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The wake flow around a circular cylinder at Re ≈ 100
performing rotatory oscillations has been thoroughly
discussed in the literature, mostly focusing on the
modifications to the natural Bénard–von Kármán
vortex street that result from the forced shedding
modes locked to the rotatory oscillation frequency.
The usual experimental and theoretical frameworks at
these Reynolds numbers are quasi-two-dimensional,
because the secondary instabilities bringing a three-
dimensional structure to the cylinder wake flow occur
only at higher Reynolds numbers. In this paper, we
show that a three-dimensional structure can appear
below the usual three-dimensionalization threshold,
when forcing with frequencies lower than the natural
vortex shedding frequency, at high amplitudes, as a
result of a previously unreported mechanism: a pulsed
centrifugal instability of the oscillating Stokes layer
at the wall of the cylinder. The present numerical
investigation lets us in this way propose a physical
explanation for the turbulence-like features reported
in the recent experimental study by the present
authors.

1. Introduction
A circular cylinder performing rotational oscillations
around its axis in an infinite viscous fluid produces
an axisymmetric pulsed boundary layer, called a Stokes
layer. This is a flow susceptible to generate centrifugal
instabilities. The linear stability problem of this flow
configuration has been studied by Hall [1], Seminara &
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Hall [2] using asymptotic methods. A threshold for the appearance of three-dimensional
axisymmetric instability modes was determined. Riley & Laurence [3] did also stability
calculations not directly on the Stokes layer problem but considering the modulated circular
Couette flow under axisymmetric disturbances, in the narrow-gap limit. Later, Aouidef et al. [4],
Ern [5], Ern & Wesfreid [6,7] considered this flow as a limit case for the stability problem of the
classic geometry of two concentric cylinders with oscillation: the Taylor–Couette configuration
(see e.g. Chandrasekhar [8] for a review). In both cases, the control parameter is the Taylor
number, defined as

T = Ri

√
d
R , (1.1)

where Ri =ωirid/ν is a Reynolds number based on the rotational angular velocity of the cylinder
ωi. We keep the notation of the Taylor–Couette configuration, where the subscript ‘i’ stands
for inner cylinder, ri thus being the radius of the cylinder. In addition, R is the local radius of
curvature and ν the kinematic viscosity. The characteristic length scale d in the Taylor–Couette
case is the gap between the cylinders, which fixes the scale of the wavelength of the primary
instability. For the case studied by Seminara & Hall [2], however, the instability occurs in the
inner Stokes boundary layer of thickness δS = √

ν/ωi around the oscillating cylinder. They have
determined analytically, numerically and experimentally the critical values for T associated with
the onset of a Taylor–Couette-type vortex flow. Vortices evenly spaced, with a critical length λc in
the cylinder axial direction which is proportional to δS, are thus developed.

On the other hand, when a uniform flow comes across a cylinder, a prototypical two-
dimensional wake flow takes place for moderate free-stream Reynolds numbers Re = DU0/ν,
where D is the diameter of the cylinder, U0 the free-stream velocity. The well-known Bénard–
von Kármán (BvK) vortex street [9,10] results from the destabilization of the steady flow in the
wake of the cylinder and produces the periodic shedding of opposite-signed vortices with a
frequency f0, that occurs above the threshold Rec ≈ 47 [11,12]. This flow is quasi-two dimensional
up to Re � 180. In a recent work [13], we studied experimentally the problem of the forced wake
performing rotary oscillations at Re = 100. The rotational oscillation of the cylinder is prescribed
by a forcing function of frequency f and amplitude θ0 that can be written as θ (t) = θ0 cos(2π ft),
which allows the forcing to be unequivocally described using two independent non-dimensional
parameters as did by Taneda [14]: the forcing amplitude A = uθmax/U0, where uθmax = Dπ f θ0 is
the maximal azimuthal velocity of the rotational oscillation, and the ratio f/f0. We characterized
the spatial development of the flow and its stability properties following previous studies by
Thiria et al. [15], Thiria & Wesfreid [16]. A synthesis of the case study is presented in figure 1.
From the analysis of power density spectra of the flow, we gave a detailed description of the
forced wake, giving insight into the energy distribution, the different frequency components and
in particular on a continuous spectrum observed for a high amplitude of the forcing oscillation.
Furthermore, vortex structures revealed turbulence-like features such as splitting and mixing in
a spatial cascade pattern. A question remained concerning the physical mechanism present in the
bifurcation that triggers such behaviour of the wake.

