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Abstract 

The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows 

treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review 

of MCE and its recent applications, providing a summary of the formalisms, including its ab initio 

direct dynamics versions and also giving a summary of recent results.  Firstly, we describe the 

Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics 

and report new calculations which show that the approach converges to the exact result in model 

systems with tens of degrees of freedom.  Secondly, we review previous “on the fly” ab initio 

Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which 

the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum 

basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give 

an example of its application.  We summarise the details of the sampling techniques and 

interpolations used for calculation of the matrix elements, which make our approach efficient.  

Future directions of work are outlined.   
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1. Introduction.  Why AIMC-MCE? 

In 1929 Dirac stated that: “The fundamental laws necessary for the mathematical treatment of a 

large part of physics and the whole of chemistry are thus completely known, and the difficulty lies 

only in the fact that application of these laws leads to equations that are too complex to be solved.” 

Only recently however, eighty years later, have atomistic simulation methods started to emerge that 

allow the treatment of quantum systems with many degrees of freedom, overcoming the difficulty 

noted by Dirac. Several techniques now exist which can treat a large number of quantum degrees of 

freedom, albeit on a short time scale. Among them are methods of first principle Quantum Direct 

Dynamics (QDD). While these methods resemble first principle classical molecular dynamics, in 

which potential energies and forces are calculated by means of quantum mechanical electronic 

structure theories and codes, the quantum dynamics of nuclei in QDD is described not by a single 

trajectory but by an ensemble of trajectories weighted with their quantum amplitudes.  This guided 

basis follows the most important parts of the wave packet and therefore minimises the number of 

necessary basis functions.  Thus, in a certain sense, first principle QDD represents a “chemical 

quantum theory of everything” which relies solely on the most fundamental equations of quantum 

mechanics without approximations.  Our existing ab initio Multiple Cloning Multiconfigurational 

Ehrenfest (AIMC-MCE) technique is an example of a first principle QDD approach based on the time 

dependent Schrödinger equation for both electrons and nuclei.  We demonstrate that such an 

approach can work albeit on a short time scale. 

Several methods exploiting the same general idea exist, which differ only by the type of 

guiding trajectories.  To simulate the wave packet dynamics of nuclei, Ab initio Multiple Spawning1 

(AIMS) utilises ensembles of simple classical trajectories  running on different electronic states. The 

method of Variational Multiconfigurational Gaussians (vMCG) relies on complicated non-classical 

variational trajectories2-4.  The guiding trajectories of AIMC-MCE are in between AIMS and vMCG and 

combine some of their best features.  

The Ehrenfest configuration is the central object of the AIMC-MCE approach, and serves as a 

time-dependent basis function. The Ehrenfest basis function )(tn  is composed of nuclear and 

electronic parts: 

)()()( ttt nnn          (1.1) 

where the electronic part )(tn   is a superposition of several electronic eigenfunctions I  

http://www.brainyquote.com/quotes/quotes/p/pauldirac279318.html
http://www.brainyquote.com/quotes/quotes/p/pauldirac279318.html
http://www.brainyquote.com/quotes/quotes/p/pauldirac279318.html
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The parameter α here determines the width of the Gaussians, )(tnR and )(tnP are the phase space 

coordinate and momentum vectors of the n-th basis function centre, Ndof is the number of degrees 

of freedom, and n  is a phase.  The width parameter α can be taken, for example, according to 

previous prescriptions5, which are based on the optimization for a reference set of over 100 

molecules.  

A single Ehrenfest configuration is not flexible enough to accurately describe full quantum 

dynamics. In the MCE approach, multiple Ehrenfest configurations are used and these represent a 

basis set in which the total wave-function is expanded such that:  

 )()()( ttct nn  .       (1.4) 

The evolution of the Ehrenfest amplitudes )(n

Ia , the momenta nP  and positions nR  of the wave 

packets are driven by the Ehrenfest equations, while the equations for the amplitudes  tcn
, which 

follow from the Schrödinger equation, describe coherent coupling between Ehrenfest configurations 

making the approach formally exact6-10.  The AIMC-MCE approach has a number of features 

distinguishing it from the competing techniques  

1) The Ehrenfest trajectories are nonclassical in a similar fashion to those of vMCG.  In regions 

of strong non-adiabatic coupling the basis follows the dynamics of the quantum wave packet more 

accurately than the simple classical trajectories employed by AIMS. It is well known however that 

the Ehrenfest equations of motion can be problematic after passing a strong coupling region, where 

the Ehrenfest trajectories guided by a potential energy surface average of those of individual 

electronic states may move outside of the dynamically important region.  This is remedied in the 

AIMC-MCE method by a procedure called cloning6,7, which is an adaptation of the spawning 

procedure of AIMS1. After cloning, an Ehrenfest configuration (1.1) yields two configurations such 
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that the first “clone” has nonzero amplitude for only one electronic state, and the second contains 

contributions of all other electronic states. Thus, cloning reprojects the Ehrenfest trajectories on the 

individual electronic states after quantum transitions are completed.  Importantly, this projection is 

done in a manner that does not alter the nuclear wave-function at the time of cloning (similar to 

spawning in AIMS). The cloned basis functions form an efficient adoptive basis which follow the 

quantum wave packet dynamics very efficiently.  Thus the AIMC-MCE method combines the best 

feature of AIMS and vMCG methods. 

2) AIMC-MCE uses an interpolation procedure for calculating matrix elements that is based 

solely on quantities calculated at the centres of the time dependent Gaussians (1.3).  There are no 

calculations of energies, gradients, or non-adiabatic coupling matrix elements at intermediate 

geometries between trajectory centres; this minimizes the number of computationally expensive 

calls of the ab initio electronic structure code. Moreover, a large number of underlying Ehrenfest 

trajectories can be run independently and then later recombined in a “post-processing” procedure, 

which calculates the quantum amplitudes  tcn  in (1.4) with quantum mechanical coupling 

between the time-dependent Ehrenfest basis functions (1.1) computed from the trajectory data at 

low computational cost. This feature is not possible in the vMCG method.   

3) AIMC-MCE uses an incremental propagation procedure, which we refer to as “bit-by-bit” 

propagation, in which the propagation of a large basis is replaced by a large number of Monte-Carlo 

repetitions of the wave-function “bits”, each of them using a smaller basis.  The incremental 

propagation procedure is not an approximation, as it exploits the linearity of the Schrödinger 

equations to make basis set sampling more efficient11.  

4)  AIMC-MCE makes use of the idea of train basis sets6,12,13, also known as time displaced basis 

sets.  Basis functions in the train follow each other along the same Ehrenfest trajectory but with a 

time delay, so that propagating the trains does not require any additional electronic structure 

calculations. The trains serve to increase the original basis set by orders of magnitude, reducing the 

noise and improving the quality of quantum dynamics calculations at almost no extra cost. 

As a result of all above features AIMC-MCE allows statistics unmatched by other quantum ab initio 

direct dynamics methods. It can afford basis sets comprised of thousands of coupled configurations.  

With the use of hundreds and even thousands of wave-function “bits”, the total number of TBFs 

used can reach hundreds of thousands.  Due to the high cost of electronic structure calculations, 

total CPU time can reach hundreds of years, but incremental propagation of “bits” and the 
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postprocessing procedure for quantum coupling allows running Ehrenfest trajectories one-by-one 

independently from each other, which can be easily parallelized.  It will be shown below that MCE 

can converge to the exact quantum results when applied to model systems.   

 

2. Theory – Working equations 

MCE is an efficient tool for both on-the-fly ab initio non-adiabatic dynamics of real molecules and for 

the simulation of model systems, such as the spin boson model14.  Although MCE treats, in principle, 

all degrees of freedom (DOFs) on a fully quantum level, some of these DOFs are “more quantum” 

than others.  For example electronic degrees of freedom are always “more quantum” than those of 

nuclear motion.  Thus, while the electronic part of the wave-function is represented in an accurate 

regular basis I , the wave-function for nuclear coordinates R is represented in a trajectory-guided 

Gaussian basis  nnn PR , .  The choice of the electronic basis depends on many factors.  It is 

often convenient to use a diabatic basis for model systems, as in this case it frequently allows a 

better representation with the smoothest changes of coefficients. Real molecular systems simulated 

using on-the-fly ab initio calculations however require an adiabatic or time-dependent diabatic 

(TDD) basis.  

Below we use the following notations: 1) diabatic electronic states that do not depend on 

nuclear coordinates R are referred as I , 2) adiabatic states are referred as )(RI , and  3) TDD 

states that are the same adiabatic states taken in the centre of nth Gaussian nR  are referred to 

either as  )(tnI R  or just )(n

I  in order to shorten long equations  (i.e.  )()( tnI

n

I R  .   

We mostly omit  obvious  arguments, such as electronic coordinates r in I , )(RI , and )(n

I  

and write all integrals in bra-ket notation, e.g. we write                instead of 

                                                         . 

