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This paper reports results obtained with two-dimensional numerical simulations of
viscous incompressible flow in a symmetric channel with a sudden expansion and
contraction, creating two facing cavities; a so-called double cavity. Based on time
series recorded at discrete probe points inside the double cavity, different flow regimes
are identified when the Reynolds number and the intercavity distance are varied. The
transition from steady to chaotic flow behaviour can in general be summarized as
follows: steady (fixed) point, period-1 limit cycle, intermediate regime (including
quasi-periodicity) and torus breakdown leading to toroidal chaos. The analysis of
the intracavity vorticity reveals a ‘carousel’ pattern, creating a feedback mechanism,
that influences the shear-layer oscillations and makes it possible to identify in which
regime the flow resides. A relation was found between the ratio of the shear-layer
frequency peaks and the number of small intracavity structures observed in the flow
field of a given regime. The properties of each regime are determined by the interplay
of three characteristic time scales: the turnover time of the large intracavity vortex,
the lifetime of the small intracavity vortex structures and the period of the dominant
shear-layer oscillations.
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1. Introduction

The self-excited resonances appearing in spatially developing flows enable us to
explain the sharp selection of definite wavenumbers and frequencies observed in
experiments. A paradigmatic example of hydrodynamic resonance is the wake flow
behind bluff bodies at low Reynolds number, in which oscillations occur with a
distinct frequency and wavenumber (Pierrehumbert 1984; Koch 1985). The nature
of this resonance is related to the stability characteristics of wake flows, which
presents the possibility of amplifying perturbations in the region upstream of the
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2 F. Tuerke and others

source. In shear flows like mixing layers or boundary layers, perturbations are swept
away from the source, and unless a coherent perturbation is imposed, the measured
spectra remain broadband. However, when a feedback mechanism is possible, these
flows may also exhibit discrete frequency spectra. The feedback may take place as
a consequence of the downstream reflection, and upstream propagation, of some of
the waves of the perturbing wavepacket, which then reach again the region where the
perturbation originated. The reflection may occur either in a turning point (Kulikowskii
& Shikina 1996), or in a fixed boundary. The latter case results in impinging flows on
solid boundaries, extensively studied as reported in Rockwell & Naudascher (1978),
Knisely & Rockwell (1982), Ziada & Rockwell (1982). In particular, in open cavity
flows, the impingement of the unstable shear layer onto the downstream edge of
the cavity produces a global feedback, responsible for self-sustained oscillations of
the flow beyond a critical value of both Reynolds number and cavity length – see
for instance Rockwell & Naudascher (1978) for an early review on the topic. Those
self-sustained oscillations are known to be the source of noise in many applications
(e.g. fast train, aircraft land gear bay) or harmonious sound in wind instruments (e.g.
in a saxophone). In compressible flows, this phenomenon is commonly linked to
the acoustic feedback mechanism first introduced by Rossiter (1964). Incompressible
open cavity flows still remain an active field of research including Rowley, Colonius
& Basuz (2002), Lusseyran, Pastur & Letellier (2008), Basley et al. (2011), to cite
only a few of them, as the feedback mechanism through far-field acoustic waves
travelling upstream loses importance due to other pure hydrodynamics mechanisms.
A recent linear instability analysis by Tuerke et al. (2015), considering reflection of
hydrodynamic waves at the wall of the cavity, was able to describe the origin of
the non-harmonic quantization of frequencies reported in different experiments. This
analysis, however, is unable to distinguish, among the set of possible frequencies,
which ones are selected by the flow. This limitation indicates that other hydrodynamic
mechanisms, associated with the confinement of the flow, have to be taken into
account. In an open cavity, a recirculating zone is established with complex intracavity
vorticity patterns formed by vortex structures of different sizes that are expected to
participate in the feedback mechanism (Basley et al. 2013). The interaction of these
structures with the onset of the shear instability is nevertheless delayed by the time
lag necessary for their transport from the impinging region to the upstream flow. This
nonlinear delayed action on the upstream shear-layer instability has been modelled in
confined jets with a formalism referred to as the nonlinear delayed saturation model
(Villermaux & Hopfinger 1994). Inspired by this work, the dynamics of each cavity
can be conceived in terms of nonlinear oscillators. The small structures, present in
the recirculation region, produce discontinuous and delayed feedback, giving rise
to nonlinear dynamical features, such as quasi-periodic oscillations, phase-locked
oscillations or even chaotic dynamics (Villermaux & Hopfinger 1994).

When two identical self-oscillating systems are brought together, the dynamics can
be expected to be enriched with additional couplings and interactions. Some of these
examples are side-by-side cylinder flows (Zhou, Zhang & Yiu 2002; Kang 2003;
Landel, Caulfield & Woods 2012) or two mirrored backward facing steps (Durst,
Melling & Whitelaw 1974; Fearn, Mullin & Cliffe 1990). At very close distances the
two systems lose identity and behave as a new system. When two open cavities face
each other, a so-called double cavity configuration is created, and one may presume
the appearance of dynamical couplings of the two shear layers originating from each
wall of the inlet channel. Research related to different industrial and bio-mechanical
applications is concerned with these flows: the sudden expansion and contraction in

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.771
Downloaded from https:/www.cambridge.org/core. Universidad de Buenos Aires, on 19 Jan 2017 at 16:58:14, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.771
https:/www.cambridge.org/core


Nonlinear dynamics of two-dimensional double cavity flow 3

pipe and channel flows (Drikakis 1997; Mizushima & Shiotani 2001; Mullin, Shipton
& Tavener 2003), the exit of confined jets (Maurel et al. 1996; Righolt et al. 2015)
and the laryngeal ventricle or Morgagni’s sinus in the human phonatory system
(Agarwal, Scherer & Hollien 2003; Chisari, Artana & Sciamarella 2011) are just a
few examples, among others, in engineering applications and nature, in which the
understanding of the flow physics of double cavity dynamics is of importance.

