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Abstract 

In this paper, we study the existence of local o global center of Liénard type system (1), under non -usual assumptions. 
The boundedness and the oscillatory nature of solutions of that system are also obtained. 

 

INTRODUCTION  

1. Preliminares. We consider the generalized Liénard equation: 

         (1) 

 

various issues on the prolongabilidad, boundedness, frequency and oscillation of the solutions of the above equation, 
autonomous o not, have been considered in the past 50 years; many of these attempts have  been made to obtain 
sufficient conditions on f and g for solutions of this equation possess certain qualitative properties  

We recommend the reader to an extensive bibliography of the results appeared to 1962, Reissig, Sansone and Conti 

, Cherkas  and Graef  for references to 1976, Staude , Villari  Zhifen  until 1987 and 

recently, the works of Nagabuchi and Yamamoto  and of Nápoles . Additonal literatura, and others qualitative 

results, can be found in Burton and Townsend  Elabbasy , Furuya  y Hricisakova . 

The Lienard equation, as natural generalization, has become a source of numerous investigations in  recent years, we 

refer the reader to consult , , , , , , , , , , 

, , , , , ,  y  and references cited therein, for a small sample of the 
qualitative research concerning global stability, boundedness and existence of periodic solutions. 

This qualitative study of the solutions of this equation, often requires the use of appropriate Liapunov functions and 
community functions involved in it. To apply the direct method of Lyapunov equation (L), usually a Liapunov function is 
defined by 

 

 

As the derivative of V, along solutions (L) is 

 

being  requires that for  Furthermore, non-positivity of (1) implies that any 

solution with initial conditions in the region enclosed by the curve  remains in this region as t 

increases, that is, the stability of the null solution. Moreover, the curve  is exactly one orbit in the 
phase space of the system 
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and the origin is a local center of such a system. If, in addition, is fulfilled  then the origin is a global 

center of the system and the solutions are bounded. 

Using this idea, in our paper we study the existence of a center (local or global) of a natural generalization of the above 
equations, namely: 

 

(1) 

 

where the functions involved, satisfy unusual conditions to be defined later, being  with  

The boundedness and the oscillation of the solutions of the system considered, will be studied in connection with the 
above problem. 

It must be added that it is an old problem the authors establish under what cond itions the system (1) has a center, unique 

or not (see  ). 

In the last 50 years, they have made multiple attempts (see [1], [3 -4], [5], [9], [14-17] [19-20], [22], [24- 25], [26-27], [28], 
[46-47], [50], [67], [68], [69-70]) to  obtain sufficient conditions for the existence and uniqueness of a center in particular 
cases of the system (1). 

2. The existence of a local center and the oscillatory character of the solutions of the system (1).  

In our paper, play a special role the following functional classes (see ): 

 

 

 

 

defined on a real interval nondegenerate. 

We consider then the system (1) subject to conditions: 

a)  

b)  

c)  

d)  

e) The functions involved in the system (1) satisfies a certain condition of uniqueness of solutions. 

Under the conditions a, b, c and d, the system (1) admits the trivial solution and the only critical of this point is the origin. 

It is clear that if  and  the system (1) is the "classical" Liénard:  

      (2) 

For this equation, the first sufficiently general results, the study of a local center, were obtained in [11] and [49]. The 
conditions of Opial are more general than Filippov, although in [11], it considers that F and g are odd and  even functions, 

respectively, and F is class . In our work, this condition is automatically hold, under the definition of the function F.  

In this section, we determine conditions necessary and / or sufficient, under which all solutions of th e system (1) are 
oscillating, additional conditions on the functions involved in the system, allowing affirm the existence of a local center a t 
the origin are determined.  

 

Definition 1. A critical point of a two-dimensional autonomous system is called a local center, if all the system orbits in 
some neighborhood of the point, are ovals (periodic solutions) surrounding the point. 

Considering what is stated in the preliminaries, we assume that: 

 when      (3) 
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In view of the proposition, it seems reasonable to maintain the above consideration throughout the work. 

 

Lemma 1. Suppose that: 

i.  and  

Then there is a bounded solution of system (1). 

 

Proof. Suppose  for  

Condition (1) it is obtained there  

We consider the solution  the system (1) with initial conditions  at  

Suppose there exists  such that  way we will have: 

 

Where we get that  for  Hence  for  and taking  we 

have  

Thus 

 

which contradicts the initial assumption. Then we have  for all values of time in which 

they are defined, this shows that the solution  is unbounded.    