 

2.1 MCE in a diabatic basis 

The propagation of a total wave-function in a trajectory-guided basis is determined by the time-

dependence of the positions and momenta of all Gaussians and the time-dependence of the 



  

 
 

6 
 

corresponding quantum amplitudes in (1.2), (1.4) or (2.1.6). The best possible time-evolution for a 

given set of parameters determining a wave-function can be found from the variational principle15, 

as is done in vMCG2-4 and in similar G-MCTDH methods16. The problem is that these equations are 

very complicated and unstable.  They also cannot be parallelized easily, as all positions, momenta 

and quantum amplitudes are coupled together.  So, the MCE method uses instead a simpler 

procedure, where each trajectory is guided by its own Ehrenfest force:  

   

 
 

    
          

       
    

           (2.1.1) 

The Hamiltonian is a sum of the nuclear kinetic energy operator     
  

  

  

    (where the notation 
 

 
 

refers to a diagonal matrix of the inverse masses of the atoms) and the potential energy operator   : 

                   (2.1.2) 

As the electronic diabatic basis functions I  here do not depend on R, we can write: 

                         
    

  
   

              

   

  

          

         (2.1.3) 

The kinetic energy matrix element 

           
    

 
     

  
   

           (2.1.4) 

does not depend on    ,  so for the Ehrenfest force we obtain: 
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In our previous works two different versions of MCE, referred as MCEv1 and MCEv2, were 

introduced11,14 using two possible forms for the ansatz of the wave-function.  The exact meaning and 

time evolution of the Ehrenfest amplitudes   
       are different for MCEv1 and MCEv2. In the 

MCEv1 formulation, each amplitude   
       determines a contribution of an Ith state of the nth 

configuration into a wave-function:    

                 
   

       

 

 

 

    

              (2.1.6) 

and the time evolution of these amplitudes is obtained through the variational principle as  
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where 

    
   

  
           

 

    
             

 

    
      

 

 
                

           (2.1.8) 

It can be seen from equation (2.1.7) that all amplitudes   
   

  of all electronic states (I) and all 

trajectories (n) are coupled with each other.  This means that the Ehrenfest trajectories given by 

(2.1.5) are not independent:  they influence each other via the Eq (2.1.8), and the motion of all 

trajectory basis functions (TBFs) in the MCEv1 approach is coupled through the Ehrenfest 

amplitudes.  The MCEv1 formulation was shown to be able to successfully simulate systems of up to 

2000 degrees of freedom14, which implies that MCEv1 is a very efficient method for treating 

multidimensional systems. However the coupling between trajectories makes MCEv1 hard to 

implement in ab initio direct dynamics context.  

To remedy the above difficulties, the MCEv2 11 approach was formulated. MCEv2 uses a 

different form for the ansatz,   
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          (2.1.9) 

where a separate set of amplitudes  tcn  is used to describe the contributions of each configuration 

into a wave-function, while the amplitudes   
       now determine only the contribution of each 

quantum state into the nth Ehrenfest configuration.  As a result, the coupling between the 

trajectories and the coupling between the electronic states are now separated. The amplitudes 

  
   

    in the MCEv2 approach are normalized for each TBF  

   
      

   

 

       

           (2.1.10) 

and Eq.(2.1.5) for the Ehrenfest force takes the form: 

       
      

    

    

                   

   

 

           (2.1.11) 

The time evolution of amplitudes   
   

    for each trajectory in the MCEv2 approach depends only 

on the motion of this particular TBF: 
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Let us introduce, as is normally done, the evolution of the phase n  as: 

    
2
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Then, substituting this into (2.1.8) and using the following expressions for the matrix elements of the 

Gaussians 

    
 

    
      

 

 
    

           (2.1.14)  

    
 

    
       

           (2.1.15) 

we obtain 

    
   

  
   

 

  
          

            (2.1.16) 

Now, substituting (2.1.3), (2.1.4) and (2.1.16) into (2.1.12) and ignoring a small second term in (2.1.4) 

associated with Gaussian width, we obtain a final equation for the evolution of Ehrenfest amplitudes 

in the MCEv2 approach: 

   
   

  
 

 
                 

   

 

       

           (2.1.17) 

Thus in the MCEv2 approach, there is no coupling between coefficients   
   

 for different Ehrenfest 

configurations (n).  Instead, the quantum coupling between trajectories in MCEv2 is described by the 

time-evolution of amplitudes  tcn
, which can be found by substituting the wave-function ansatz 

(1.4) into the time-dependent  Schrödinger equation:  
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where 
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and           (2.1.20) 

    
   

  
      

   

  
     

   
 
 
  

   

 

            
   

 
  

  
  

   

 

       

           (2.1.21) 

The absence of coupling between amplitudes   
   

 for different trajectories means that the TBFs in 

the MCEv2 formulation move independently from each other, which significantly simplifies the 

computational procedure and makes MCEv2 a method of choice for the direct ab initio dynamics. 

Equations (2.1.11) and (2.1.17) - (2.1.21) form a complete set for calculating time evolution of the 

wave-function in the MCEv2 approach.  These equations, while different in notation, are identical to 

those of ref 11.   

 

2.2 Ab Initio MCE in an adiabatic basis 

Although a diabatic basis is often convenient for model calculations, it is inappropriate for ab initio 

non-adiabatic direct dynamics of the molecules. The electronic structure calculations are usually 

performed only for several lowest electronic states, and these wave-functions strongly depend on 

nuclear coordinates. In order to address this, we can reformulate the MCEv2 approach in an 

adiabatic basis         .  The electronic coordinates r are omitted to make the equations shorter. 

Unlike the case of diabatic representation, the potential energy operator    is diagonal in the 

adiabatic basis 

                              

           (2.2.1) 
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and the coupling  between electronic states originates from off-diagonal matrix elements of the 

kinetic energy operator, which are non-zero because of the parametric dependence of the electronic 

wave-functions on the coordinates R of the nuclei.   

Computing the matrix elements of    requires the potential energy surfaces        generated 

by electronic structure calculations, which are the most expensive part of ab initio dynamics.  

Therefore, we must apply approximations in order to minimize the cost and to obtain these matrix 

elements using a small number of electronic structure calculations for few nuclear geometries.  In ab 

initio MCE approach, the diagonal matrix elements are approximated by the potential energies in the 

centres instead of averaging over Gaussians:   

                                (2.2.2) 

For matrix elements between different trajectories, the first-order bra-ket averaged Taylor (BAT) 

expansion6 is applied:  

               
 

 
                         

 

 
               

 

    
        

 

 
               

 

    
           

        (2.2.3) 

Approximation (2.2.3) uses energies and gradients only from the centres of the Gaussians, which are 

calculated anyway to find the Ehrenfest trajectories guiding the basis. The matrix elements given by 

this approximation are used to solve quantum coupling equations (2.1.18) that give amplitudes       

in the wave-function representation (2.1.9). Thus, unlike the saddle point approximation1 (SPA), 

approximation (2.2.3) provides the interaction between trajectories at practically no additional 

computational cost.  Note that the first-order term is extremely important here, as the one-way 

transfer of quantum amplitude between different Gaussians is driven by the imaginary part of the 

prefactor of the matrix elements of the Hamiltonian. If two Gaussians differ mostly by the 

coordinates, the transfer of amplitude reflects the motion of the atoms; in this case it is driven by 

the imaginary part of the prefactor for the kinetic energy matrix elements, which is proportional to 

the average momentum and is always taken into account (see Eq.(2.2.7) below). In the case where 

two Gaussians differ mostly by the momenta, the transfer of quantum amplitude reflects the 

acceleration, and is guided by the imaginary part of the prefactor for the potential energy matrix 

elements, which is proportional to the gradients and is given in our approximation by the first order 

term in  (2.2.3).  
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Because of the dependence of adiabatic electronic wave-functions on nuclear coordinates R, 

the kinetic energy operator    provides the non-adiabatic interstate coupling. Disregarding, as is 

normally done, the second derivatives               which, by experience17, have a negligible 

effect on the nuclear dynamics  and using an approximation similar to (2.2.2), we get: 

                      
  

  
              

    

     
  

 
         

      

  
 
   

  
 

 
   

 

  
      

   

 
   

   
  

           (2.2.4) 

where   

   
   

         
      

  
  

     

 

           (2.2.5) 

are the non-adiabatic coupling matrix elements (NACMEs). For the matrix elements of    between 

the trajectories, a simple approximation is used:  
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where 

           
 

  
              

 
                   

                                

            (2.2.7) 

The expression for the force driving Ehrenfest trajectories in an adiabatic basis  
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           (2.2.8) 

is different from the expression for the force in a diabatic basis (2.1.11). One can see that together 

with a usual gradient term, Eq.(2.2.8) also includes a second term that compensates for the potential 

energy change associated with non-adiabatic electronic population transfer. This force is often called 

the Hellmann-Feynman force. The values of NACMEs entering this second term are calculated by 

electronic structure codes alongside with potential energies and their gradients.  A detailed 

derivation of Eq.(2.2.8) is given in the Appendix.  