Maurel et al. (1996) considered a confined planar jet issuing into a large cavity, a
geometry that is similar to the double cavity. The experiments were performed with a
ratio between the inlet channel height (D) and the cavity depth (H) equal to 1/12, and
the varied geometrical parameter was the length L of the cavity. The authors found
a stable flow regime with no oscillations, a regime with self-sustained oscillations
and a regime with turbulent-free jet characteristics. In the self-sustained oscillation
regime, the authors observed that the flow was mainly two-dimensional, and proposed
a subdivision of this regime into a sinuous mode with large scale wavelengths and
a varicose mode with much shorter wavelengths. The case with constant L/H and
varying D was not investigated by Maurel et al. (1996). By sufficiently increasing
the ratio D/H, the two shear layers extend but do not merge along the cavity length
L. The confined jet behaviour vanishes and double cavity flow arises. For sufficiently
large D the single cavity flow behaviour is expected to be retrieved. Mizushima
& Shiotani (2001), Mullin et al. (2003) investigated the symmetry, stability and
bifurcation properties of double cavity flow as the Reynolds number is varied. For
some cases the Reynolds numbers is comparable to the present work, however L/H
is much greater, leading to asymmetric flow configurations.

The aim of this paper is to understand the nonlinear frequency selection mechanisms
in double cavity flow, focusing on the role of the backflow structures of the
recirculation region, observed experimentally for single cavity flow by Basley et al.
(2011). We address the question of how this feedback mechanism develops as the
Reynolds number is increased and whether or not a general route to chaos can
be observed. Conceptually, this approach is similar to Johnson & Patel (1999) and
Tomboulides & Orszag (2000), who characterized the flow regimes around a sphere
in the transition to turbulence.

The present analysis is based on results issued from two-dimensional numerical
simulations. The numerical study we propose has the advantage of allowing a detailed
parametric study, in a reasonable simulation time, with a greater control of variables
than in physical experiments. In the laboratory, for instance, the momentum thickness
of the velocity profile, which largely determines the instabilities that develop in the
shear layer, is difficult to control without strongly modifying other variables of interest.
The computational domain is composed of an upstream inlet channel, the two facing
cavities and a downstream exit channel of the same height as the inflow channel. For
a given flow rate, the inlet channel characteristics imposes the velocity profile at the
leading edges of the two facing cavities. We shall restrict our analysis to cases in
which this incoming flow is laminar. By doing this, extrinsic excitations of the flow
from turbulent fluctuations are excluded. Furthermore, in order to simplify the study
and easily identify the contribution to the dynamics of the shear-layer oscillations, we
limit the analysis to cases in which the flow in the inlet channel is not fully developed,
i.e. an irrotational core remains in between the two shear layers when reaching the
leading edge of the cavities.

The paper is organized as follows. In § 2, a detailed description of the numerical
simulations is given. In § 3 we illustrate the characteristics of the nonlinear system,
analysing time series of a single probe and propose a parameter space plot in terms
of Reynolds number and the ratio D/L. In § 4 we link the dynamical systemanalysis
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4 F. Tuerke and others

to the flow field dynamics of the recirculation region and discuss different scenarios
of the delayed feedback mechanism. A summary of our results is given in § 5.

2. Aspects of the numerical study
2.1. Numerical simulation code

We briefly outline the numerical method used. More details and applications of this
numerical methods can be found in Gadoin, Quéré & Daube (2001), Podvin et al.
(2006), Pastur et al. (2008) and Rizi et al. (2015). The equations of motion describe
the incompressible and isothermal flow, given by the non-dimensional Navier–Stokes
equations:

∂U
∂t
+ (U · ∇)U =−∇P+ 1

ReL
1U (2.1)

∇U = 0, (2.2)

where U is the non-dimensional velocity, P the non-dimensional pressure and
ReL = U∞L/ν the Reynolds number based on the cavity length L, in which U∞
is the maximum of the inflow velocity and ν is the kinematic viscosity coefficient.

The numerical method used to solve (2.1) and (2.2) is based on the projection
method, reported by Guermond, Minev & Shen (2006), with the incremental
approach proposed by Goda (1979). The Navier–Stokes equations are discretized,
following a finite volume approach on a staggered structured grid with a second-order
approximation in time and space. Pressure is defined at the cell centre, whereas
the velocity components are defined at the centre of cell faces. Advection fluxes
and viscous terms are calculated with a second-order centred scheme. The time
derivatives are approximated by a second-order differentiation formulation. An implicit
discretization scheme is carried out on the viscous terms in order to increase the
numerical stability; δt being the time step for integration, to estimate the advection
flux at time (n + 1)δt, the code uses an Adams–Bashford extrapolation from the
results at time nδt and (n − 1)δt. The semi-implicit discretization scheme of the
velocity equation leads to a Helmholtz-like equation for each velocity component, of
the form: (

I − 2δt
3ReL
∇2

)
U∗i = Sn,n−1, (2.3)

where U∗i is the field of the ith velocity component, estimated at time (n+ 1)δt. The
velocity field (U∗) does not satisfy the divergence-free condition yet. Sn,n−1 contains all
explicit terms defined at time nδt and (n− 1)δt. For each time step, these equations
are solved by means of an alternating direction implicit method (see Hirsch 1987).
The divergence-free condition on the velocity field and the pressure field are updated
at time (n+ 1)δt by solving Poisson’s equation

∇2Φ = ∇ ·U
∗

δt
, (2.4)

where

Φ = Pn+1 − Pn − 1
ReL
∇ ·U∗. (2.5)

The solution Φ is calculated by means of the successive over-relaxation method
coupled with a geometric multi-grid method in order to improve the convergence
efficiency (Wesseling 1992). The pressure field isdirectly updated at time (n + 1)δt
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FIGURE 1. Computational domain of double cavity geometry with variable distance D,
inflow length L1 = 0.6L, cavity length L, cavity aspect ratio L/H = 2, outflow length
L2 = 1.2L and probe points P1–P8. Arrows indicate flow direction.

from the previous relation and the velocity field U∗ is corrected such that the
divergence-free condition is satisfied:

Un+1 =U∗ − 2
3δt∇Φ. (2.6)