We speculated on a three-dimensional centrifugal instability to be at the origin of this sequence
of transitions. A natural first attempt to test this idea is shown in figure 1, where the critical
Taylor number Tc = 165 corresponding to the instability threshold of the pure rotatory oscillating
cylinder case without crossflow studied by Seminara & Hall [2] is identified in the frequency–
amplitude phase space ( f , A) of the forced wake of D’Adamo et al. [13]. This crude estimate for
a threshold is compatible with the experimental points where the turbulent-like behaviour was
observed (low frequencies and high amplitudes of the forcing oscillation). The purpose of this
paper is to characterize in detail the existence of a three-dimensional instability and its centrifugal
nature, using analytical estimations from the two-dimensional flow and from three-dimensional
direct numerical simulations (DNS).

It is worth mentioning that centrifugal instabilities were also reported for forced flows with
different configurations. For transverse oscillations of a cylinder in a fluid at rest, Honji [17],
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Figure 1. Different flow states for the forcing parameters ( f , A) scrutinized in D’Adamo et al. [13]. Visualizations are from Thiria
et al. [15]. Solid lines represent the threshold from global to convective instability. The dotted line indicates the threshold to
centrifugal instability of the Stokes layer of an oscillating cylinder without a crossflow given by Tc = 165, from Seminara &
Hall [2]. Five-pointed star symbols show the threshold for three-dimensional centrifugal instabilities observed in the three-
dimensional direct numerical simulation (DNS) discussed in figure 5b,c. Dashed region stands for states with turbulent-like
behaviour described in [13]. (Online version in colour.)

obtained visualizations that identified three-dimensional structures produced by centrifugal
instabilities. Hall [18] performed a stability analysis of this configuration and gave a theoretical
explanation. Tatsuno & Bearman [19] investigated in detail the patterns and the structure of the
flows that result from these instabilities. Later, Elston et al. [20] addressed DNS calculations and
Floquet stability analysis for this problem.

Three-dimensional instabilities in wake flows have been studied theoretically and numerically
by Blackburn et al. [21] where it was determined that bifurcations to three-dimensionality can
occur from a two-dimensional time-periodic base state with space–time reflection symmetry
for the wake of symmetrical bluff bodies. More recently, for the case of the two-dimensional
stationary flow past a rotating cylinder, Pralits et al. [22] suggest that the stationary unstable
three-dimensional mode could be the result of a hyperbolic instability. Lo Jacono et al. [23] were
interested on the role of rotationally oscillations can modify the three-dimensional transition
in the wake of a cylinder. The frequency of oscillation was matched to the natural vortex-
shedding frequency, f + = 1, for Re = 300. They reported changes on the three-dimensional modes
from Floquet stability analysis on two-dimensional periodic flow. They found that the rotational
oscillation dramatically suppressed mode B, even for small amplitudes of oscillation. Mode A
was also damped, but not as significantly as mode B. For what they considered high rotational
oscillation amplitudes, in our notation A � 0.66 they identify a new three-dimensional transition
mode, which they called D mode, that shares the same symmetries as mode A.

Three-dimensional characteristics of forced wakes have been recently studied by Kumar et al.
[24] for the case of rotational oscillations at Re = 185 near the transition, using flow visualization,
hot-wire anemometry and PIV. Spatial distribution of lock-on regions and its relationship with
the forcing frequencies and amplitudes was determined. They also found that for certain forcing
parameters ( f +, A), the flow can be forced to become two-dimensional. Studied amplitudes
were up to A = π , a value below the threshold found in [13] by means of spatio-temporal
spectral analysis.
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To summarize, this work sets up a new view about three-dimensional instabilities in wake
flows, which have often been discussed in the case of the circular cylinder for Re> 180 as
secondary instabilities to the BvK vortex street. We organize the paper as follows: in §2, we
describe the method used for the DNS; results are presented in §3 where we determine the
three-dimensional stability threshold; in §4, we investigate the instability nature, using some
concepts of centrifugal instabilities and propose, therefore, a reduction of the complex problem;
lastly, we elaborate our conclusions in §5, showing analogies with the Taylor–Couette problem of
eccentric cylinders.

