that 
corresponds to white noise. Particularly, price returns of the Amer-
ican stock market index (Standard & Poor’s 500) show an antiper-
sistent behavior and, according to its location in the Tarnopolski 
plane, could be modeled as a fGn with H = 0.45. On the other 
hand, price return indices of stock market from emerging countries 
(green triangles) have lower estimated values for both quantifiers 
confirming the presence of persistency in their dynamics. There 
are two exceptions, namely Thailand (A ≈ 0.987, T ≈ 0.661) and 
Turkey (A ≈ 1.006, T ≈ 0.662), located within the region of max-
imum efficiency. Finally, price return indices of frontier countries 
(red squares) can be considered as the most inefficient since they 
are more distant with respect to the white noise location. The 
presence of strong long-range correlations in their dynamics is 
the main reason of this inefficient location. Argentina (A ≈ 0.945, 
T ≈ 0.649) and Croatia (A ≈ 0.911, T ≈ 0.653) are the two fron-
tier countries whose price return indices appear to be better be-
haved (please see the two red squares nearest to the ideal effi-
ciency location). It is also worth noting that the positions of all 
indices are below the curve described by the family of fGn. We 
conjecture that this behavior could be attributed to non-Gaussian 
distributions. It is then concluded that the fGn stochastic processes 
do not seem to be suitable for modeling the price returns of stock 
market indices of many emerging and frontier countries. This is es-
pecially clear in the case of Oman index (A ≈ 0.819, T ≈ 0.555). 
We confirm, through this financial application, that the Tarnopolski 
bidimensional scheme is a powerful tool for discriminating market 
dynamics since it is able to distinguish simultaneously different 
degrees of correlations and deviations from Gaussianity. The daily 
original resolution, that is τ = 1, has been used in this analy-
sis since improvements in the classification are not observed for 
larger temporal scales 2 ≤ τ ≤ 10. Indeed, for the larger scale fac-
tors (τ ≥ 5), locations of the different countries overlap in a small 
region making the distinction between the three groups almost im-
possible. Qualitatively similar findings have been confirmed for the 
same database but in a shorter data span (since January 1, 2010 to 
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Table 1
Codes and names of the stock market indices downloaded from Datastream. Developed, emerging and frontier stock mar-
kets (classified following the MSCI methodology) are denoted as D, E and F, respectively.

Country Datastream code Index MSCI classification

1. Netherlands AMSTEOE AEX INDEX (AEX) D
2. Jordan AMMANFM AMMAN SE FINANCIAL MARKET F
3. Argentina ARGMERV ARGENTINA MERVAL F
4. Greece GRAGENL ATHEX COMPOSITE E
5. Austria ATXINDX ATX – AUSTRIAN TRADED INDEX D
6. Thailand BNGKSET BANGKOK S.E.T. E
7. Belgium BGBEL20 BEL 20 D
8. Turkey TRKISTB BIST NATIONAL 100 E
9. Hungary BUXINDX BUDAPEST (BUX) E
10. Chile IGPAGEN CHILE SANTIAGO SE GENERAL (IGPA) E
11. Sri Lanka SRALLSH COLOMBO SE ALL SHARE F
12. Croatia CTCROBE CROATIA CROBEX F
13. Germany DAXINDX DAX 30 PERFORMANCE D
14. Egypt EGHFINC EGYPT HERMES FINANCIAL E
15. France FRCAC40 FRANCE CAC 40 D
16. United Kingdom FTSE100 FTSE 100 D
17. Malaysia FBMKLCI FTSE BURSA MALAYSIA KLCI E
18. Italy FTSEMIB FTSE MIB INDEX D
19. South Africa JSEOVER FTSE/JSE ALL SHARE E
20. Hong Kong HNGKNGI HANG SENG D
21. Hong Kong HKHCHAF HANG SENG CHINA AFFILIATED CORP D
22. Hong Kong HKHCHIE HANG SENG CHINA ENTERPRISES D
23. Spain IBEX35I IBEX 35 D
24. Indonesia JAKCOMP IDX COMPOSITE E
25. Ireland ISEQUIT IRELAND SE OVERALL (ISEQ) D
26. Israel ISTA100 ISRAEL TA 100 D
27. Pakistan PKSE100 KARACHI SE 100 F
28. Kenya NSEINDX KENYA NAIROBI SE (NSE20) F
29. Korea KORCOMP KOREA SE COMPOSITE (KOSPI) E
30. Lebanon LBBLOMI LEBANON BLOM F
31. Germany MDAXIDX MDAX FRANKFURT D
32. Mexico MXIPC35 MEXICO IPC (BOLSA) E
33. Oman OMANMSM AN MUSCAT SECURITIES MKT. F
34. Denmark COSEASH OMX COPENHAGEN (OMXC) D
35. Finland HEXINDX OMX HELSINKI (OMXH) D
36. Sweden SWSEALI OMX STOCKHOLM (OMXS) D
37. Estonia ESTALSE OMX TALLINN (OMXT) F
38. Philippine PSECOMP PHILIPPINE SE I(PSEi) E
39. Czech Republic CZPXIDX PRAGUE SE PX E
40. Romania RMBETRL ROMANIA BET (L) F
41. Russia RSMICEX RUSSIAN MICEX INDEX E
42. USA S&PCOMP S&P 500 COMPOSITE D
43. China CHSASHR SHANGHAI SE A SHARE E
44. China CHZBSHR SHENZHEN SE B SHARE E
45. Switzerland SWISSMI SWISS MARKET (SMI) D
46. Taiwan TAIWGHT TAIWAN SE WEIGHED TAIEX E
47. Japan TOKYOSE TOPIX D
48. Tunisia TUTUNIN TUNISIA TUNINDEX F
May 27, 2016). Comparison of the performance of the Tarnopolski 
representation space with other implemented tools for character-
izing financial data efficiency, such as entropy-related methodolo-
gies [44–47] and the Efficiency Index [48–50], is beyond the pur-
pose of the present work and will be studied in a future research.