2.2. Computational domain and boundary conditions
The computational domain, depicted in figure 1, has a cavity length L, with a length
over depth ratio Γ = 2, kept constant throughout the entire study. The inflow length is
L1= 0.6L and the outflow length is L2= 1.2L. Longer outflow lengths did not produce
significant changes on the flow inside the double cavity. Usual Neumann boundary
conditions are applied for solving the pressure Poisson equation. For the velocity, the
inflow boundary conditions are of Dirichlet type, with an imposed velocity profile
in order to control the flow rate. The outlet boundary conditions are defined by
solving a simple one-dimensional advection equation along the normal direction to
estimate the velocity profile in the outlet plane. The normal velocity component is
then corrected such that the inlet flow rate is preserved. This simple approach ensures
mass conservation and limits spurious effects on the solution at the vicinity of the
outlet. The usual no-slip and impermeability conditions are applied at the walls. The
laminar inflow profiles, imposed at the inlet boundary of the computational domain,
were obtained considering an additional length of the upstream channels of 2.8L in
which a laminar boundary layer develops on either side of the channel. A set of
approximately 30 velocity profiles was created for each distance D. The profiles for
case D/L= 0.2 and the variation of the momentum thickness Θ with U∞ are depicted
in figure 2(a,b), respectively. Inflow profiles for larger cavity distances are obtained
by extending the D/L = 0.2 profiles in the y-direction, i.e. filling the resulting gap
with the value of the respective maximum velocity. It is thus ensured that while D
is varied, the maximum velocity U∞ and the momentum thickness Θ of the profiles
are kept constant. Figure 2(c) shows an example of the extension of a D/L= 0.2 to
a D/L= 0.4 case.

The domain is covered with 512 cells in the x-direction, and 256 or 512, depending
on D, in the y-direction. The grid convergence of the numerical scheme is of second
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FIGURE 2. (a) Inflow velocity profiles for case with D/L = 0.2 for different inflow
velocities (for clarity not all velocity profiles are depicted). (b) Momentum thickness Θ
as a function of the maximum inflow velocity U∞. (c) Extension of a D/L= 0.2 profile
(– –) to a D/L= 0.4 profile (——).

Config. D/L Nx Ny ReL

SC 1.40 512 256 3833–8330
DC 0.90 512 512 3666–7333
DC 0.60 512 512 3666–7333
DC 0.50 512 256 3666–7333
DC 0.40 512 256 3666–7333
DC 0.35 512 256 3666–7333
DC 0.30 512 256 3666–7333
DC 0.25 512 256 3666–7333
DC 0.20 512 256 3666–7333

TABLE 1. Summary of cases.

order. The mesh is refined close to the walls of the inflow and outflow channel as
well as in shear-layer regions and close to the impinging edge, in order to resolve the
strong velocity gradients in these areas. The numerical simulations are carried out over
a time duration of approximately 400–600 convective time units τc=L/U∞, depending
on the case. The code automatically adapts the time step size to ensure numerical
stability, respecting CFL = 0.25, where CFL is the Courant number. As a reference
for the double cavity (DC), a single cavity (SC) case is added, by closing one of the
cavities at a distance of D= 1.4L. All simulated cases are summarized in table 1.

3. Time series

Probe points are located in various positions inside the domain, as indicated in
figures 1 and 3. Time series are recorded at these probe points with a sampling
frequency of approximately 5 kHz. The Strouhal number is defined as StL = fL/U∞,
in which f is the measured frequency. The initial 30 % of each time series is
discarded in order to avoid transient effects. The Welch algorithm (Welch 1967)
with a window size of 5.1 s and an overlap of 98 % is used to compute the power
spectral density (PSD) from the streamwise component of the velocity fluctuations.
The spectral resolution is thus 1St ≈ 0.01. All power spectra depicted in this work
are normalized by pre-multiplying with two times the frequency resolution: 2PSD1f .
Time series from eight probe points together with their power spectra are shown in
figure 3 for a typical case. The same frequency (St ≈ 1) is amplified in the entire
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FIGURE 3. Time series of streamwise velocity component u and its power spectral density
from probe locations P1–P8 of case D/L= 0.2 at ReL = 5100.

domain, which suggests that the spectrum is representative of the global dynamics.
Hence, the spectral analysis of the different points can be reduced to a single point.
Probe points P2 and P4 were chosen for most of the forthcoming spectral analyses,
since they carry information from both the respective shear layers as well as the
recirculation region. The reason why in point P3 the second harmonic rises above its
fundamental frequency will be explained later in the article. Inside the cavities, the
second harmonic has smaller amplitudes than in the shear layer.

3.1. Phase space analysis
Different regimes are encountered when the Reynolds number ReL is varied. We
choose phase space representations to characterize these regimes. Phase space
is reconstructed using time delay embedding of time series s(t) (in our case the
streamwise component of the fluctuating velocity) recorded at probe point P2. The
three-dimensional projection of the reconstructed phase space, spanned by the time
delayed vectors [X, Y, Z]T = [s(t), s(t− τ), s(t− 2τ)]T, (3.1)

where τ is the time delay, is shown in figure 4(a) for an illustrative case with
D/L = 0.2. The time delay τ was chosen such that the embedding dimension does
not depend on τ , using the method of Cao (1997). Other types of embedding
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FIGURE 4. (Colour online) (a) Phase portrait: three-dimensional projection of the
reconstructed flow from time series of D/L = 0.2 case at ReL = 5400 using time delay
embedding (τ = 0.015 s). Vertical plane (blue) at X = 0.0055 indicates position of the
Poincaré section. Intersections of phase portrait with plane is indicated by red symbols. (b)
Poincaré section: intersection of phase portrait in (a) with plane X= 0.0055. (c) Poincaré
sections (X= 0.0055) at ReL= 4700 (blue filled square, periodic regime), ReL= 5400 (red
solid line, intermediate regime (quasi-periodic case)), ReL=5600 (magenta ◦, folded torus),
ReL = 5700 (black dots, low-order chaotic regime). ReL = 6333 (grey crosses, high-order
chaotic regime). (d) Zoom-in view of (c).

techniques, such as single value decomposition (SVD) embedding, were tested,
and the conclusions remain the same. Figure 4(b) depicts the Poincaré section, a
two-dimensional subspace of the three-dimensional phase space in figure 4(a). It
is obtained as an intersection of the plane at X = 0.0055 with the phase portrait
in figure 4(a). The Poincaré section was chosen transverse to the flow in the best
agreement with the three conditions for a global Poincaré section (see Solari, Natiello
& Mindlin 1996). Figure 4(c) exemplifies the Poincaré sections of the D/L = 0.2
geometry for different Reynolds numbers. Figure 4(d) shows a zoomed-in view of
figure 4(c). Based on these Poincaré sections, we can now define the flow regimes.