The motion of each TBF (1.1) is coupled with the evolution of the Ehrenfest amplitudes 
)(n

Ia , 

which  is also different here from the one in a diabatic basis given by (2.1.17).  Substituting (2.2.1), 

(2.1.16) and approximations (2.2.2), (2.2.4) into Eq.(2.1.12), we obtain 

)()()( n

J

J

neff

IJ

n

I aH
i

a  ,       (2.2.9) 

where the matrix elements of the effective Hamiltonian 
)(neff

IJH  are expressed as: 










 JIi

JIV
H
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IJn

nIneff

IJ
,

),(
)(

)(

dMP

R
1

,     (2.2.10) 

In the above, we used time evolution of the nuclear phase n  given by Eq.(2.1.13), the same as in a 

diabatic basis, which cancels the diagonal matrix elements of the kinetic energy operator. Equations 

(2.2.8) - (2.2.10) form a complete set of equations determining the evolution of the Ehrenfest TBFs 

)(tn . The evolution of the amplitudes       is described, as before, by Eq.(2.1.18), where 

approximations (2.2.3) and (2.2.6) are used to calculate the matrix elements between different 

trajectories.  

    

2.3 Ab Initio MCE in a time-dependent diabatic basis (TDDB).  

The MCE approach in an adiabatic electronic basis has been used by us to simulate the 

photodynamics of ethylene after * excitation6 and the photodissociation of pyrrole7, where it 

worked well. However, this version of the method can fail for large conjugated molecules where 
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electronic states can change significantly on the length-scale of the Gaussian width. In particular, the 

wave-function can change instantly at trivial unavoided crossings18 where two electronic states 

localized on two spatially separated parts of a large molecule change their order. To remedy this, 

another version of the method, Multiconfigurational Ehrenfest in time-dependent diabatic basis 

(MCE-TDDB), was developed19.  In this version of MCE, each Gaussian trajectory carries its own time-

dependent diabatic electronic basis that coincides with adiabatic basis in the centre of the Gaussian: 

))(()( tnI

n

I R         (2.3.1) 

The new electronic basis functions )(n

I  do not depend explicitly on R as is customary in many 

theories of non-adiabatic coupling.  Instead the coupling now originates from the time-dependence 

of the electronic basis functions through the motion of nR . We would like to emphasize that the 

“time-dependent diabatic basis” used here should not be confused with the “diabatic basis” used in 

Section 2.1; the trajectories here are still calculated using Eqs (2.2.8)-(2.2.10) for an adiabatic basis 

(see below), and the new representation affects only matrix elements between different TBFs.  

It was shown in ref 6 that the TDDB representation leads to the same set of final equations as 

the adiabatic one when the electronic wave-function does not depend too strongly on the nuclear 

coordinates. However, in this section we are considering a different case when the overlaps 

between the electronic eigenstates belonging to the different Gaussians )()( m

J

n

I   can be very far 

from Kronecker’s 
IJ , even when these Gaussians are sufficiently close to each other and nuclear 

parts have a significant overlap.  In this situation, these overlaps must be taken into account 

accurately.  In principle, they can be calculated directly, but it is more convenient to propagate them 

together with the basis. The following equation for the time-dependence of the overlap integrals is 

used: 





K

nKJ

n

K

m

InmKI

K

n

J

m

Km
n

J

m

I
dt

d
)()( )()()()()()(

RdRRdR  .            (2.3.2) 

Because summation in Eq.(2.3.2) is limited to only a few lowest electronic states for which 

NACMEs are calculated, in practice this method may slightly overestimate the electronic overlaps. 

Nevertheless, the accuracy of this approximation is compatible with the accuracy of other 

approximations used in this approach. The overlap matrices )()( m

J

n

I   trace the difference 

between adiabatic electronic states for each pair of trajectories. Along with the difference in the 
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order of states, it would also reflect the difference of their signs, known as the geometric phase 

effect 20,21, which can appear when a pair of trajectories passes on two different sides of a conical 

intersection. Thus, unlike adiabatic representation, a TDD basis naturally accounts for the geometric 

phase.   Although it is unclear whether geometric phase can significantly affect direct dynamics 

simulations of multidimensional systems, for small low dimensionality systems it is certainly 

important.   

It is easy to show (see Appendix) that the evolution of TBFs in the MCE-TDBB method is 

described by the same set of equations as in the adiabatic basis. The difference between the MCE 

and MCE-TDDB approaches is in the time evolution of amplitudes      : although it is determined by 

the same Eq.(2.1.18), the matrix elements between trajectories are different.  The overlaps now 

include both the nuclear and electronic parts, 

      
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Inmnm aatt
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as the overlap between electronic functions is not a simple Kronecker’s delta IJ

n

J

m

I  )()( .   

Similarly, for kinetic energy matrix elements, we have: 
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For the potential energy matrix, we use an approximation similar to the first order BAT expansion 

applied above in the case of the adiabatic representation:  
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which again differs from (2.2.3) by the presence of the overlap )()( n

J

m

I   of electronic wave-

functions belonging to different Ehrenfest configurations or TBFs.  Finally, the term 

   t
dt

d
t nm   in Eq. (2.1.18) is now written as: 
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More details on the approximations used for matrix elements between different trajectories in the 

TDD representation are given in the Appendix.  

The interpretation of the results of MCE-TDDB calculations, for example population analysis, 

is non-trivial because the nature of electronic states can change very quickly and their order can be 

different for different basis functions. A special procedure must be applied for calculating electronic 

properties.  

For population analysis, let us introduce the adiabatic population operator  

)()()(ˆ RRR KKKP  ,       (2.3.7) 

where, as before, )(RK  are the adiabatic electronic eigenfunctions. Then, the electronic state 

populations can be expressed as: 
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Using an approximation similar to the one used for other matrix elements between trajectories (see 

Appendix), we can write 
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which can be simplified to   
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The same approach can be applied for the calculation of any other electronic property. If this 

property can be described by a quantum operator N̂ , then 
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Using the same approximation as in (2.3.9) and assuming that N̂ is real and depends only on the 

electronic degrees of freedom, we get: 
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where )()()( ˆ m

K

m

I

m

IK NN  are the matrix elements of the operator N̂  between eigenstates for 

the centre of the mth Gaussian, which can be easily calculated from the electronic structure data for 

the trajectories.  

 

3. Basis set sampling techniques for ab Initio MCE dynamics  

Sampling a basis of Gaussians such that it would represent well the molecule wave-function for a 

long time is key to the efficiency of trajectory based methods.  However, there are several problems 

which make sampling difficult.  Firstly, full sampling of the initial wave packet in systems with many 

degrees of freedom is practically impossible.  Secondly, in multidimensional systems the Gaussians 

run away from each other, their overlaps tend to zero, and the coupling between them is lost very 

quickly.  Thirdly, after a while the Ehrenfest trajectories start to misguide the basis and it no longer 

follows the wave-function in phase space.  In this section we will describe the algorithms which have 

been developed to address these issues.   

 

3.1 Bit-by-bit propagation.  

Bit-by-bit propagation addresses the first problem mentioned above.  Often, a multidimensional 

wave-function is complicated and cannot be easily represented on a small basis of coherent states.  

One can however decompose it into a superposition of a number of coherent states by inserting the 

coherent state identity operator  
 

 00
00

2

00 ,
2

,
,ˆ PR
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PR 


 M

d
I  as follows   
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Following this, one can propagate each Gaussian  00 ,PR  in the expansion (3.1.1) individually 

and represent the total time dependent wave-function as a superposition  
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The advantage is that the propagation  00

ˆ

,PR
tH

i

e


 of a Gaussian wave packet  00 ,PR  

can be efficiently done on a small compressed basis initially biased to  00 ,PR  as will be 

described in the section 3.2.  This idea, which is very similar to the semiclassical initial value 

representation22-26 (IVR), has been previously used for quantum propagation in ref 27 and in the 

previous version of MCE in ref 14.  Therefore, IVR (3.1.2) implements a useful strategy of 

decomposing a complicated problem into a number of relatively simple tasks, which can be 

performed in parallel.  Although IVR and basis set bias do not constitute any formal approximations, 

in practice for any finite basis set size N the procedure is accurate only for some time (perhaps 

rather short), which nevertheless can be sufficient for reproducing the physical properties of the 

system. 