2. Problem definition for direct numerical simulation
In order to study this problem, we performed two- and three-dimensional direct numerical
simulations with Gerris free software, a parallelized tree-based adaptive solver for Navier–Stokes
equations (Popinet [25]). The code combines an adaptive multi-grid finite volume method and
the methods of immersed boundary and volume of fluid (VOF). The basic equations are the
incompressible continuity equation and Navier–Stokes equations, which can be written in terms
of the velocity u = (u, v, w) and pressure p fields as

∇ · u = 0

and
∂u
∂t

+ (u · ∇)u = −∇p
ρ

+ ν∇2u

⎫⎪⎬
⎪⎭ (2.1)

The domain is spatially discretized using cubic finite volumes organized hierarchically as an
octree. Along with the forcing problem parameters, a two-dimensional example of the spatial
discretization is given in figure 2. The flow domain, shown in figure 2c is Lx × Ly = 20D × 10D
for two-dimensional simulations and Lz = 20D for the spanwise direction in three-dimensional
simulations. As detailed in [25], the mesh can be refined near the solid boundary, and it can use
vorticity gradients as an adaptive criterion. A cell is refined whenever

|∇ × u|
x
max |u| > ξ , (2.2)

where 
x is the size of the cell and ξ is a user-defined threshold which can be interpreted as
the maximum angular deviation (caused by the local vorticity) of a particle travelling at speed
max |u|. This adaptive criterion is represented in figure 2b,c, where different box sizes are notable.
In order to reveal BvK vortices as well as centrifugal structures, we choose a minimum grid size
of D/51.2 for the solid boundary and D/12.8 to define vortex regions. The ξ threshold is set to
0.05 for three-dimensional simulations and to 0.01 for two-dimensional simulations. The flow
parameters of the simulations are defined in order to match the experimental case of D’Adamo
et al. [13]: cross flow velocity U∞ = 1, kinematic viscosity ν = 10−3 and cylinder diameter D = 0.1,
giving a Reynolds number Re = 100.

The boundary conditions are u = 1 for x = −5D; u = 1 for y = ±5; the outflow condition is
∂v/∂x = 0 and p = 0 for x = 15D; for three-dimensional simulations, a symmetry condition is used
for the flow at z = 20D; and at the cylinder surface, u = usolid, where usolid depends on the forcing.
As depicted in figure 2a, rotatory oscillations are characterized by an angular coordinate θ (t) =
θ0 cos(α), where the forcing phase is α = 2π fft, and tangential displacements
= uθ /(2π ff). Given
f0 the natural frequency of vortex shedding, the forcing frequency ff is written in dimensionless
form as f + = ff/f0. A non-dimensional number for the amplitude of oscillations is obtained by
comparing the maximum tangential velocity uθmax and the free flow velocity, A = uθmax/U∞.

3. Results of the numerical simulation
We first performed three-dimensional DNS numerical simulations. Figure 3 shows a case with the
forcing parameters ( f + = 0.75, A = 4.00). The isosurface of vorticity modulus in figure 3a shows
on one side the classic BvK wake structure synchronized with the forcing frequency. Additionally,

 on May 7, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150011

...................................................

U•

(a)

(c)

(b)

D

D

5D

Lx = 20D

L
y
=

10
D

x

y

q0

uq

Figure 2. (a) Parameters of the problem. (b) The adaptive two-dimensionalmesh around the circular cylinder shows the octree
structure. (c) Problem domain. (Online version in colour.)

a previously not reported effect is also clear: the modulation of the vorticity field along the
direction of the cylinder axis. The two effects are depicted in figure 3b, revealing the three-
dimensional vortex structure around the cylinder and a well-defined wavelength λz. Moreover,
figure 4 shows the spatial distribution of ωx along with ωz for f + = 0.75, A = 4.00, which allows
us to consider the symmetry properties of the observed mode. The spatio-temporal symmetry, H,
of the two-dimensional flow is defined as

Hω(x, t) = Kyω

(
x, t + T

2

)
= (−ωx,ωy, −ωz)

(
x, −y, t + T

2

)
, (3.1)

where Ky is a spatial reflection. For an H-symmetric flow, from (3.1), the x-vorticity changes sign
with t → t + T/2 and y → −y at any fixed (x, z). This is the case for mode A, whereas for mode B,
the sign of x-vorticity does not change.