Once the flow evolves from the steady regime to the periodic regime, a period-1
limit cycle is reached in phase space and a single point can be observed in
the Poincaré section (ReL ≈ 4700). When the value of the Reynolds number is
further increased (ReL ≈ 5400), a so-called intermediate regime is reached. This
regime includes quasi-periodicity, i.e. a second frequency appears in the spectrum,
incommensurate with the dominant frequency. This induces the creation of a torus

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.771
Downloaded from https:/www.cambridge.org/core. Universidad de Buenos Aires, on 19 Jan 2017 at 16:58:14, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.771
https:/www.cambridge.org/core


Nonlinear dynamics of two-dimensional double cavity flow 9

3500 4000 4500 5000 5500 6000 6500 7000 7500 85008000

0.5

0.6

0.8

1.0

SC

0.2

0.3

0.4

FIGURE 5. (Colour online) Parameter space plot. Blues: steady regime. Redu: Periodic
regime. Green q: intermediate regime. Black p: chaotic regime. Note, the top line
corresponds to a SC channel.

in phase space, which is characterized by a closed curve in the Poincaré section.
Frequency locking may occur on the torus, resulting in periodic windows. At
ReL≈ 5600 the torus surface is folded by wrinkles. The Poincaré section of the torus
presents self-intersections, indicating that the state space has at least a dimension
equal to 4. The Cao (1997) algorithm, applied to the time signal in this flow regime
gives an actual dimension of 5. This relatively small (local) dimension does not
preclude potentially higher, though finite, dimensions for the full state space. For
ReL ≈ 5700, more complex dynamics is reached, though still structured around the
torus. Finally, for Reynolds number ReL = 6333, the Poincaré map yields a cloud
of points (see figure 4c) without any identifiable structure. The last two regimes are
reminiscent of chaotic behaviour and hence are labelled chaotic regime. Yet note, that
the dispersion of points in the Poincaré map alone is not a quantitative proof, though
a strong indication of the chaotic nature of the system. The described route to chaos
is common to small channel heights (D/L< 0.30) and is similar to the Curry & Yorke
(1978) scenario: steady (fixed) point → period-1 limit cycle → quasi-periodicity →
torus breakdown leading to toroidal chaos, as also recently observed for the van
der Pol system by Letellier, Messager & Gilmore (2008). For larger channel heights
(D/L> 0.35), however, the route to chaos looks slightly different, while configurations
with D/L= 0.35 and D/L= 0.30 have their own distinctive details, as we shall see in
the following sections. Henceforth, our so-called intermediate regime is not exclusive
to quasi-periodic behaviour, as it may also include periodic windows, that occur due
to frequency locking on the torus.

3.2. Parameter space
Based on the characterizations from § 3.1, a parameter space plot, depicted in figure 5,
is constructed. It summarizes the regimes, found when the Reynolds number and the
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cavity distance are varied. Double cavity flow is equivalent to the canonical SC flow
when the distance D is very large. In general, the respective regimes are found at
higher Reynolds numbers for SC flow when compared to DC flow. The steady regime
is the first regime observed. It ends with the development of instabilities that produce
self-sustained oscillations of the flow. The associated limit cycle is observed in our
study for ReL lying in the range between ≈ 3700 and ≈ 4300 depending on the value
of D. The periodic regime is prone to develop at lower ReL for intermediate cavity
distances (D/L = 0.5 and D/L = 0.6) and at higher ReL for small (D/L 6 0.4) as
well as for very large distances (D/L > 0.9). The case D/L = 0.3 is an exception
to the other close distance cases: its periodic regime is observed for much larger
Reynolds numbers, compared to its neighbours. Depending on the values of D/L, the
intermediate regime begins around ReL ≈ 5500 for the double cavity, while for the
single cavity it starts at ReL ≈ 6000. The Reynolds number range of the intermediate
regime depends on the cavity distance. The longest range is found for the single cavity,
while the shortest range is found for distances close to D/L = 0.35. At D/L = 0.35
the intermediate regime disappears all together in what looks like a sudden (hard in
amplitude) transition to chaos (Lopez-Rebollal & Sanmartin 1995) and the chaotic
regime is encountered in direct continuation to the periodic regime. However, it cannot
be fully excluded that a quasi-periodic regime be recovered with a smaller step size
in the value of the Reynolds number.

3.3. Spectral analysis
In this section we characterize the spectra associated with each regime. Figure 6(a–i)
show the power spectra for all cases in table 1 when the Reynolds number is varied.
In the steady regime no oscillations and hence no frequency peak is present. In
the periodic regime, a salient peak at StL ≈ 1 prevails over a wide range of the
Reynolds number. As expected, harmonics of this dominant mode are also present in
the spectrum. The power spectra in these regions show strong dark lines equispaced
in the vertical coordinate, reminiscent of the teeth of a ‘comb’. For D/L > 0.4,
when approaching the intermediate regime, the dominant Strouhal number StL ≈ 1
is gradually replaced by its first harmonic StL ≈ 2. In the Poincaré section this is
accompanied by an additional intersection. The underlying physics of this phenomenon
will be addressed in § 4.2. In the intermediate regime, the peak at StL ≈ 1, and its
harmonics, are still present, but new peaks of incommensurate frequencies arise in the
spectra, a phenomenon that is in correspondence with the creation of a torus in phase
space mentioned in § 3.1. Peaks of much lower values of non-dimensional frequencies
than the previous dominant Strouhal number indicate that a slow dynamics now
leaves the signature in the spectrum. As a consequence of the rise of incommensurate
frequencies, its harmonics and linear combinations, a tighter comb with a reduced
teeth separation is observed in the power spectra of figure 6. Some exceptions may
occur, as illustrated in figure 6(g,h). We may notice in these graphs a discontinuity in
the evolution of the dominant frequency at ReL ≈ 5000 and ReL ≈ 5300, respectively.
The underlying physics of these discontinuities will be discussed in § 4.4. In the
intermediate regime of the SC, the Strouhal number increases monotonically with the
Reynolds number and the teeth are inclined. The trajectory in phase space is locked
on the torus during most of the intermediate regime of the SC, resulting in a periodic
window with StL ≈ 0.5 and its harmonics over a wide range of Reynolds numbers.
In the spectra corresponding to the intermediate regime of the DC, the third and
fourth peaks are in general in the ratio '3/4. Furthermore, the first and third peaks
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FIGURE 6. (Colour online) Power spectra versus increasing ramps of the Reynolds number
for (a) SC, (b) D/L = 0.9, (c) D/L = 0.6, (d) D/L = 0.5, (e) D/L = 0.4, ( f ) D/L =
0.35, (g) D/L= 0.3, (h) D/L= 0.25, (i) D/L= 0.2. Colour code depicts the normalized
power spectra in log scale: log(2PSD1f ). Arrows indicate where the periodic (P), the
intermediate (I) and the chaotic (C) regime commence in each case.