3.2. Electroencephalograms from healthy and epileptic patients

Discrimination of brain electrical activity from different regions 
and from different physiological and pathological brain states is 
obviously a very relevant issue since this information could be po-
tentially useful for medical diagnosis. Motivated by this fact, we 
analyze five different sets of electroencephalogram (EEG) time se-
ries for different groups and recording regions: surface (scalp) EEG 
recordings from five healthy volunteers in an awake state with eyes 
open (Set A) and closed (Set B), intracranial EEG recordings from 
five epilepsy patients during the seizure free interval from out-
side (Set C) and from within (Set D) the seizure generating area, 
and intracranial EEG recordings of epileptic seizures (Set E). These 
artifact-free records are available under www.meb.unibonn.de/
epileptologie/science/physik/eegdata.html. The sampling rate of the 
data was 173.61 Hz. One hundred single channel EEG segments of 
23.6 s of duration (4,097 data points) for each one of the five sets 
of data have been considered. These segments were selected from 
continuous multichannel EEG recordings after visual inspection for 
artifacts (e.g. muscle activity or eye movements). Additionally, only 
segments that satisfy a weak stationarity criterion were chosen. 
Further details about the recording technique of these EEG data 
can be found in the original paper by Andrzejak et al. [51].

Taking into account that the optimal time scale for discriminat-
ing these five sets of EEG data is a priori not known, a multiscale 
analysis has been implemented. That is, we have analyzed the lo-
cation in the Tarnopolski diagram for coarse-grained time series 
with temporal scale factors 1 ≤ τ ≤ 10. Mean and standard devia-
tion (displayed as error bars) of the one hundred A and T values 
computed for the five EEG sets have been plotted for the differ-
ent resolution temporal scales. Fig. 5 shows the results obtained 
for four different temporal scales (τ ∈ {1, 4, 7, 10}). It is visually 
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Fig. 4. Top: Position of the price returns of the forty-eight stock market indices 
in the Tarnopolski plane. Developed, emerging and frontier countries are identified 
by blue circles, green triangles and red squares, respectively. Location of fGn with 
Hurst exponents H ∈ {0.05, 0.10, ..., 0.95} and the same length of the price returns 
(n = 4,279) has been also included. Being more precise, mean and standard devia-
tion (displayed as error bars) of one thousand independent realizations are depicted 
in black color. A continuous black curve joining the mean values for fGn with differ-
ent H is included for visual reference. Estimated values for both quantifiers decrease 
as the Hurst exponent of fGn increases. Bottom: Enlargement for a better view of 
locations associated with stock market indices. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

confirmed that an improved classification is reached for interme-
diate resolution scales. In such a case not only healthy (Sets A 
and B) and pathological groups (Sets C, D and E) are discriminated, 
but also differences between interictal (Sets C and D) and ictal 
activities (Set E) are achieved. Regrettably, interictal epileptiform 
activities from the epileptogenic zone (Set D) and those found at 
recording sites distant from the epileptogenic zone (Set C) cannot 
be separated. Last but not least, for these intermediate temporal 
scales, the two healthy groups are clearly distinguished. This differ-
entiation between the conditions of eyes closed and eyes open has 
not been reached by previous implemented algorithms much more 
complicated, both computationally and conceptually [18,51–53]. 
We consider this a very interesting finding since it is well-known 
that alpha waves in a frequency range of 8–13 Hz are predomi-
nant in relaxed healthy subjects with eyes closed while broader 
frequency characteristics are obtained for open eyes [51].