As studied by Blackburn et al. [21], there are exactly three codimension-one bifurcations from
a two-dimensional time-periodic base state to three-dimensional flow that are observable with
variations in a single parameter. In this regard, Lo Jacono et al. [23] showed that oscillatory forcing
at Re = 300 leads to the appearance of a different mode (mode D) which has the same symmetries
of mode A. Considering the symmetries observed in the present case (figure 4), the identified
structures are not H-invariant, and they share the same symmetry as mode B.

In what follows, we thoroughly scrutinize the onset of this three-dimensional pulsed
instability. Figure 5a shows instantaneous contours of the spanwise velocity w for a plane at
y = D/2, revealing Taylor–Couette-like vortices, with a wavelength λz that does not change with
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Figure 3. (a) Isosurface for total vorticity modulus ‖ω̄‖ for f+ = 0.75, A= 4.00. (b) Vorticity modulus contours for two
cutting planes revealing the main flow structures ( f+ = 0.75, A= 4.00). (Online version in colour.)

(b)(a)

Figure 4. For forcing parameters f+ = 0.75, A= 4.00. (a) Isosurfaces for streamwise vorticity ωx : ωx = 3 (light grey),
ωx = −3 (dark grey). The white isosurface represents spanwise vorticityωz = 15. (b) Top view for isosurfaces for streamwise
and spanwise vorticity. (Online version in colour.)

respect to the forcing amplitude within the range 3<A< 4. We can describe the flow with a Taylor
number based on equation (1.1) considering λz as a characteristic length scale and ωiri = AU∞. We
compute the intensity of the velocity fluctuations as w2

rms = ∫Tf
0 (w − w̄)2 dt/Tf, where w̄ is the time

average of w and Tf the forcing period Tf = 1/f +. The result allows us to identify a maximum value
that characterizes the intensity of the three-dimensional structure for the forcing case considered.

An additional characterization is possible by studying the amplitude of these fluctuations as
a function of the forcing parameters ( f +, A). We use the three-dimensional DNS to study the
flow modifications for two fixed forcing frequencies f + = 0.75 and f + = 1.00. A useful criterion to
quantify the intensity of three-dimensional structures is to follow the evolution of w. Given that
the three-dimensional structures are present for A = 4.00 (case depicted on figure 3), we decrease
the forcing amplitude from this value until they vanish. In figure 5b, the maxima of wrms, wmax

are plotted against the Taylor numbers resulting from equation (1.1), where the characteristic
length scale λz is found to be 1.16D, and the corresponding forcing amplitudes. We can appreciate,
looking at the square of the forcing amplitudes, that the three-dimensional structures become
damped linearly as we approach a threshold at T = 202 for f + = 0.75 and T = 147 for f + = 1. The
behaviour is common to supercritical bifurcations. Another scenario shows up when we follow
the evolution of the intensity of three-dimensional structures for a fixed forcing amplitude. There
is a range of frequencies for which the instability develops. This is shown in figure 5d where
w2

rms is observed for A = 4.00 and the forcing frequency varying in a range 0.50< f + < 1.20.
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of T resulting from varying forcing amplitudes. (c) Maxima of wrms for a constant forcing amplitude A= 4.00 as a function of
the forcing frequency f+. (Online version in colour.)

We can appreciate that for f + → 1.20, w2
max decreases linearly. On the other hand, for lower

frequencies, we observe that the three-dimensional instability appears, with a finite value, for
wmax, at f + ≥ 0.55.

We perform simulations for different forcing frequencies at a fixed forcing amplitude A = 4.00
in order to characterize the evolution of the wavelength λz. We observe in figure 6a that λz

depends on f + following a law ∝ ( f +)−1/2. If we assume that the ‘gap’ size d is proportional
to λz, from the Taylor number definition in equation (1.1), where T depends on d3/2, then we
expect that high forcing frequencies produce decreasing Taylor numbers. This could explain
the damping of three-dimensional fluctuations for higher frequencies in figure 5c. In addition,
we observe that the wavelength λz is practically invariant with respect to the amplitude for a
given frequency.
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colour.)