keep a ratio of '1/3. We will discuss the reason of this behaviour in § 4. With the
exception of D/L= 0.35, all transitions to the chaotic regime take the quasi-periodic
route. As the Reynolds number is further increased, the spectrum becomes richer,
filling in with linear combinations of both incommensurate frequencies. Nonlinear
effects promote the dynamics to enter the chaotic regime. At even higher Reynolds
numbers, the spectrum eventually becomes much flatter, peaking at StL ≈ 0.4. The
decay of the time-correlation functions strongly indicates that the dynamics is chaotic
in this regime. As expected when ReL is increased in the chaotic regime, chaos
resorption may occur over finite windows of ReL. For instance, in figure 6(d) for the
case D/L = 0.5, such a window is observed between ReL = 6500 and ReL = 7000,
where the spectrum simplifies and the flow returns from chaotic to the intermediate
regime with StL = 0.5. For D/L= 0.9 a stability window occurs at ReL = 7000. Also,
windows of simplified spectra may appear even inside the periodic regime, as can be
observed for instance for D/L= 0.4, at ReL ≈ 4700, in figure 6(e).

4. Flow field analysis
In this section, the dynamical system analysis is linked to the flow dynamics. We

first discuss the salient characteristics of the flow structure. As we see in figure 7,
in each cavity, the inner flow is structured in two large main recirculation regions
and a third smaller one. The main recirculation region, located in the downstream
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FIGURE 8. (Colour online) Flow patterns for the single cavity in the (a) steady regime,
(b) periodic regime with StL ≈ 1 most amplified, (c) periodic regime with StL ≈ 2 most
amplified, and (d) intermediate regime (quasi-periodic locked-on torus), together with
respective time series recorded in probe point P2 and its power spectra. Colour code
indicates vorticity magnitude. For details on the ratio p/q see text.

half of the cavity, remains almost circular up to the end of the intermediate regime.
The secondary recirculation, located in the upstream half of the cavity, is also
closely circular. The line connecting the centres of recirculation regions 1 and
2 (cf. figure 7) is parallel to the free-stream direction. The dynamics of both
recirculation regions is however quite different, as the magnitude of the velocity
field in the secondary recirculation region is one order of magnitude smaller than in
the main recirculation region. The third, smaller, recirculation bubble is located on
top of the secondary recirculation region, below the shear-layer close to the leading
edge. These observations are in agreement with Mizushima & Shiotani (2001), who
found essentially the same flow pattern for a geometry with a slightly greater cavity
aspect ratio Γ = L/H = 2.6.

The vorticity magnitude field is plotted in figures 8 for the single cavity flow, and in
figure 9, for the D/L= 0.2 DC flow, for different Reynolds numbers, with time series

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.771
Downloaded from https:/www.cambridge.org/core. Universidad de Buenos Aires, on 19 Jan 2017 at 16:58:14, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.771
https:/www.cambridge.org/core


Nonlinear dynamics of two-dimensional double cavity flow 13

0.5
1.0
1.5
2.0
2.5

0

75

150

0

75

150

0

100

200

(a)

2 3

t (s)

10–4

10–6

10–2

0 1 2 3

2 3 0 1 2 3

2 3 0 1 2 3

2 3 0 1 2 3

2 3 0 1 2 3

2 3 0 1 2 3

0.5
1.0
1.5
2.0
2.5

10–4

10–6

10–2

0.5
1.0
1.5
2.0
2.5

10–4

10–6

10–2

0.5
1.0
1.5
2.0
2.5

10–4

10–6

10–2

0.5
1.0
1.5
2.0
2.5

10–4

10–6

10–2

0.5
1.0
1.5
2.0
2.5

10–4

10–6

10–2

0

100

200

0

150

300

0

200

400

(b)

(c)

(d)

(e)

( f )

FIGURE 9. (Colour online) Flow patterns for case D/L = 0.2 in (a) steady regime, (b)
periodic regime (limit cycle), (c) intermediate regime (torus), (d) intermediate regime
(torus folding), (e) chaotic regime (toroidal chaos), and ( f ) chaotic regime (exploded torus)
together with time series recorded in probe point P2 and respective power spectra. Colour
code indicates vorticity magnitude.

of the signal, recorded in probe point P2 and the associated power spectra. For low
Reynolds numbers, Re.4000, the flow is steady. A circular dipolar vortex sheet limits
the main recirculation region, as can be seen for instance in figures 8(a) and 9(a).
In the periodic regime, the shear layer exhibits oscillations of such magnitude that
vorticity of the shear layer is regularly injected at the rear edge of the cavity into
the main recirculation region. The injected vorticity forms small vortices at the
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frequency of the shear-layer oscillations. These regularly spaced vortices circumvent
along the dipolar vortex sheet, creating a ‘carousel’ type formation. The number of
small vortices in the carousel depends on the value of D and on the velocity of
the incoming flow, which defines the frequency at which the shear layer oscillates,
and hence the rate at which small vortex structures are injected into the cavities.
The vorticity strength of these vortices decreases along their circular motion in the
carousel. The existence of these small vortices is readily seen in the spectrum. They
leave a signature on the probe signal as a consequence of their cyclic passage.

Henceforth, the analysis will focus on the interaction of the shear layer with the
main recirculation region.