3.3. Physiological and pathological beat-to-beat intervals

In this application, heart rate variability (HRV) of healthy and 
pathological subjects have been analyzed. HRV time series are 
derived from electrocardiogram signals by measuring consecu-
Fig. 5. Location of the five sets of EEG data in the Tarnopolski plane for different 
temporal scale factors: a) τ = 1, b) τ = 4, c) τ = 7, and d) τ = 10. Mean and stan-
dard deviation (displayed as error bars) of both quantifiers, A and T , for the one 
hundred single channel EEG segments associated with each set are plotted. Groups 
are differentiated by color: Set A in black, Set B in gray, Set C in blue, Set D in cyan, 
and Set E in red. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 6. Location of the three groups of HRV data in the Tarnopolski plane for differ-
ent temporal scale factors: a) τ = 1, b) τ = 5, c) τ = 10, d) τ = 15, e) τ = 20, and 
f) τ = 30. Mean and standard deviation (displayed as error bars) of both quantifiers, 
A and T , for the five BBI time series associated with each set are plotted. Groups 
are differentiated by color: NSR in black, CHF in blue, and AF in red. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

tive beat-to-beat intervals (BBI). As cardiac diseases have effects 
on BBI dynamics, a reliable classification between physiological 
and pathological BBI time series could be useful for develop-
ing a new diagnostic tool [21]. Three different groups have been 
considered in our analysis. More precisely, the location in the 
Tarnopolski representation space for a total of fifteen BBI time 
series of which five were obtained from healthy persons in nor-
mal sinus rhythm (NSR), five from congestive heart failure (CHF) 
patients, and five from subjects suffering from atrial fibrillation 
(AF), have been tested. These records, freely available in Phys-
ioNet (www.physionet.org/challenge/chaos/), are about 24 h long 
(roughly 100,000 intervals). Filtered records, i.e. with outliers re-
moved, were used. We have again implemented a multiscale 
analysis by estimating both quantifiers, A and T , for coarse-
grained time series with 1 ≤ τ ≤ 30. In Fig. 6, we have plot-
ted mean and standard deviation (displayed as error bars) of 
these quantifiers for the three HRV groups (NSR, CHF and AF) 

http://www.physionet.org/challenge/chaos/
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for τ ∈ {1, 5, 10, 15, 20, 30}. By comparing the location of these 
groups in the Tarnopolski plane for the different scale factor, an 
improved classification is visually concluded for intermediate tem-
poral scales. Being more precise, the best separation of the given 
datasets of the three groups is achieved for τ = 5. Higher values 
for both quantifiers are obtained for the AF group. That is, dynam-
ics in HRV of AF subjects are more irregular and noisy than those 
related to NSR and CHF subjects, which is in agreement with previ-
ous findings [24,54–56]. Moreover, it should be also stressed, that 
for intermediate scale factors (τ ∈ {5, 10, 15, 20}) cardiovascular 
dynamics from CHF patients have, in average, lower estimated val-
ues for A and T than those obtained from healthy subjects. This 
fact is reflecting a more regular dynamics for the CHF pathologi-
cal state, which is consistent with results derived earlier through 
fractal analysis [10,54,55].

We demonstrate that the Tarnopolski diagram is able to effi-
ciently separate the three different groups at particular time scales, 
evidencing once again the usefulness of the proposed multiscale 
analysis. We should emphasize here that this is a very simple 
qualitative analysis, and studies with larger datasets are required 
to confirm the reliability of the proposed multiscale bidimensional 
scheme as cardiac biomarker. Particularly, it is worth noting here 
that locations of the three HRV groups do not seem to follow the 
transition from more regular to more noisy dynamics as τ in-
creases. This is a curious finding even more if we take into account 
that results obtained from EEG time series (please see Fig. 5) do 
follow the expected behavior. The reasons behind such unexpected 
behavior are not clear for us and will be investigated through fur-
ther research by analyzing larger beat-to-beat intervals datasets.

4. Conclusions

The performance of a bidimensional scheme, obtained by plot-
ting the fraction of turning points versus the Abbe value associated 
with a time series, has been tested for classification purposes. Sev-
eral practical applications allow us to assess its reliability. A multi-
scale algorithm is also introduced for capturing relevant aspects 
of the complex dynamics at different temporal resolutions. We 
demonstrate that this new multiscale description is required to 
accurately distinguish between physiological time series in health 
and disease. We guess that the outstanding classification results 
shown by the Tarnopolski plane in the practical applications have
their root in the excellent capability for separating colored noises 
(please see the high discriminative power of colored noises and 
fGn stochastic processes in Fig. 1 and Fig. 4, respectively). Obvi-
ously, theoretical arguments to support this heuristic observation 
are necessary and will be the main aim of a future study. We con-
sider that results obtained are quite encouraging and justify further 
analysis in other research fields for testing the potentiality of this 
multiscale bidimensional approach as a discriminative tool.
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