In studies of pulsed centrifugal instabilities, Riley & Laurence [3], Carmi & Tustaniwskyj [26],

Aoudief et al. [4] classified flow regimes based on a parameter γ =
√
ωd2

c/2ν which is the ratio
of a centrifugal region length dc to the Stokes layer thickness. In our experiment, γ is limited to
a range between 2 and 5, it does not depend on the forcing frequency and dc ∼ λ behaves with
respect to f + as described in figure 6a, where λ decreases almost linearly as ( f +)−1/2.

Even though the threshold for centrifugal instabilities determined in the Taylor–Couette
pulsed flow is not directly applicable for a configuration with crossflow, the transformation of
Taylor numbers based on the characteristic length dc allows an approach for our results. This
case presents similarity with the eccentric Taylor–Couette instability problem (see [27–29] and
references therein). Indeed, in those problems, the axial wavelength of the critical perturbations
is always of the same order of magnitude of the gap.

Figure 6b summarizes the stability curves (γ , T) for centrifugal pulsed flow determined by
Aouidef et al. [4], Seminara & Hall [2] together with the values issued from our three-dimensional
simulations. Two analytical curves show the solution corresponding to low values of γ , Tc =
193.23γ−1 and high values of γ , Tc = 15.28γ 3/2. The curves are supported with experimental data
from [4]. On the other hand, within these reference threshold frames, we plotted from our results
T against γ for a fixed forcing amplitude A = 4.00, and for fixed forcing frequencies f + = 0.75 and
f + = 1.00 (the same data used to construct figure 5). We observe that the points are contained in the
unstable region defined by the analytical curves. For A = 4.00, the instability develops for 0.55<
f + < 1.16. When f + = 1.16, the critical point (γ = 3.06, T = 152) is in very good agreement with
the experimental results from pure pulsed flows. For decreasing frequencies, T increases almost
linearly regarding the estimated γ until for f + = 0.55, the flow stabilizes with respect to centrifugal
disturbances (γ = 4.4, T = 433). For a fixed frequency f + = 0.75, γ = 3.61, the flow destabilizes at
T = 202 and, with increasing forcing amplitudes, T eventually reaches the previous set of points
at A = 4.00. The same behaviour is found for the fixed forcing frequency f + = 1.00, where the flow
is unstable from T = 147.
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We suggest that the centrifugal instability that develops in the forced wake can be thus
considered in the context of pure rotatory pulsed oscillations. Nevertheless, the natural BvK
dynamics plays an important role as the first bifurcation depends on the distance of the forcing
state space parameters ( f , A, figure 1) to the resonance centred at ( f + = 1.00, A = 0.00). This fact
could explain that at f + < 0.55 the centrifugal instability is not strong enough even when T is
high. Conversely, for ( f + = 1.16, A = 4.00), the length dc is significantly smaller and T decreases
to the values predicted by the pure pulsed flow threshold.

We bring a quantitative picture of these ideas in the remainder of the paper, starting with a
brief review of the criterion for centrifugal instability.

4. Centrifugal instability
The necessary condition for a three-dimensional centrifugal instability in flows with curved
streamlines is given by Rayleigh [30] criterion for inviscid flow, see Drazin & Reid [31], which
can be written for flows such as the Taylor–Couette flow in terms of the Rayleigh discriminant

φ(r) = 2V
r

(
V
r

+ dV
dr

)
, (4.1)

where V(r) is the two-dimensional velocity of an orthoradial base flow field. three-dimensional
perturbations to this flow field are amplified if φ(r)< 0, which translates the fact that the
perturbed pressure field does not balance the centrifugal force, leading to flow instability. For a
general profile V(r), the flow field can be subdivided into regions of different stability depending
on the sign of φ(r): it will be unstable in the region where φ(r)< 0 and stable when φ(r)> 0. More
generally, for other geometries described by a vorticity field ωz, the Rayleigh discriminant can
be written as φ = V(r)ωz(r)/R [32,33], where the local radius of curvature of the streamlines R is
defined by

R= U2

(
ψ)(u∇u)
. (4.2)

Beaudoin et al. [34] made use of these expressions in order to identify potential instability
regions in a backward-facing step flow and characterize the three-dimensional global instability.
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when the forcing phase α� 1. In (b) (α � 2) and (c) (α � 3) allow to appreciate the temporal and spatial evolution of φ.
Five-pointed star stands for the position x̄max of |φ|max. (Online version in colour.)
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curvature valueR, diamond symbols, at x̄max is close to the cylinder radius, its sign changes with the shedding cycle. Square
symbols mark three forcing phases depicted in figure 8. (Online version in colour.)