4.1. Characteristic time scales
Different time scales of interest appear in this phenomenon. We define Tshl as the
characteristic time of the prevailing oscillations of the shear layer, Tto the turnover
time of the main recirculation region, and Tlt the characteristic lifetime of the small
vortex structures. The advective time τc= L/U∞ is the natural reference time. It turns
out that Tshl/τc ' 1 in all cases. If the main recirculation region was considered as
being driven only by the shear layer in solid rotation, Tto should scale with U∞ and
H. In this respect, one could therefore expect that TtoΓ /τc also be little sensitive to
the value of ReL. However, this is not the case. Instead, we observe a dependence
of both TtoΓ /τc and Tto/Tshl with ReL. The ratio Tto/Tshl depends additionally on the
momentum thickness Θ of the incoming boundary layer, which defines the shear-layer
thickness, among other parameters that will be further clarified. The lifetime Tlt is not
easily determined as it is a function of the viscosity of the fluid, of the strength of
the small vortices and of their interaction with the neighbouring vorticity. A reference
time can be considered assuming Tlt∼η2/ν where η is the radius of the small vortices,
which depends on the amplitude of the shear-layer oscillations and therefore on ReL.
The ratio Tlt/Tto determines, whether in a single snapshot of the vorticity field, the
small vortices in the image were all created in the same round trip (figure 8a), or
vortices from two or more consecutive round trips coexist (figure 8c,d).

4.2. Flow field dynamics of the periodic regime
For the periodic regime, the simplest configuration is obtained when Tlt < Tto, i.e.
the small vortices dissipate before they complete one round trip in the carousel.
Figure 8(b) illustrates this configuration, for the SC flow, where seven small vortices
are formed during one turnover cycle (Tto/Tshl' 7). These vortices have such a small
lifetime, that during one cycle they do not appreciably reach the region of vorticity
injection. The only frequency measured in probe point 2 is therefore the frequency
of the shear-layer oscillations.

For 2Tto & Tlt & Tto, the vortex completes one round trip and returns to the injection
position, exiting the shear layer in a feedback process. A periodic regime may still
be encountered in this case over a wide range of the Re number. In such a situation,
both the shear-layer oscillations and the carousel turnover are synchronized, which is
something usually expected from two coupled oscillators. Periodic behaviour implies
Tto/Tshl = p/q, with p, q ∈ N and p> q. Many different possible scenarios are found
in SC and DC flows, depending on the values of ReL, ratio Tto/Tshl= p/q, and D. We
shall illustrate some of them below.

In figure 9(b) we observe, for a DC flow case, a situation in which Tto/Tshl= 4. The
vorticity plots show four small equispaced vortices per cavity in the main recirculation
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Nonlinear dynamics of two-dimensional double cavity flow 15

region. The structures of the carousels of each cavity are in opposite phase. Once a
small vortex returns to the area of injection at the rear edge of the respective cavity,
the shear layer injects a new vortex in its position. The power spectrum exhibits in
this case the main peak at StL ' 1, as the cyclic passage of the different vortices at
probe position occurs at the frequency of the shear-layer oscillations. The amplitude
of the first harmonic is enhanced by the opposed carousel. The set of two carousels,
exhibiting phase opposition, produces a signal that doubles the frequency of the shear
layer. This is clearly illustrated in the spectrum of figure 3 at probe point P3. There,
the peak at St' 2 is of larger amplitude than the peak at St' 1.

Figure 8(c) illustrates the case of an extremely large value of D/L or equivalently
a single cavity flow. For this case the ratio is Tto/Tshl = 7/2 and the dynamics is
periodic. The power spectrum exhibits a dominant peak at StL ' 2 in probe point P2,
while a peak at StL' 1 is still present. The reason for this spectral distribution, is that
Tlt/Tto ' 2. Consequently, the carousel is made of two intertwined patterns of small
vortices, which doubles the frequency in P2. The first pattern is weakened since it
enters its second turn in the recirculation region, while the second pattern carries a
stronger vorticity as it enters for the first time (figure 8c).

The ratio Tto/Tshl, however, evolves as the Re number is increased. By further
increasing ReL, the single cavity reaches a periodic regime with StL ' 0.5 in which
Tto/Tshl = 10/3. A snapshot of this flow regime is shown in figure 8(d). Due to
Tlt/Tto ' 2 the carousel pattern, though still periodic, becomes more complex.

To summarize, a periodic regime is obtained for either (i) Tlt < Tto or (ii) Tlt > Tto
when at the same time Tto/Tshl = p/q, with p, q ∈ N. In the first case the rhythm is
set by the shear layer, since the small vortices dissipate before completing one round
trip in the carousel. In the second case, the shear layer and the carousel are locked
in by Tto/Tshl = p/q, with p, q ∈ N. We did not observe cases with Tlt & 2Tto in the
periodic regime.

4.3. Flow field dynamics of the intermediate regime
In the intermediate regime, incommensurate frequencies appear in the spectrum and
the trajectory in phase space lies on a torus. We can expect that this new behaviour
manifests itself in the dynamics of the carousel. We have shown in § 3.3, that many
different situations are encountered in the intermediate regime. Rather than describing
all the possible scenarios, let us instead illustrate some examples.

For D/L = 0.2 at Re = 5500 (figure 9c), the lifetime of the small vortices lasts
approximatively two turnover times Tlt ' 2Tto before they dissipate. The carousel
pattern exhibits recurrent states with n = 3 or n = 4 vortices. Expressed in terms
of time scales we get: 3 < Tto/Tshl < 4. The small vortices are not equispaced as a
consequence of the continuous transitions between both states. The spectrum displays
the frequency associated with the shear-layer instability at StL ≈ 1 and a second
incommensurate frequency StL ≈ 0.45 associated with the carousel’s patterns.