 

3.2 Swarms of trajectories and coherent state trains.  

Once the initial wave-function is decomposed into “bits” each of them should be sampled with a 

basis set and propagated.  The use of trajectory swarms and coherent state trains addresses the 

second problem of creating a basis of overlapping TBFs which stay close to each other.  Usually, the 

initial positions and momenta of TBFs are chosen according to some semi-classical distribution, such 

as the Wigner function28 or Husimi Q representation29. Such ensembles indeed describe the 

properties of the initial wave-function.  In a multi-dimensional system however, the basis Gaussians 

selected this way will be very far from each other in phase space, and for any realistic size of a basis 

set there will be no overlap and interaction between Gaussians even at the initial moment. This does 

not present a problem in many cases but if we want to move from a semi-classical to a more 

quantum description, we should use the basis where the TBFs are interacting providing a transfer of 

quantum amplitudes between them.  
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 The simplest way to create a basis of interacting Gaussians is to use a compressed swarm of 

trajectories. In this approach, each principal trajectory originating at the centre of the “bit” carries a 

swarm of satellites, which is placed in its close vicinity providing better sampling and additional 

flexibility for the wave-function in this part of the phase space. The initial conditions for the principal 

trajectories are generated as above (i.e. from Husimi or Wigner distribution); the initial conditions 

for the satellites are taken very close to those for the principal trajectory13 with random shifts in 

position and momentum, ΔR and ΔP, generated according to a distribution  

                          
 

    
        ,                       (3.2.1) 

where   is a compression parameter. The value of   should be carefully optimized for each 

particular case. The basis is optimal when the overlaps between TBFs in the swarm are in the region 

of 0.6-0.7. The problem is that, in anharmonic systems, these overlaps will quickly go down to zero 

once the TBFs start moving and as soon as the basis Gaussians are no longer coupled to each other 

the propagation will yield the semi-classical result29. Therefore, for smaller values of the parameter 

 , the basis will be efficient in the beginning, but the interaction between trajectories will disappear 

it the later times of dynamics. In the opposite case, the basis will be overcomplete in the beginning, 

as the initial basis functions will be practically indistinguishable.  This basis can however become 

efficient at later times of dynamics as the trajectories run slightly away from each other. Thus, the 

value of   determines a window in which the swarm basis is optimal.  

The basis can be further improved by using coherent state trains6,12,13, in which additional 

TBFs are placed along the same trajectory but with a time-shift        , as shown in Figure 1.  This 

greatly expands the basis set at very little computational cost: the most expensive part of on the fly 

dynamics is electronic structure calculations, and all TBFs in a train are moving along the same 

trajectory using repeatedly the appropriate electronic structure data, which needs to be calculated 

only once.  An additional advantage of a train basis set is that the interaction between TBFs in the 

train is preserved during the run. 

 Expanding the wave function as a sum of “bits” (3.1.2) and propagating each bit 

independently is not an approximation, but simply a way to exploit the linearity of the Schrödinger 

equation.  Bit-by-bit propagation is accurate only on a short time scale, but the accurate propagation 

time can be prolonged if the bits are repeatedly branched by reexpanding them according to (3.1.2) 

into a new swarm basis.  However this procedure will rapidly increase the number of bits and the 
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computational cost.  In the next section another way of branching the wave function, which is suited 

to the nonadiabatic dynamics, will be presented.   

 

3.3  Ab Initio Multiple Cloning Algorithm 

The Ehrenfest basis set is guided by an average potential, which can be advantageous when 

quantum transitions are frequent. However, it becomes unphysical in regions of low non-adiabatic 

coupling when two or more electronic states have significant contributions to the Ehrenfest 

configuration (1.2): in this case, the difference between the shapes of the potential energy surfaces 

for different electronic states should lead to branching of the wave packet. 

In order to reproduce bifurcations of the wave-function after leaving the non-adiabatic 

coupling region, we introduced the so called Ab Initio Multiple Cloning (AIMC-MCE)6 algorithm, 

which was very much inspired by the well-established Ab Initio Multiple Spawning (AIMS)1,30,31.  

Cloning addresses the problem of basis misguiding by way of the cloning procedure illustrated in 

Figure 1. After a cloning event, an Ehrenfest configuration 
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and 
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that is, the appropriate basis function is replaced by two basis functions, one of which is now guided 

by a single potential energy surface, and another by an Ehrenfest force for the remaining electronic 

states.  
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The first clone configuration has nonzero amplitudes for only one electronic state, and the 

second clone contains contributions of all other electronic states. The amplitudes of the two new 

configurations become:  

 
2

)(
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)( 1',' n

Inn

n

Inn accacc  ,                   (3.2.4) 

so that the contribution of the two clones n   and 'n   to the whole wave-function (1.4) remains 

the same as the contribution of original function: 

 '' '' nnnnnn ccc   .                 (3.2.5) 

We apply the cloning procedure shortly after a trajectory passes near a conical intersection, 

when the non-adiabatic coupling is sufficiently low and, at the same time, the so-called breaking 

force  
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which is the force pulling the I-th state away from the remaining states, is sufficiently strong. 

The cloning procedure is very much in spirit of the spawning used in the AIMS approach. But, 

while the AIMS and AIMC-MCE methods have similar computational cost, the advantage of cloning is 

in exploiting Ehrenfest configurations: in the AIMC-MCE method, the non-adiabatic population 

transfer between electronic states is possible not only in a small vicinity around conical intersections, 

as in AIMS, but over the entire relevant phase space. This can be important when conical 

intersections are not clearly localized. The AIMC-MCE algorithm also does not require any back-

propagation of the spawned/cloned basis functions, unlike many1 (but not all32,33) implementations 

of spawning. 

 

3.4 Tunnelling 

The tunnelling of the hydrogen atom can play an important role in many photodynamic 

processes. As it was mentioned above, all variants of MCE are fully quantum methods because 
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classical trajectories are used only to propagate the basis, while the amplitudes  tcn  
are found by 

solving time dependent Schrodinger Equation.  When Gaussian basis functions are present on either 

side of the potential barrier, the coupling between them can provide quantum tunnelling through 

the barrier.  In the case of direct ab initio dynamics however, the trajectories do not overcome the 

barrier. A further consideration is that the basis should be kept relatively small.   As a result, no basis 

functions normally would be present on the other side, and they must be placed there “by hand” in 

order to take tunnelling into account.  

Based on the ideas34,35 previously used in the AIMS method, the algorithm illustrated in 

Figure 2 was  developed36 to include tunnelling in AIMC-MCE calculations. We consider here, as an 

example, the photodissociation of the N-H bond in pyrrole, although this algorithm can be applied to 

the simulation of any process with a distinctive tunnelling coordinate.  

Firstly, the usual AIMC-MCE trajectories are calculated and turning points, where the 

distance between the hydrogen atom and the radical reaches a local maximum, are identified.  

Following this, for each of these turning points the shape of the potential barrier is calculated: the 

length of N-H bond is increased keeping all other degrees of freedom frozen, potential energies are 

calculated, and the point on the other side of the barrier with the same energy as in the turning 

point is found. If this point lies farther from the turning point than a set threshold, it is assumed that 

tunnelling is not possible here, as the potential barrier is too wide. Otherwise, it is used as a starting 

point for an additional AIMC-MCE trajectory. The new trajectory is calculated both forward and 

backward in time, and the initial momenta are taken the same as in the turning point ensuring that 

new trajectories have the same total classical energies as their parent trajectories. This is exactly the 

procedure used in the multiple spawning approach, thus the method combines cloning for non-

adiabatic events and spawning for tunnelling events. The forward propagation of new trajectories 

often involves branching as a result of cloning; backward propagation is performed without cloning 

and for a sufficiently short time, until the new and the parent trajectories separate in phase space.  

 

3.5 Solving quantum equations for the amplitudes of Ehrenfest configurations. Post processing.  

The ideas described above have been implemented in several codes, including ab initio direct 

dynamics programs such as the Stanford AIMS code.  All implementations of the AIMC-MCE 

algorithm run a large number of Ehrenfest trajectories independently which are allowed to clone 

and tunnel creating new branches.  At this stage the required total CPU time may reach hundreds of 
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years.  Because the trajectories are independent however, all the branches are able to be run in 

parallel on a large number of processors.   When all the trajectories are calculated, we solve Eq. 

(2.1.18) for quantum amplitudes  tcn
 in a basis of coherent state trains, which have cloned and 

tunnelled as described above, forming a basis of several trains.  The program for solving the 

equations for  tcn  simply reads the data accumulated during long and expensive direct dynamics 

calculations and does not require much CPU time at this stage.   

 

4.  Computational results 

4.1 Model tests 

To verify the sampling techniques described above we report an original set of model tests using the 

benchmark of the Spin-Boson model, which is a generic paradigmatic model for quantum 

dissipation, describing a two level (spin ½) system with donor and acceptor states               

linearly coupled to a bath of harmonic oscillators. The Hamiltonian is given by 

    
          

          
  (4.1.1) 

 

where the bath Hamiltonian    and the system-bath coupling Hamiltonian    are expressed in mass 

weighted coordinates as  

    
 

 
   

    
   

  

 

 (4.1.2) 

        

 

  (4.1.3) 

 

Both the reduced asymmetry parameter,  , and the coupling parameter between the two spin 

states,  , can be assumed to be constant. The coupling between electronic states and the nuclear 

bath is given by   , which is provided by the bath spectral density 

     
 

 
 

  
 

  
        

 

 (4.1.4) 
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The spin boson model can be used to simulate many different dissipation driven systems, from 

decoherence in qubits passing through entanglement gates37 to electron transfer in the condensed 

phase38. The spin boson model is also a very useful test for simulation methods due to its high 

dimensionality and the comparative simplicity of the Hamiltonian and as such it has been used to 

test, among others, the path integral method of Makri39, the method of semiclassical initial value 

series by Martin-Fierro and Pollak40, the semiclassical self-consistent approach by Stock41 and 

notably the multi-layer multiconfigurational time dependent Hartree (ML-MCTDH) approach by 

Wang and Thoss42-44.  