Remark 1. A simple, but tedious process, allows the same conclusion taking  

Remark 2. Similar to (i) condition, can be given to  which would extend the result to the entire plane. 

Remark 3. If the condition (i) of Lemma; holds that  but   is unbounded, is shown in Remark 10, the 
system (1) has a global center at the origin as is showed.  

Let us admit, as in [31] (see also [53]), the existence of a function , which will allow us to divide the phase 
plane, in several useful regions in our study. 

 

Lemma 2. Any solution of (1) passing through a point  on the curve   crosses the 

axis and two points  and . More precisely, if , the solution  

of  (1) of the point P at  or crosses the axis  in a finite time   when it decreases, or tends to the origin 

as  remaining in the region: 

 

and traverses the negative axis  in a finite time   when it grows or tends to the origin as   remaining 
in the region: 

 

 

Proof. We will consider only solutions in the region  then the argument is the same in the region   

Let  the solution of (1) that part of the point  in . Suppose that  does not cross the 

axis y. Then  remains in the region  hence  and, then, 
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We consider curves: 

 

The total derivative of W is given by: 

 

being  Let  then we have: 

 

Therefore, the solution   does not cross the curve   when t 

increases. Thus the solution   crosses the axis y in   As   and  on the 

characteristic curve in the region  implies . Hence the solution through the negative axis and 

in a finite time or tends to the origin as   since the origin is the only critical point (1). The proof of the existence 

of A is similar to C, replacing  by  in (1).  

In [37] we use the following alternative conditions on the function  we shall call condition (h). 

(h1)  has a sign not defined in a right semi neighbodhood of 0, that is, there is a decreasing sequence of numbers 

positive   as  and   

(h2)  has a definite sign in a right semi neighbodhood of 0, that is, 

 

and exist  such that  and the inequality 

 

holds. 

 

Definition 2. We will say that the system (1) is of type (F) if the condition: 

    (4) 

We are now able to study the existence of a local center. 

Lemma 3. Under the conditions (h) and (4), the system (1) has a local center at the origin. 

 

Proof. We can consider only the region  Note that  in ,  on 

 and  in . From Lemma 2 we have, that any solution passes through a 

point   crosses the axis  at  and  with  and  

Case (h1): It is trivial. 

Case (h2): We will work only with the region   If   for  is clear that   Suppose that 

 for  and . Then the solution  of (1) passing through the point  

defines a function  on  which is a solution, about , the equation: 

 

As  then  for . For any  we have: 
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for  Thus, ,   If , then we have a contradiction. Suppose that 

 hence  where  Similarly we have: 

 

for .  Thus,  with   

By repeating this procedure, we obtain a sequence  such that  and  for 

. If  then  is decreasing, and therefore  converges to some real number . Moreover, 

 and  show that  is complex, which is a contradiction. The same argument can prove that .  

Remark 4. In [26, Example 4.2], Kooij and Jianhua study the system (1), taking  and considering that the 
following conditions are fulfilled: 

i.  strictly increasing and  

ii.  y  

iii.  not decreasing as x increases, 

on the basis of Theorem 2.6, they affirm the existence of a center in such a system; it is clear that Lemma 3 obtained our 
under weaker conditions. 

The same observation is valid in the case of Examples 4.3 and 4.4 of that work, where they present other particular cases 
of the system (1) and, on the basis of Theorems 2.7 and 3.2, obtain the existence of a local center. 

The corollary 8 of [9] is applied to the system 

 

 

with  small enough, to obtain the same conclusion of Lemma 3, this assumption is not used. 

In [27], the system (1) with , under very strong analyticity is studied. 

It is easy to see that considerations of Lemma 3 are less demanding. 

Remark 5. Odani ś results [46] are consistent with Lemma 3 as shown by the example of this work : 

 

 

 

Remark 6. The condition (h) has certain "overtones of necessity," because there are systems that do not comply, and 
have Unbounded solutions, let's take as an example (see [23]): 

 

 

Also see recommend [67] (on a result of [51]), where is presented the system 
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having the integral curve  

Remark 7. Our results are consistent with some reported in the literature (see [7] for example), and the equations 

 

and  

 

of this work, which are covered by our results (Figures 1, 2, 3 and 4 illustrate the above). We also recommend [50, 
Theorem 1], [61, Theorem 4.1] and [67, Example 3]. 

 

Lemma 4. Suppose that: 

        

where   

Let  the maximal solution of (1) extended to the interval , with initial 

conditions . If  is in the region  for , then , when 

. 