In the present case, we will see that the study of the local Rayleigh discriminant is a useful
tool to predict the centrifugal stability of the forced cylinder wake problem, which lacks
symmetry simplifications. In figure 7, the instantaneous flow streamlines along with the Rayleigh
discriminant φ(x, y) are represented for a non-forced flow around a cylinder at Re = 100, where
the flow produces the Bénard–von Kármán vortex shedding. Two distinct regions of potential
centrifugal instability exist: one near the stagnation point, where a concave streamline constitutes
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Figure 10. For ( f+ = 0.75, A= 4.00) at the forcing phase αmax corresponding to φmax = φ(x̄,αmax): (a) streamlines.
(b) Regions of negative Rayleigh discriminant−φ. The spatialminimumofφ is placed at a position identifiedwith five-pointed
star. (c) φ Regions after image processing. The corresponding mean radius for φ is represented, and the resulting measure dc
is indicated. (Online version in colour.)

a Görtler-like geometry [35]; and another one in the near wake side, where the curvature of
the streamlines around the vortex formation region corresponds to a Taylor–Couette geometry.
At Re = 100, nevertheless, viscosity prevents the development of three-dimensional instabilities,
which never appear for the case shown in figure 7. When the rotational oscillatory forcing is
applied, negative values of φ appear mostly in regions close to the cylinder. In what follows, we
define the characteristic length scale dc of regions potentially unstable giving a local Rayleigh
criterion to analyse the stability properties of the forced wake.1

Despite the flow complexity, it is possible to reduce the problem to investigate solely the
centrifugal instability of the two-dimensional base flow and its relationship with the forcing
parameters. We calculate the Rayleigh discriminant φ(x̄, t) for each forcing parameter from the
streamlines of the flow at Re = 100. In figure 8, we present three snapshots of φ(x̄,α) at f + = 0.75,
A = 4.00 and Re = 100, where α ∈ [0, 2π ] is the forcing phase. For other forcing parameters, we

1It should be noted that viscous effects have to be considered to determine the actual stability criterion. This could be done
using dc in the definition of the Taylor number T of equation (1.1).
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Figure 11. For a fixed forcing amplitude A= 4.00, variation of the estimated centrifugal instability measure dc atα � 4 from
two-dimensional DNS and variation of the wavelength λz associated with the size of the rolls in figure 5a. (b) Ratio between
the characteristic length dc for the centrifugal instability determined from two-dimensional simulations andλz/2 issued from
three-dimensional simulations. The thick black line represents the mean value ofλz/2. (Online version in colour.)

obtain the same qualitative features than what we describe for figure 8. We observe that a ‘corona’-
like region appears around the cylinder with negative values of φ. Figure 8a shows the phase
when φ is the most negative, where we can expect the strongest possible centrifugal instability
with the highest growth rate [36]. The location x̄max, where the instability can be the most strong
locally, is given by |φ(x̄max)| = |φmax|.

Figure 8b,c describes the evolution of φ(x̄,α) for forcing phases that correspond to the mean
and the minimum values, where the flow is less receptive to the instability. We observe that φ(x̄, t)
is x-symmetric regarding the forcing phase, φ(x, y,α) = φ(x, −y,α + π ). In figure 9, we show the
variation of the lift coefficient cL = L/ 1

2ρU2∞, being L the resulting lift force, which is correlated
with the phase reference α. The local radius R calculated from equation (4.2) in x̄max is also
represented, we can see that its modulus is close to the value of the cylinder radius as the curved
streamlines of the forced flow approach the cylinder. The sign of the local radius accompanies the
changes owing to the oscillation. We present in the same figure a curve for the evolution of the
maximum of the Rayleigh discriminant modulus |φ(x̄, t)|max during a forcing period. We indicate
over this curve the three values of |φ|max that lead to the construction of figure 8.