As has been already mentioned above, two versions of the MCE method have been 

developed. The first version, MCEv1, is mostly applied for model systems but the second version, 

MCEv2, is based on independent Ehrenfest trajectories and is in the core of the direct dynamics via 

AIMC-MCE approach.    

The MCEv1 method was tested14 against the spin boson model using the Ohmic form of the 

spectral density with an exponential cutoff, given by  

      
 

 
            

 

(4.1.5) 

where    is the so-called Kondo parameter and    is the cutoff frequency. The bath is discretised 

over      degrees of freedom as in ref 45 and as such, the frequencies and coupling coefficients are 

given by 

           
 

    
             (4.1.6) 

and 

      
    

    
            (4.1.7) 

 

where    is the maximal frequency, taken to be       . In order to calculate thermally 

averaged populations, the “bits” (3.1.1) were chosen from a normal distribution sampled with 

    
  

    .  Then a swarm of Gaussian basis functions was created for each “bit” by sampling 

from a normal distribution around its centre (details of this sampling are given in full in ref 14). To 
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improve convergence, a number of repeat calculations      were carried out by resampling the the 

“bits” and the Gaussian basis functions. 

It was shown14 that the MCEv1 formulation was capable of simulating the spin boson model 

with very many degrees of freedom accurately, and compared against results gained from the 

MCTDH simulations of Wang44 and the ML-MCTDH simulations of Wang and Thoss42,43.  Using only 

bit-by-bit propagation and a compressed swarm of basis Gaussians, the MCEv1 approach gave 

results which were almost indistinguishable from the MCTDH benchmark.   

The MCEv2 formulation has been shown to be capable of accurately simulating the short 

time dynamics of pyrazine, which determines its Franck-Condon spectrum11,46.  The situation is more 

complicated however in the case of model systems with high dimensionality and long-time 

dynamics, such as the spin boson model.  The separation of the electronic state coupling and the 

coupling between the trajectories means that in some systems the MCEv2 basis set does not 

adequately describe quantum dynamics in phase space, meaning that extra care needs to be taken 

in constructing and propagating the basis set. This is the case with the spin boson model, as 

demonstrated in Figure 3, which compares the results of MCEv2 calculations47 with the MCTDH 

benchmark used in the tests for MCEv1. The parameters of calculations using   as the unit of energy 

were the following: for symmetric wells                            and       with 

        degrees of freedom; for asymmetric wells                         

    and         with         degrees of freedom. Figure 3 (A) shows the population 

differences calculated using MCEv2 in a basis of trajectory swarms (this method which uses no train 

basis sets is referred to below as standard MCEv2), using 50 trajectories to construct the swarm in 

the symmetric case and 200 trajectories to construct the swarm in the asymmetric case. Results 

were averaged over       = 256 repetitions using the same sampling procedure to construct the 

basis sets as was used for MCEv1 earlier. One can see that the size of the oscillations in the 

population difference for MCEv2 is large in comparison to those from the MCTDH benchmark for 

both the symmetric (A I) and asymmetric (A II) cases. 

Simple independent Ehrenfest trajectories, used by MCEv2, misguide the basis set. In this 

particular case the trajectories do not spread out sufficiently, acting as almost a single basis function 

for both the symmetric and asymmetric cases. By increasing the size of the basis set during 

propagation through the use of the cloning procedure described in section 2.3, this can be mitigated. 

Cloning can however cause the basis set to grow to sizes which make simulation very difficult and 

time consuming, and so the number of repetitions was reduced to      = 100 and a limit was placed 
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on the maximum number of cloning events allowed for each trajectory in the initial swarm. While 

the imposition of this limit is necessary to ensure that the computational cost of the simulation does 

not become too cumbersome, it can be implemented without too large an effect on the accuracy of 

the results due to the fact that the population of a trajectory drops after each bifurcation.  This 

means that a trajectory becomes low-populated after several cloning events making further 

improvement of sampling by applying additional cloning to this trajectory unpractical. In the case of 

symmetric wells, the maximum number of cloning events was set to        per initial trajectory, 

as in this case the probability of a cloned trajectory undergoing further cloning events is equal for 

the trajectories on both states. This being the case, the basis set will grow by a factor of up to       

assuming each of the initial trajectories and its subsequent clones undergo the maximum allowed 

number of cloning events. In the case of the asymmetric spin boson model however more cloning 

events can be allowed per trajectory, as for this system the wave-function as a whole is decaying 

onto an acceptor state and so once the cloned basis functions are placed wholly onto the two states 

the probability of the cloned basis function on the acceptor state undergoing further cloning is 

negligible; thus it will only be the function placed on the donor state that will experience further 

cloning events, meaning the basis set will grow instead by up to a factor of       . As such in this 

case        cloning events are allowed per initial trajectory. Applying cloning to the basis set gives 

an improved result, as shown in Figure 3 (B). However in both symmetric and asymmetric cases the 

oscillations are still too large, meaning that cloning alone does not give a sufficient improvement to 

the MCEv2 result.  

We next look at the impact of using the coherent state trains presented in Section 3.1 to 

construct our basis. As stated earlier, the use of this approach ensures the preservation of the 

interaction between basis functions while also greatly increasing the area of phase space initially 

covered by the wave-function, and so it is expected that the result would be greatly improved. Trains 

were constructed as series of 20 TBFs separated by a time displacement of            for the 

symmetric case and           for the asymmetric case. Swarms of 20 coherent state trains were 

used giving a total of 400 TBFs in the basis set. The results were averaged over       = 100 repeat 

calculations. Figure 3 (C) shows that for the symmetric case the results are almost indistinguishable 

from the MCTDH results. However for the more difficult asymmetric case there is only agreement 

over short timescales (   1.25     ), with the oscillations greatly dampened as the wave-function 

decays onto the acceptor state. 

Combination of trains with cloning is more successful, yielding a good agreement between 

the MCEv2 result and that of the MCTDH benchmark for both the symmetric and asymmetric cases 
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of the spin boson model, as demonstrated in Figure 3 (D). To deal with the constantly growing basis, 

the trains here were constructed as a series of only 10 TBFs. Swarms of 10 and 20 coherent state 

trains were used for symmetric and asymmetric cases respectively, and the restrictions on the 

number of cloning events were applied as above.  

One can see that the results of the MCEv2 calculations in Figure 3 (D) are practically 

indistinguishable from those given by MCTDH and thus the accuracy of MCEv2 matches that of 

MCEv1.  This demonstrates that a combination of coherent state trains with cloning is capable of 

accurately propagating the wave-function for a model system, while each of these basis set 

improvements may not be sufficient on its own.  This conclusion is important because in our ab initio 

direct dynamics calculations we will rely the same sampling techniques verified in this model 

calculation.  A more detailed account of the model calculation can be found in the ref 47.  

 

4.2 Direct dynamics calculations 

As short time convergence of MCE calculations can be achieved and has been tested on the 

model systems as described in section 4.1 above, one can be reasonably confident in the quality of 

direct dynamics.  In this chapter several previously reported ab initio direct dynamics “on the fly” 

MCE simulations  are reviewed.  The approach was first tested on the calculations of the 

photodynamics of ethylene after * excitation6.  Then, the photodissociation of pyrrole was 

investigated7,36. Finally, to push the limits of the ab initio MCE method, simulations were performed 

of the photodynamics of dendrimer building blocks19.  

The simulation of the dynamics of ethylene and pyrrole was carried out with a modified 

version of AIMS-MOLPRO48, which was extended to include Ehrenfest dynamics, using electronic 

structure data given the complete active space self-consistent field (CASSCF) calculation at  SA3-

CAS(2,2)/6-31G**  and  SA4-CAS(8,7)/cc-pVDZ  levels of theory respectively. For dendrimers, the 

MCE-TDDB method was implemented together with the Collective Electron Oscillators (CEO) 49-52 

electronic structure code. Excited state energies, gradients and non-adiabatic couplings were 

calculated on the fly using the Austin Model 1 (AM1) 53 semi-empirical level of theory in combination 

with the configuration interaction singles (CIS) formalism. This approach has worked well in the 

previous studies of similar systems54-56.  
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The width parameter   of the Gaussian trajectory functions was taken to be 4.7, 22.7 and 

19.0 Bohr-2 for hydrogen, carbon and nitrogen atoms respectively,  as suggested in ref 5.  For MCE 

and AIMC calculations with train basis sets, each initial TBF generated a single train with a time-shift 

of about 0.6 fs which corresponds to a nearest neighbour overlap of 0.6 - 0.7. For the AIMC-MCE 

simulations, cloning was applied to TBFs when the breaking acceleration of Eq. (3.2.6) exceeded a 

threshold of 5x10-6 a.u. and the norm of the non-adiabatic coupling vector was simultaneously less 

than 2x10-3 a.u. In order to control the growth of the basis set, each TBF was allowed to clone at 

most 3 times.  

Additional computational details can be found in the original works6,7,19,36.  