 

Proof. Note that  in the region , therefore have to be  is monotonically increasing and 

 is monotonically decreasing. Suppose that  is bounded. Then  remains in the region 

 for some , and therefore traverses the curve , which is a 

contradiction. Hence  as . Suppose now that  for some . So: 

 

when  This contradicts the assumption that   

Similarly, it can be proved the following result. 

 

Lemma 5. Suppose that: 

       

with  Let  the maximal solution of (1) extended to the interval 

 with initial conditions  If  is in the region  to  then 

 when  

 

Remark 8. The condition  which we call (5), implies  

 

Lemma 6. Suppose that (3) is satisfied and the condition: 
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 and a succession  such that  when  and     (6)   

is fulfilled. Then every sequence  of (1) that part of a point  (  crosses the curve 

, when  increases (decreases). 

 

Proof. By Lemma 4, if  and the solution in  for all finite time, then . Therefore it follows 

immediately from (6) that the solution crosses the curve  when  increases. Similarly, by Lemma 5, if 

 and remains in  for all finite time, then the solution crosses the curve   

For our next result, we need to return to the condition (F) given in [37]. 

(F)  for  large enough and for any , exist a number , such that the inequality  

 

is satisfied for  where  and it does not depend on . 

 

Lemma 7. Suppose that (3) and (F) holds. Then every solution  (1) that part of a  point  

(  crosses the curve  when  decreases (increases). 

 

Proof. Consider only the case where  for sufficiently large x. The proof in the other case is essentially the 

same. Now consider . Suppose that there is a solution  the (1) passing through a certain 

point  which does not cross the curve . Then the trajectory of this solution can be considered a 

function  which is solution of the equation (4). By Lemma 5, we have , and  when t 

decreases and , therefore exist  such that  for all , so we have 

 

As  it is a solution of (4) follows from (F) exists  such that: 

 

for . Therefore,  for , where . By a similar argument, exist 

 such that:   

 

 for . 

Thus,  for , where  Repeating this procedure, we obtain two 

sequences  and  such that  and , for all  

As in the proof of Lemma 3, , implies  for some n, and this is a contradiction. 

Similarly in case , we can show that the trajectory that passes through the point  intersects the 

curve  This completes the proof.  

 

2.1 Oscillation of solutions. In this section we study the oscillation of the solutions of the system (1), make use of 
the Second Method of Liapunov. 
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Let  is the set of functions  defined on  with  such that: 

  satisfies  

  for  

or  

  for  and to  . 

Let  is the set of functions  defined on  with  such that: 

  satisfies (6), 

  for  large,  

or  

  for  large and  satisfies the condition 

 y ,       (7) 

In addition to the above condition we consider that: 

 and ,       (8) 

Note that ((h)) and ((6) F)) correspond to (7) and (8), respectively.  

 

Remark 9. Prolongability for solutions, we refer the reader to [42-43] (F has a definite sign) and [32-33] (when F has a 
behavior any). 

 

Theorem 1. Under considerations (3), (7) and (8) all solutions of the system (1) are oscillating. 

If we omit (3) and (8) we obtain: 

 

Theorem 2. Under consideration (7), suppose: 

Exist sequences  y  such that  y , when   
                      (9) 

then all the solutions of (1) are oscillating. 

For the proof of these theorems, we take: 

 and  such that  and , when 

                                            (10) 

so we get our final result. 

 

Definition 3. A critical point of a two-dimensional autonomous system is called a global center, if all the system orbits 
are ovals (periodic solutions) surrounding the point. 

We will use again the curve  and the regions  and . 

 

Remark 11. Let us return to the condition (h). Suppose  and  such that: 

 for  Then (h) is satisfied. In particular, consider the case that the 
system (1) is linear (see [19]), putting: 

 y   

We see that (h) is only true if  and the origin is a local and global center if and only if the condition (h) hold 
(see Lemma 3). You can see examples of less "trivial" local or global in, [38-39] 
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Let the functions  y  defined above for R: 

            

and application  by  

Then  are continuous. We should note that  is an odd function if (11) holds. 

We consider the system: 

 

(11) 

 

In [31] the author recommended, given the topological similarity of behavior of the trajectories of the system (1) and 
Liénard Equation (2), finding an isomorphism between them, which would be a result of undoubted theoretical and 
practical interest. 

 

Lemma 8. If (4) holds,  is an isomorphism of the plane  on the plane  which is a one to one 

correspondence between all orbits (1) and those of (11). Without the condition (4),  is a correspondence between 

all orbits in a neighborhood of the plane origin  and those of the plane  

 

Proof. It is obvious that  is a homeomorphism on the entire plane and a diffeomorphism half-plane  right (left) 

on the  right half-plane (left). 