Continuing with figure 9(d) at ReL = 5800, the three vortex pattern per cavity
prevails. The spectrum shows both the frequency associated with the shear-layer
oscillations (StL ≈ 1) and with the passage of the three small vortices. The frequency
ratio between the values of the frequencies of the third and fourth modes, which is
'3/4, can be associated with the recurrence in each cavity of a three vortex pattern
instead of a four vortices pattern, synchronized with the shear-layer instability. The
ratio of the new peaks, at StL ' 0.45 and StL ' 1.35, reaches a value close to 1/3
that can be associated with the cyclic behaviour of the three vortex pattern in the
intracavity structures.
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At Reynolds number close to 6200 (figure 9e), the intermediate regime loses
coherence and the small vortices are not regularly spaced anymore. Note however, that
the vortex carousel persists. Finally, at Reynolds numbers close to 7000 (figure 9f ),
the recirculation regions deform strongly. The recurrent patterns of vortices in the
carousel become largely disordered and are not easily determined. In fact, the vortices
injected into the cavities by the shear layers are of such intensity, that after one
turnover, they largely disturb the incoming shear layer and make the periodic feedback
mechanism impossible. The counterpart in phase space, to this last dynamics, is the
torus breakdown (cf. figure 4).

4.4. Coupling strength
Let us consider the spatial symmetry of the two-dimensional vorticity magnitude field
|ω(x, y)| in figure 10. Considering a spatial reflection symmetry (with respect to the
centreline y= 0), we distinguish between the following two cases:

|ω(x, y)| = |ω(x,−y)|⇒ spatially symmetric (or varicose)
|ω(x, y)| 6= |ω(x,−y)|⇒ spatially asymmetric.

}
(4.1)

Note, in the periodic regime the spatially asymmetric cases correspond to a sinuous
flow configuration. Both symmetric and asymmetric cases are observed, though in
most cases the flow is of the asymmetric type. For a given Reynolds number, as
D/L is varied and the coupling between the cavities evolves, the flow symmetry may
change. This is illustrated in figure 10 for ReL= 5500. For close facing cavities, when
D/L < 0.25, the flow configuration is spatially asymmetric. The symmetry changes
as D/L increases and gets closer to D/L= 0.3, a value for which the flow adopts a
spatially symmetric (varicose) configuration. Increasing D/L again, the flow returns
to a spatially asymmetric configuration. The emergence of spatial symmetry explains
the discontinuity in the Strouhal number as a function of the Reynolds number for
D/L= 0.25 at ReL= 5400 and D/L= 0.3 at ReL= 5000, respectively (cf. figure 6g,h).
At these Reynolds numbers the flow adopts the varicose flow configuration. For
the case D/L = 0.3 the change in symmetry occurs in the periodic regime without
hysteresis, while for the case D/L = 0.25 the change in symmetry is located in the
intermediate regime and a hysteresis was observed. The change in symmetry before
the transition to unsteady or turbulent flow conditions was also observed for the flow
past a sphere by Johnson & Patel (1999) and Tomboulides & Orszag (2000).

Let us analyse the interaction of the feedback mechanisms of the carousel as we
modify the ratio D/L for a fixed value of Reynolds number. For ReL = 5500, the
flow passes through all regimes as D/L is varied. As exemplified in figure 10(a), the
number of small vortices in each recirculation region is four when the cavities are
infinitely far from each other (SC). This corresponds to a case in which Tto/Tshl = 4
and Tlt'Tto and the recorded value compares favourably with the average recirculation
velocity reported by other researchers (Villermaux & Hopfinger 1994; Back &
Roschke 1972). A noticeable change in the carousel is observed, when a second
cavity is present at proximity (figure 10b–d). We observe, that the frequency is
almost constant but the number of small vortices in the carousel diminishes, which
means that the carousel must turn faster, since the shear-layer instabilities can not
be strongly modified, as neither the Reynolds number nor the momentum thickness
have changed. Figure 11(a) shows the carousel speed, normalized with the centreline
velocity U∞, as a function of the cavity distance. We observe, that the second cavity
has a strong effect. The carousel speed increases by 43 %, when D/L is varied from
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FIGURE 10. (Colour online) Flow patterns for different cavity distances D/L at Re= 5500
and the respective power spectra from time series recorded in probe point P2. Colour code
indicates vorticity magnitude. (a) Periodic regime, (b) intermediate regime, (c) intermediate
regime, (d) intermediate regime, (e) chaotic regime, ( f ) chaotic regime, (g) periodic
regime, (h) intermediate regime, and (i) intermediate regime.
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FIGURE 11. (a) Normalized carousel speed VCR and (b) angular velocity ωT =VCR/(H/2)
multiplied by the depth over distance ratio H/D as a function of the normalized cavity
distance D/L for all cases in figure 10 (Re= 5500). The SC case is indicated byp. The
shaded areas indicate the distances for which chaotic behaviour occurs (see figure 10).

1.4 (SC) to 0.9 (DC). This increase in angular velocity has in turn a critical effect
on the feedback mechanism between the carousel and the shear layer. Although the
carousel is turning faster, the lifetime of the circumventing vortices has not been
significantly modified. As a consequence, the injected vortices remain strong when
they come back to the shear-layer region, which they now excite. As a result, the
amplitude of the shear-layer oscillations is reinforced by this excitation, and the
vorticity injected into the carousel at the impingement, becomes stronger. Mutual
induction between the stronger and (relatively) long living circumventing vortices
can further increase their speed in the carousel. Indeed, the angular velocity of the
carousel increases as D/L is reduced and reaches a maximal value for D/L≈ 0.6. For
more contiguous cavities, the angular velocity of the carousel decreases again. This
may be understood as a ‘blocking’ effect due to the proximity of the shear layer of
the facing cavities. The shaded zones in figure 11 indicate the D/L-range for which
chaotic behaviour is observed. The speed drops to a minimum when D/L= 0.3, the
distance at which the flow becomes symmetric, as can be seen from figure 10(g).
The carousel speed slightly increases for the closest distances (cases D/L= 0.25 and
D/L= 0.2). In figure 11(b) the angular velocity, multiplied by the depth to distance
ratio, is plotted against the normalized cavity distance D/L. Interestingly, the resulting
curve decreases monotonously, while the trend for VCR, as a function of D/L, is quite
different, as shown in figure 11(a). Note however, that ωT and VCR are connected
through the relation:

ωT
H
D
= VCR

H/2
H
D
. (4.2)

The change in the carousel speed is even more striking when D/L is fixed and
the Reynolds number is varied. In the SC, for instance, the number of circumventing
vortices in the carousel changes from n = 7 to about n = 3 when the Reynolds
number passes from 4600 to 5100, as can be seen in figure 8. The relative change in
the incoming flow velocity is approximately 10 % while the turnover time increases
by 50 %. This behaviour is common to all cases. The significance of the carousel
mechanism to understand the coupling between shear-layer and intracavity flow and
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also to understand the mutual interactions between facing cavities, encourages future
work on the subject.