As we have already pointed out, we can extract a convenient length scale in order to adapt
our problem to the pure centrifugal instability framework, allowing us to compare our results
with previous works. If we consider the forcing phase that corresponds to |φ|max, around α = 4
in figure 9, the two-dimensional flow streamlines are depicted by figure 10a. (1.1), the Rayleigh
discriminant is obtained and presented in figure 10b. It is worth mentioning that a y-symmetric
field is retrieved for α � 1 that corresponds to the other maximum of |φ|. Image processing
is used in order to extract a length scale from a contour plot of the Rayleigh discriminant
obtained from equation (1.1) as shown in figure 10c (see appendix for details). The mean radius
represented in figure 10c determines the length scale dc related to the size of the unstable region
for two-dimensional flow. It is shown in figure 11a for different forcing frequencies at a fixed
forcing amplitude A = 4.00 together with the size λz/2 of the centrifugal rolls that develop in the
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three-dimensional flow. Both dc and λz/2 follow the same ( f +)−1/2 trend, supporting the idea of
the pulsed Stokes layer. Their ratio, around a value of 3, is plotted in figure 11b. Given that the
flow is under non-stationary forcing, the rolls are formed periodically symmetric with respect to
the x-axis. Besides, dc has been determined for a particular phase α � 4, where the instability is
most intense, but the centrifugal instability region changes its size. These arguments may explain
the difficulty for estimating dc and the scale difference between λz/2 and dc. Nevertheless, we can
observe that the main behaviour is shared between λz and dc, therefore, a centrifugal instability
region observed in two-dimensional simulations is in agreement with the three-dimensional
instability that develops in three-dimensional DNS.

5. Conclusion
This work gives a new view about three-dimensional instabilities in wake flows. In the context
of forced wakes at moderate Reynolds numbers, we found a new transition that leads to the
formation of three-dimensional structures. The instability shares aspects that were previously
studied for centrifugal pulsed flows. Taylor–Couette-like vortices develop from a definite
threshold of forcing parameters ( f , A) and these structures are modified by the incoming flow.
For this complex instability, two-dimensional evaluation of the Rayleigh discriminant φ may give
a fast criterion to determine whether a wake flow becomes three-dimensional or not. We found
from streamline shapes and the spatial distribution of φ that the problem shares some analogy in
relation to eccentric Taylor–Couette flows.

As two-dimensional forcing in wakes may indeed trigger three-dimensional structures, this
behaviour must be taken into account in flow control schemes. Streamlines which become too
‘bent’ by forcing in wakes can make evident strong negative values of the Rayleigh discriminant
φ and thus the possibility of a centrifugal instability.

On the other hand, this simple problem can offer an interesting benchmark to study
instabilities and transition to turbulence from oscillatory rotation.
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Appendix A. Determination of the centrifugal instability region length
The choice of a characteristic length of the centrifugal instability region from the Rayleigh
discriminant scalar fields is not straightforward as we observe figure 8. we choose to select the
forcing phase that corresponds to the minimum value of φ, the most unstable state. Figure 10b
presents such state, but the φ scalar field needs to be more clear in order to extract a length dc.
Simple image processing functions, erosion and dilation, are applied successively to the scalar
field in order to obtain figure 10c, where a clear shape is noted. We found that such shape has an
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aspect that resembles an eccentric cylinder gap. Therefore, we choose as a characteristic length
the mean radius of this gap dc = 1/(2π )

∫2π
0 r dϕ − D/2, with r the shape radius varying with the

angular coordinate ϕ.
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(a) Convergence analysis for direct numerical simulation
In order to ensure that the results do not depend on the size of the domain we chose, we
performed a convergence analysis for the two-dimensional case. Given that the domain size of
the reference study is Lx × Ly = 20D × 10D, we label it as L1.00. As we selected larger domains
which scale as [1.25; 1.50; 1.75; 2.00] the reference study length, we label them L1.25, L1.50, L1.75
and L2.00. For these scaling lengths, we plotted mean flow profiles for the streamwise component
of the velocity um at three different x positions x = 0.5D, D, 2D in figure 12a. Figure 12b presents
for the same direction, fluctuations intensity urms profiles for the same different x positions. We
observe that changing the domain size does not modify the flow dynamics. Lift coefficient is also
calculated for each case as it is presented in figure 13. We also observe good agreement between
the different scaling domains.
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