 

4.2.1  Initial implementation and test of AIMC-MCE. Photodynamics of ethylene. 

Ethylene is the most simple molecule with a C=C double bond and has been extensively studied both 

experimentally and computationally57-66. This makes the photodynamics of ethylene an ideal subject 

for benchmark calculations. We are comparing the results given by the MCE (which refers to ab initio 

MCEv2), AIMC-MCE (i.e. ab initio MCEv2 with cloning and train basis sets) and AIMS methods, 

including the influence of the use of the coherent state train basis. In all cases, the simulations were 

restricted to two electronic states, S0 and S1, and initiated with 200 distinct initial TBFs, sampled 

randomly from a Wigner distribution28 for the ground vibrational state in the harmonic 

approximation, and then projected onto the S1 state. This is equivalent to 200 repetitions in the spin-

boson simulations described above. The trajectory swarms were not applied here, and the MCE 

calculations were run in a basis of a single coherent state train. In the case of AIMC-MCE 

calculations, the size of the basis increased every time that one of TBFs in the train passed through a 

cloning point, and each of the initial TBFs gave rise to an average of 4 further TBFs through this 

process. This is compatible with the basis set growth rate in the AIMS calculations, where each initial 

condition spawned an average of 4.1 new TBFs.  

An example of a wave-function spreading over a train basis set of 200 basis functions is 

shown in Figure 4. The initial population is placed on the central TBF of the train. As time progresses, 

the window of TBFs that are being included in the calculation also shifts forward along the 

trajectory. Thus, the wave-function stays localized in the middle of the train but gradually spreads 

over nearby TBFs.  
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Figure 5 compares the average ground-state population as a function of time given by 

several types of calculations:  1) The simple Ehrenfest approach without basis set trains and cloning;  

2) MCEv2 with train basis sets;  3)  AIMC-MCE method, which is MCEv2 with basis set trains and 

cloning;  4) Ab initio Multiple Spawning (AIMS) benchmark. The ground-state population evolution 

predicted by the MCE calculations with and without train basis functions is very similar, except that 

the results are somewhat smoother when the train basis set is used. One can conclude that for this 

particular problem where the conical intersection is highly peaked (and thus non-adiabatic 

transitions are both ultrafast and ultra-efficient) the benefits of the train basis set expansion are not 

very pronounced.  As was shown in section 4.1, the train efficiently smooths out the oscillations in 

the population, which is not an issue for ethylene.  

The initial population dynamics predicted by all methods are similar. However as the ground 

state population increases, the predictions begin to deviate, and by 100 fs they are quite different. 

The relaxation rate predicted by AIMC-MCE is significantly faster, and similar to the rate given by 

AIMS benchmark calculations.  This behaviour is as expected: when the population on the ground 

and excited states are nearly equal, the Ehrenfest dynamics of the TBFs becomes that of the average 

of the two electronic states. This will tend to keep the TBFs in the region near the conical 

intersection longer and population transfer in both directions (to the upper state and to the lower 

state) will be equally probable. This is a manifestation of the violations of detailed balance which are 

a well-known difficulty in pure Ehrenfest dynamics67,68. The cloning procedure in AIMC-MCE solves 

this problem by allowing the TBFs to separate and evolve on adiabatic states.   

 

4.2.2  Photodissociation of Pyrrole with AIMC-MCE. 

Photodynamics of pyrrole is an important prototype for a number of biologically relevant 

photochemical processes.  For example, light harvesting in plants, fluorescence of living organisms, 

and visual reception all involve photochemical reactions that include electronic excitation and 

subsequent electronically non-adiabatic dynamics. Recently, significant progress has been made in 

experimental ultrafast time resolved spectroscopy studies of various photochemical reactions, 

focused on biologically related molecules. The derivatives of heteroaromatic molecules such as 

pyrrole, imidazole, and phenol are important chromophores of many biologically relevant molecules. 

The mechanisms of their photochemistry have been a focus of experimental69-71 and theoretical72-79 

attention. It was suggested that the N-H/O-H bond fission was an important channel in the 

photodissociation dynamics, and the role of the 1πσ* states in this process has been emphasized.80-88  
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The AIMC-MCE approach was applied7,36 to simulate the dynamics of pyrrole following 

excitation to the first excited state. In particular, the total kinetic energy release (TKER) spectra and 

velocity map images (VMI) were calculated. The TKER and VMI measurements can provide 

invaluable information on the dynamics of various bond fission reactions, but their numerical 

calculation is a difficult task because they reflect important details of quantum dynamics in 

multidimensional systems, where realistic calculations beyond simple reduced dimensionality 

models are challenging.   

The calculations were run both with and without taking tunnelling into account. Three 

electronic states were taken into consideration during the dynamics – the ground state and the two 

lowest singlet excited states. The initial Ehrenfest configurations were randomly sampled from the 

ground state vibrational Wigner distribution28 in the harmonic approximation. The transition from 

the ground to the first excited state is symmetry-forbidden in the Franck-Condon approximation and 

only occurs due to the coordinate-dependence of the transition dipole moment. The photoexcitation 

was approximated by simply lifting the ground state wavepacket to the excited state, as would be 

appropriate for an instantaneous excitation pulse within the Condon approximation. Of course, the 

details of the initial photoexcited wavepacket are not completely accounted for in this 

approximation (which assumes the transition dipole moment for the transition is finite and 

independent on nuclear coordinates).  Although we expect the simplest model of the initial wave 

packet to be qualitatively correct, we are working on more rigorous and accurate ways to treat initial 

excitation, which would be able to account for the shape of the pump pulse.  

Initially 900 non-interacting AIMC trajectories were run for 200 fs or until the dissociation 

occurred, defined as an N-H distance exceeding 4.0 Å. For a small number of trajectories, simulations 

exhibiting N-H dissociation were carried out to the full 200 fs in order to investigate the dynamics of 

the radical. For all initial trajectories, as well as for their branches resulting from cloning, the turning 

points for the N-H bond length were identified and the widths of the potential barrier were 

calculated. Additional trajectories on the other side of the barrier were placed if the width of the 

barrier did not exceed 0.5 Bohr, which corresponds to an overlap of  0.3 between Gaussian basis 

functions. The new trajectories were propagated backward for 20 fs to accommodate the train basis 

set, and forward until dissociation occurred or until the trajectory time exceeded 200 fs.   

For each initial trajectory with all its branches and tunnelling sub-trajectories, Eq. (2.1.18) 

was solved using train basis set of N = 21 Gaussians per branch. The total size of the basis was 
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constantly changing because of the inclusion of new branches. The final amplitudes nc  provided 

statistical weights for each of the branches, which were used in the analysis that follows.  

 As a result of cloning, 900 initial configurations gave rise to 1131 trajectory branches. This 

corresponds to an average of  0.25 cloning events per initial trajectory. For these branches, 7702 

local maxima of N-H bond length were found, of which 2376 have been identified as possible 

tunnelling points. For all these points, the sub-trajectories were run, which finally gave 3203 

additional branches, 4334 branches in total. The majority of these branches underwent N-H 

dissociation within our computational time of 200 fs: the total statistical weight of dissociative 

trajectories was 92%, of which 53% is the contribution of tunnelling sub-trajectories.  

The calculated kinetic energy distribution of the ejected hydrogen atom is presented in 

Figure 6 together with the experimental TKER spectrum69. Both distributions clearly exhibit two 

contributions: a large peak at higher energies, and a small contribution at lower energies.  One can 

see that adapting the basis set to tunnelling leads to a significant increase in the dissociation yield in 

the low/middle-energy region of the spectrum. After the renormalization, this increase shifts the 

high-energy peak of TKER spectrum toward the lower energies by about  1000 cm-1 and makes the 

low-energy peak slightly more pronounced. While the calculated energies are still on average about 

1.5 times higher than experimental values, this difference can be ascribed to the lack of dynamic 

electron correlation in the CASSCF approach. The comparison of CASSCF and MS-CASPT2 energies 

for pyrrole indicates7 that the use of  more accurate MS-CASPT2 potential energy surfaces would 

lead to a shift in the kinetic energy peak of  1800-1900 cm-1 towards lower energies, significantly 

improving the agreement with experimental results.   

Analysis of the electronic state amplitudes in the Ehrenfest configurations (1.2) shows that 

the bifurcation of the wave-function while passing through a conical intersection plays an important 

role in the formation of a two-peak spectrum: the high kinetic energy product is predominantly in 

the ground state, while the low energy peak is formed by mostly low-weight branches with 

substantial contribution from excited electronic states. Figure 7 presents an example of such a 

bifurcating trajectory. At about 55 fs after photoexcitation, this trajectory reaches an intersection for 

the first time. After passing the intersection, the ground and first excited states of the original TBF 

are approximately equally populated, so the cloning procedure is applied creating instead two TBFs, 

one in the ground state and one in the excited. At this point, the potential energy surfaces for 

ground and excited states have opposite gradients. This leads to the acceleration of the hydrogen 

atom for the TBF associated with ground state and, at the same time, slows it down for excited state 
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TBF. As a result, although both branches lead to dissociation, the kinetic energies of ejected atoms 

are significantly different: the ground state branch contributes to the high energy peak of the 

distribution in Figure 7, while the excited state branch contributes to the low energy peak. For the 

ground state branch, the remaining vibrational energy of the radical is low, so it remains in the 

ground state for the rest of the run and does not reach the intersection again.  For the excited state 

branch, the energy taken away by the hydrogen atom is lower leaving the pyrrolyl radical with 

sufficient energy to pass through numerous intersections with population transfer between the 

ground and both excited states. Naturally, quenching to the ground state will happen eventually for 

this branch but the time scale of this process is much longer than that for the dissociation, while the 

TKER spectrum is only affected by the radical dynamics until the H atom is lost.   