Experimental evidence of the vortex carousel can be found in the literature for open
cavity flow by e.g. Basley et al. (2011) and Basley et al. (2013). In these works,
smoke visualizations and particle image velocimetry measurements for a Γ = L/H =
1.5 cavity show the mechanism. The length to depth ratio Γ most likely does become
important for Γ � 2, as in Mizushima & Shiotani (2001) and Mullin et al. (2003),
who showed that the flow field can become heavily asymmetric due to large cavity
lengths L. Such an asymmetry will certainly alter the carousel mechanism.

4.5. The outflow pattern
It is also interesting to observe how the flow is modified at the exit channel as
the different regimes take place (cf. figure 9). The outflow in the steady regime
and in the periodic regime is well organized and the presence of the double cavity
does not introduce significant modifications between the inflow and the outflow. As
the Reynolds number is increased and the intermediate regime begins, the outflow
becomes more complex and once the chaotic regime is reached, strong mixing is
produced. As a potential application, DC flow could hence be designed as a laminar
chaotic mixing device. In figure 5, we can observe that the chaotic regime for DC
flows is reached at much lower Reynolds numbers for closer cavity distances. This
reflects the consequence of the strong coupling of the two individual cavities, and
the advantage of a DC configuration when mixing enhancement is pursued.

5. Conclusions

We studied a system, composed of two facing cavities, driven by a flow entering
from a channel that determines the characteristics of the velocity profile at the
leading edge of the cavities. We restricted our analysis to cases in which the inflow
profile was laminar, in order to exclude possible excitations associated with the
intrinsic fluctuations of turbulent flows. A first analysis, considering time series of
the velocity signal from two-dimensional numerical simulations, was carried out. We
found that the signal of a single probe was in general rich enough to capture the
salient features of the global behaviour. On this basis, a study was performed using
time series from a single probe. As ReL is increased, for a given ratio D/L, we found
the following successive regimes: steady → periodic → intermediate → chaotic. A
map was constructed which enables to identify these regimes for different Reynolds
numbers and different separation distances between the cavities. In phase space, the
periodic regime describes a limit cycle with a spectrum, that always exhibits a peak
at StL ≈ 1. In most cases, the oscillations of the shear layer is of the asymmetric
type. The periodic regime is observed for ReL & 4000, though this value depends
on the cavity distances. For D/L = 0.5 and D/L = 0.6 it is reached at somewhat
lower Reynolds numbers. As the Reynolds number is increased, the limit cycle
disappears and the trajectories in phase space lie on a torus. The spectra become
more complex, exhibiting combinations of the two basic incommensurate frequencies.
Frequency lockings and un-lockings may occur on the torus, before it breaks down
and bifurcates towards a chaotic regime. In this last regime, any phase coherence
between the two shear layers is lost and oscillation amplitudes are one order of
magnitude above the amplitudes of the periodic regime. We could verify that the
transitions to the chaotic regime in almost all cases take the quasi-periodic route, in
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which a frequency smaller than the dominant Strouhal number appears. This route to
chaos is reminiscent of a Curry & Yorke (1978) scenario.

A second analysis was carried out, focusing on the vorticity fields, in order to link
the phase space dynamics to the dynamics of the physical space. The visualization of
patterns of small intracavity structures serves to understand the underlying mechanisms
of the feedback process and helps to identify the flow regime. The small vortices
are created as a consequence of the shear-layer oscillations, which regularly inject
vorticity at the rear edge of the cavities. They describe a quasi-circular motion inside
the main intracavity recirculation region, forming a ‘carousel-like’ structure in each
cavity. These vortices, when returning to the region of the instability onset, excite
the shear layers. The relative phase synchronization of the carousels indicates the
degree of coupling between the two cavities. The angular velocity of the carousel and
the number of vortices present in the carousel depend, non-trivially, on the Reynolds
number and the distance between the cavities.

The interplay of three characteristic time scales determines the properties of
the observed phenomena: the turnover time of the main recirculation region, the
lifetime of the small intracavity vortices and the period of the shear-layer oscillations.
We illustrated the importance of these three time scales on the dynamics of the
physical space and the associated dynamics of the phase space. The simplest scenarios
correspond to lifetimes so short, that the vortices cannot accomplish one complete
round trip in the carousel. In this situation, time series indicate a periodic regime
with StL ≈ 1, associated with the shear-layer oscillations. When the lifetime is long
enough, the small circumventing vortices keep an intensity capable to excite the shear
layers, and therefore to produce a significant feedback process. Depending on the
separation D/L, the small vortices may even leave their signature in the signal of
probes placed in the facing cavity. A periodic regime may be found for lifetimes
larger than the turnover time, when the carousel synchronizes in such a way that any
new vortex superposes with a dissipating one. When new vortices are injected in the
space between two circumventing vortices, which have already completed one round
trip, the spectrum reflects the frequency of the injection (StL≈ 1) and of the surviving
carousel structures. Lifetimes up to two round trips were observed, which explains the
complex spectral composition found for the intermediate regime. The chaotic regime
occurs when the feedback process becomes too strong: the vortices of the carousel
do not decay sufficiently and do not synchronize with the natural oscillations of the
shear layer. Experimental evidence of the vortex carousel mechanism can be found
in literature for open single cavity flows.

Our study raises questions that call for further research:

(i) Two-dimensional simulations indicate that there is a narrow range in D/L where
it is possible to find a symmetric (varicose) flow configurations. This state inhibits
the intermediate regime and the flow stays in the periodic regime up to higher
Reynolds numbers. It would be of interest to understand why the selection of this
state occurs in such a narrow range in a two-dimensional context and if this state
effectively occurs in three-dimensional flows.

(ii) When the inflow is laminar, there are no experimental reports of the chaotic
regime for single cavity flows. However, this cannot be excluded as this requires
specially designed experiments with well-controlled inflow conditions. Yet, a
reduction of the lifetime of the small vortices related to a non-zero spanwise
velocity component, seems another plausible reason for the absence of the
chaotic regime.

Specifically dedicated experimental and/or numerical efforts seem necessary to
clarify these points.
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