In order to calculate the velocity map image with respect to the laser pulse polarization, we 

must average the velocity distribution of hydrogen atoms relative to the axes of the molecule, over 

all possible orientations of the molecule:  

                                                                       (4.2.1) 

where           are Euler angles,   is the angle between the atom velocity vector v and the 

transition dipole of the molecule,          is the angle between the transition dipole and light 

polarization vectors, and            is the angle between the light polarization vector and atom 

velocity. Here we take into account that the probability of excitation is proportional to        . 

Integrating over Euler angles and replacing, as usual, the δ-function for |v| with a narrow Gaussian 

function, we obtain 

              
        

                     
 

 
                  (4.2.2)            

Figure 8 shows the simulated velocity map with respect to the laser pulse polarization 

assuming that the transition dipole is normal to the molecular plane. The simulations reproduce the 

main feature of the experimental69 velocity map image, which is the anisotropy of the intense high 

energy part. The results are also consistent with experiment in the low energy region showing an 

isotropic distribution, although admittedly the statistics of both experiment and simulation are 

poorer in the region of low energy.  

In the AIMC-MCE simulation of the photodynamics of ethylene and pyrrole described in the 

above sections, all electrons and all nuclei were treated on a fully quantum basis.  The number of 

basis functions was comparable with that used in the model simulations in chapter 4.1, and similar 



  

 
 

33 
 

sampling techniques (i.e. cloning, trains and bit-by-bit propagation) were used to improve 

convergence.  Thus, these calculations represent an example of a fully quantum treatment of non-

adiabatic dynamics in polyatomic molecules.  

4.2.3 Excitation dynamics in dendrimers with ab initio MCE-TDDB 

Dendrimers are highly branched conjugated macromolecules which possess well-defined 

regular structures with numerous peripheral groups, branched repeat units, and a core. Each of 

these components acts as individual chromophore units absorbing light at different ranges of the 

spectrum89. The -conjugation in the regular arrays of such coupled chromophore units provides an 

efficient and controllable unidirectional energy transfer in dendrimers49.  

The time evolution of electronic excitations in organic conjugated materials is determined by 

non-adiabatic dynamics involving multiple coupled electronic excited states. Following 

photoexcitation, multiple pathways to electronic and vibrational relaxation arise which involve 

energy and/or charge transfer, internal conversion, and transition density localization/delocalization. 

A large number of electronic states and intersections between them makes dendrimers and other 

large conjugated molecules a nearly ideal object for Ehrenfest based approaches: a wave packet 

undergoes frequent transition between many coupled electronic states and, as a result, its motions 

can be well described by a mean-field Ehrenfest trajectory. Electronic states can however change 

very sharply in large conjugated molecules, in particular as a result of the change in the energy order 

for the states localized on spatially separated moieties. Such changes, known as trivial unavoided 

crossings18, can frequently occur for molecules composed of multiple chromophore units, such as 

dendrimers. 

The MCE-TDDB method has been developed specifically to treat such systems.  It was 

applied19 to simulations of the excited state dynamics of a system composed of two- and three-ring 

linear polyphenylene ethynylene (PPE) chromophore units linked through a meta-substitution, as 

shown in Figure 9.  These chromophore units correspond to building blocks of more complex 

phenylethynylperylene-terminated dendrimers, such as the nanostar49,90-93.  The figure shows that 

the excited states S1 and S2 are localized on different linear fragments. The non-adiabatic couplings 

between these fragments are responsible for quantum transition from the S2 to S1 state resulting in 

the two-ring  three ring unidirectional electronic energy flow. Thus, this system is a good model 

for analysing intramolecular electronic and vibrational energy transfer between chromophore units.  
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Six singlet electronic states (S1-S6) were included in the simulations, and the excited-state 

trajectories of 150 fs duration were propagated at constant energy with a 0.02 fs time step. In order 

to generate the initial conditions for excited-state dynamics, 1 ns of ground state molecular 

dynamics at 300K was first performed with 0.5 fs time step using a Langevin friction coefficient  of 

2.0 ps-1. Snapshots of nuclei positions and momenta (conformational phase space) have been 

collected and used as initial conditions for the subsequent photoexcitation dynamics modelling. The 

excited-state trajectories have been started from these initial configurations by instantaneously 

promoting the system to the state I selected according to a Frank-Condon window: 

   2

laser

2 )(exp)( RR III Tfg  ,             

where Ωlaser is the frequency of the laser pulse, )(RI  and 
If  are the transition energy and 

normalized oscillator strength  of the Ith excited state respectively. The pulse is centred at 348 nm 

(the maximum of the absorption spectrum for the state S2) and assumed to have a Gaussian shape 

)2exp()( 22 T/tt f   with T=42.5 fs corresponding to a FWHM (Full Width at Half Maximum) of 100 

fs.  

The MCE-TDDB simulations were performed for 100 trajectory swarms consisting of 10 

trajectories each: the principle one and 9 satellites. The initial conditions for satellites were 

generated according to Eq. (3.2.1) with  =1000, which corresponds to the initial overlap of about 

0.93 between the principle and satellite trajectories. For each trajectory in a swarm, the coherent 

state train basis of 11 basis functions was used. The results were compared with those given by the 

NA-ESMD (non-adiabatic excited-state molecular dynamics) surface hopping method94,95, which is 

based on Tully’s fewest-switches (FSSH) algorithm96-98. The NA-ESMD calculations were performed 

for a sets of 100 excited-state trajectories with the same initial conditions as for principal trajectories 

in MCE-TDDB calculations.  

Figure 10 presents the average populations of the lowest four electronic states as a function 

of time calculated using the MCE-TDDB method, and their comparison with the results given by NA-

ESMD surface hopping with and without the instantaneous decoherence corrections99. One can see 

that although all three dependencies are generally similar, the rates of S2 S1 relaxation are 

sufficiently different, and the rate given by the MCE calculations is in between two limiting cases of 

surface hopping with and without decoherence corrections. This can be an indication that the MCE 

approach naturally accounts for decoherence and, unlike surface hopping, do not require any 

additional ad hoc corrections. More details can be found in ref 19. MCE-TDDB can also be 
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systematically improved. In particular, no cloning was allowed in our simulation, as we assumed that 

the Ehrenfest approach should be adequate for a system with multiple crossings. This, however, 

should be verified and we are working on introducing an efficient cloning algorithm here.   

 

5. Summary and future prospects 

In this paper we review the Multiconfigurational Ehrenfest method as a technique to simulate 

quantum multidimensional systems. MCE uses Ehrenfest trajectories to guide the basis of Gaussian 

Coherent States to simulate electronically non-adiabatic dynamics, treating nuclear degrees of 

freedom also on a fully quantum level.  Two versions, MCEv1 and MCEv2, have been developed.  The 

MCEv1 method, which uses interacting trajectories that “push” each other, is an efficient technique 

to simulate model systems, however it is not well suited to the case of direct dynamics. This being 

the case, the MCEv2 method has been developed which uses independent Ehrenfest trajectories.  

While such trajectories misguide the basis somewhat, this can be corrected, and a number of 

sampling techniques, such as “bit-by-bit” propagation, swarms and train basis sets, basis tunnelling, 

and trajectory cloning, have been developed by us in order to address this issue. These techniques 

have been tested for the spin-boson model and it has been shown that MCEv2 converges to the 

exact result.  A direct dynamics Ab initio Multiple Cloning algorithm has been developed, which 

performs fully quantum MCEv2 simulations “on the fly” using the sampling techniques proven by 

applications to model systems. In addition to good sampling methods we have used interpolations 

for nondiagonal coupling matrix elements that do not need any additional information and new 

electronic structure calculations.  As a result, a large ensemble of Ehrenfest trajectories can be run 

independently and solving the equations which couple the basis configurations can be done later as 

a “post processing”.  We have performed a number of direct dynamics simulations which treat both 

electrons and nuclei on a fully quantum level, albeit on a short time scale of several hundred 

femtoseconds.    

Several new projects are now in progress and will be reported later 

1) AIMC-MCE  will be systematically applied to simulate ultrafast electronically non-adiabatic 

dynamics of hydrogen photodetachment in small aromatic molecules, such as pyrrole and azoles 

(imidazole, pyrazole etc), and in larger biomolecule analogues (e.g. nucleobases and amino acids) 

such as indoles, phenols and thiophenols80-82,85,100-103, which are important because they serve as 

building blocks of larger biomolecules.  For example, it is believed that hydrogen photodetachment 



  

 
 

36 
 

plays an important role in the photostability of proteins104.  The photodynamics of aromatic 

molecules has been studied experimentally by imaging techniques pioneered by M.Ashfold80-88,100-

103,105-110, and AIMC-MCE  simulations can help to reach a better understanding of the mechanisms of 

hydrogen photodetachment.  Advantage will be taken of the fact that AIMC-MCE  theory is 

extremely well suited for comparison with present gas phase time resolved imaging 

experiments69,107,110-118.  Both theory6,7,9,10 and experiments69,107,110-118 probe the evolution of an 

initially localised quantum wave packet on the sub-picosecond time scale.   

2) The AIMC-MCE method will also be applied to simulations of hydrogen photodetachment in 

condensed phase pump-probe experiments. By comparing the dynamics of hydrogen 

photodetachment in gas and condensed phase, we will verify the recent hypothesis that the 

dynamics in solution are often similar to those in the gas phase on ultrafast timescales 119-121.   

3) We are now working on the implementation of the cloning algorithm for MCE-TDDB 

calculations involving a large number of electronic states aiming at simulations of the 

photodynamics in large conjugated molecules. Along with direct dynamics, the MCE approach will be 

applied to models, such as Frenkel-Holstein and Pariser–Parr–Pople, which are commonly used in 

the theoretical study of excitations in conjugated polymers (see, e.g., refs 122-126).  

4) The AIMC-MCE method has already been applied127 to simulations of emerging ultrafast time 

resolved X-ray scattering experiments128, which became possible with the appearance of new 

powerful light sources and synchronizing X-ray scattering probes with a femtosecond laser pumps.  

Time resolved X-ray experiments allow one to observe images of a molecule in motion frame by 

frame with a femtosecond time scale resolution between laser pump and X-ray probe pulses.  More 

work is in progress to expand these ideas. 

The MCE method for model systems has been implemented in several codes in our group.  

Its direct dynamics MCE/AIMC-MCE and MCE-TDDB versions were implemented together with AIMS 

and CEO packages respectively.  The formalism itself is quite straightforward and we hope that this 

review can help other groups to use similar ideas alongside with other trajectory based techniques 

of simulations of ultrafast photoprocesses. 
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Appendix 

A1. Ehrenfest force in adiabatic basis or TDD basis 

In order to derive Eq. (2.2.8) for the Ehrenfest force in an adiabatic basis, let us rewrite the Eq. 

(2.1.11) for the force as 

        
 

    

             

           (A1.1) 

where       is the electronic part of nth basis function (see (1.2)). Here we use the fact that diabatic 

wave-functions I  in (2.1.11) do not depend on R, and apply the approximation similar to (2.2.2), 

replacing the averaging over    by the operator          for the centre of Gaussian:  

                                        (A1.2) 

 Equation (A1.1), which represents a particular case of the Hellman-Feynman theorem129,130,  

is valid in both diabatic and adiabatic basis sets; the force here is written as an expectation value of 

an operator regardless of a particular representation of electronic wave-functions       . Thus, we 

can rewrite Eq. (A1.1) representing       in the basis           : 

       
      

   
         

 

    

                   

   

 

           (A1.3) 

Taking into account that            are the eigenfunctions of the operator        , we get 

 

    

                          
 

    

           

           (A1.4) 

and 
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           (A1.5) 

Then comparing these two equations, we obtain: 

         
 

    

                

 
 

    

            
 

    

                       

          
 

    

                   

           (A1.6) 

Substituting (A1.6) into (A1.3) and taking into account that NACMEs (2.2.5) are anti-symmetric 

    
   

     
   

 , we come to the equation (2.1.7) for the Ehrenfest force in an adiabatic or TTD 

basis: 

       
      

    

    

       

 

    
      

   
   

   
                 

   

   

           (A1.7) 

 

A.2 The evolution of Ehrenfest amplitudes in TDD basis 

Taking into account that the overlaps in TDD representation include both nuclear and electronic 

parts, equation (2.1.12) for the time-evolution of amplitudes takes the form 
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           (A2.1) 

 Then, substituting 
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and using, as before, (2.1.16) and approximation (2.2.2), we get  
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Taking into account that MPR nn 


, one can see that Eq.(A2.3) is exactly the same as Eq.(2.1.8) 

with effective Hamiltonian (2.1.9).  

 

A3. The approximation of matrix elements in TDDB  

First, we insert the unity 1)()( K KK RR   into the matrix elements between electronic 

states belonging to different Ehrenfest configurations: 
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where )(RK  are adiabatic  electronic eigenfunctions. Now, similar to the case of an adiabatic 

basis, using the first-order BAT expansion we can approximate the potential energy matrix elements 

as: 
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In addition to the matrix elements of the Hamiltonian, equation (2.1.18) for the time-

evolution of amplitudes cn
 also includes term    t

dt

d
t nm  , which has the following form in a 

TDD basis: 
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Inserting the unity, as above, we can express the matrix elements (A3.4) as: 
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Substituting Eq. (A2.3) for    
   

  into (A3.3), one can see that its off-diagonal terms are cancelled out 

by the terms of Eq. (A3.5). Thus, we obtain: 



  

 
 

42 
 

 

   .
,

)(*)()()(

,

)(*)()()(









JI

nJ

n

J

m

I

n

J

m

Inm

JI

n

J

m

I

n

J

m

I
n

m
n

m

Vaa
i

aa
dt

d

dt

d

R









    (A3.6) 

Calculations of the electronic populations and other electronic properties in TDD 

representation requires the evaluation of the matrix elements n

n

JKK

m

Im  )()( )()( RR , 

for which an approximation can be used similar to the one for other matrix elements between 
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Figure 1.  A sketch of the AIMC-MCE propagation scheme. First the wave-function (encircled by the 

dotted line) is represented as a superposition of Gaussian Coherent States (“bits” shown by the dark 

blue circles), each of which is propagated along its trajectory (dotted line). A train basis (light blue) is 

constructed based on each bit. After passing the intersection the trains bifurcate in the process of 

cloning.  Each bit is actually propagated on a swarm of trains.  For simplicity only the central train 

following the central trajectory is shown without satellite trajectories. 
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Figure 2. Illustration of the algorithm used to treat tunnelling in our approach. The set of solid lines 

represents the barrier, and the dashed lines are the trajectories.  (A) Identify turning point (red 

cross); (B) find a point with the same potential energy on the opposite side of the barrier (green 

cross); (C) run an additional trajectory through this point; (D) solve the time-dependent Schrodinger 

Equation in the basis of a coherent state trains moving along the trajectories on both sides of the 

barrier.  
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Figure 3 Comparison of the population differences given by different modifications of the MCE 
approach for the spin boson model with symmetric (I) and asymmetric (II) wells. All the results are 
also compared to the numerically exact MCTDH benchmark from ref 42, which is indistinguishable 
from MCEv1 results 14. (A) Standard MCEv2. (B) MCEv2 with cloning. (C) MCEv2 with a train-type 
basis set (D) MCEv2 with cloning and a train-type basis set.    
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Figure 4. An example of the spreading of a nuclear part wave-function in a train basis set. The basis 

is moving along a quasi-classical trajectory so that the maximum of the amplitude remains in the 

middle of the train. 
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Figure 5. Calculated ground-state population dynamics of ethylene following * excitation. 

Compared are the results obtained using MCE approaches against those given by Ab Initio Multiple 

Spawning (AIMS). Green – simple Ehrenfest dynamics; black – MCE in a coherent state train basis set 

of 100 TBFs; red – AIMC-MCE; blue – AIMS. The results are averaged over 200 sets of initial 

conditions.  
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Figure 6. Total kinetic energy release (TKER) spectrum for the photodissociation of pyrrole calculated 

with (blue) and without (red) taking tunnelling into account. Both spectra are averaged over the 

same ensemble of initial configurations and smoothed by replacing delta-functions with Gaussian 

functions             . Part (A) presents the spectra before normalization showing an increase 

of the yield in the low- and middle-energy regions.  Part (B) presents the same spectra after the 

normalization, and the inset shows the experimentally measured spectrum69.   
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Figure 7. An example of trajectory bifurcation at a conical intersection in the simulations of the 

photodissociation of pyrrole. Electronic state populations (A), the kinetic energy of H atom (B) and 

N_H distance (C) as a function of time. Fast and slow branches are referred as (1) and (2) 

respectively. Dotted vertical line indicates the moment when cloning was applied.  
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Figure 8. Simulated velocity map image (VMI) for the photodissociation of pyrrole assuming that the 

transition dipole moment is normal to the molecule plane. The experimental VMI69 is shown in the 

inset. 
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Figure 9.   Model dendritic molecule, which involves two- and three-ring linear 

poly(phenylene ehynylene) units linked by meta-substitution. The figure shows the initial localization 
of the electronic excitation for the two lowest excited states. 
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Figure 10. Calculated dynamics of the model dendritic molecule shown in Fig. 9 following its 
photoexcitation. Average populations of the four lowest electronic states as a function of time. The 
figure shows the results of MCE calculations (A) and two limiting cases of surface hopping: NA-ESMD 
without (B)  and with (C) decoherence corrections99.  

 
 