Consider an orbit  of (1) and curve  which is the image of   by the application . We show that  

is an orbit (11). In the region , if a point  belongs to the curve C, then: 

 

A similar result is obtained in the region . Therefore the curve  in the region  is on an orbit 

solution (11). If the orbit crosses the axis  in , then the curve  also crosses the axis  in . Let 

 of the orbit (11) passing through the point  and   of the inverse image the  by the 

application . Since the solutions of (1) are unique,  and  coincide and  and  therefore also coincide by 

injectivity of . Thus  applies injective orbits (1) those of (11).  

Some of the results of the previous section, we can rewrite as follows. 

Lemma 9. Suppose that conditions (3) and (4) hold. If  and  are satisfied as in the previous lemma 
and if: 

The functions α and β are odd and pair functions, respectively, then all orbit (1) passing through the curve  
is an oval surrounding the origin.                                                                                                                                 (12) 

 

Remark 12. If consideration (3) is omitted, this result is true in a neighborhood of the origin. 

 

Proof. By Lemma 8, we can assume  in the system (1). Thus, (4) shows that  is an odd function. 

Therefore, if  is a solution of (1),  so is, that is, the orbits defined by (1) have 

symmetry about the axis Y. Thus, every orbit is an oval surrounding the origin.  

The following result is a consequence of the results of the previous section and Lemma 9. 
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Lemma 10. Under the considerations (3), (4), (h) and (12), all orbit the system (1) passing through  the curve 

, is an oval surrounding the origin. 

 

Lemma 11. Suppose (5) and (6) are fulfilled. Then, any solution  of (1) with initial conditions 

 crosses the curve  when t increases (decreases). 

 

Proof. By Lemma 10, if  and the solution remains in  then  as  increases. 

Therefore it follows from (5) that the solution crosses the curve  as t increases. Similarly, by Lemma A, if 

 then the solution crosses the curve  when  decreases.  

 

Theorem 4. Under considerations (3), (4), (h), (5), (12), the system (1) has a global center at the origin. 

 

Proof. This theorem is an immediate consequence of the previous two theorems.  

 

Remark 13. It is sufficient to take  and  (see [19]), to ensure 
that the condition (12) in the previous theorem, can not be weakened. 

Theorem 4 shows that the system (1) has a global center at the origin if F (x) is "oscillating". We will now discuss the 
case when F (x) keeps the sign on an interval not bounded. We must return some results proved in [37]. 

 

Lemma A (B). Suppose that  hold. Let  the maximal solution of (1) extended to the 

interval , with initial conditions  ( . If  it is in the 

region  (  for , then   when 

 

 

Lemma C. Let  and  continuous in . Suppose the solution of the equations 

       

and 

       

are unique to the right and  for all . Let  solutions  and 

  respectively, defined on  with . Then  for all  

 

Lemma 12. Suppose (5) and (F) are satisfied. Then, any solution  of (1) with initial condition 

 crosses the curve  when t decreases (increases). 

 

Proof. We consider only the case  for  sufficiently large. The proof in the other case, is essentially the 

same. Take . Suppose there is a solution  of (1), with such initial conditions, which 

does not cross the curve . Then the orbit of such a solution may be considered a function , solution 
of the equation:   

      (14) 

By Lemma B, we have  as t decreases and  when  
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Therefore, exist   to , so we have que . 

Since  is a solution of (14), it follows from (F) there  such that: 

 

for . Thus,  for , where  n a similar way we get there 

 such that: 

 

for . Thus,  for , where   By repeating this process, 

we obtain two sequences  y  such that  y ,  for all 

 

As in the proof of Lemma 3,  implies  for some n and this is a contradiction. Similarly, in case 

, we can show that the orbit of (1) with these in itial conditions, crosses the curve . This 

completes the proof.  

 

Theorem 5. Under the considerations (3), (4), (h), (5) and (F), the system (1) has an overall center at the origin. 

 

Proof. This result is an immediate consequence of Lemmas 10 and 11.  

If assumption (5) is no considered then we have. 

 

Theorem 6. Under the considerations (3), (4), (h), (13) and  

  (15) 

the system (1) has a global center at the origin. 

 

Proof. It is clear that the orbit of (1) with initial conditions  cuts the curve . The use of Lemma 10 

completes the proof of the theorem.    

Remark 14. If conditions (3) and (4) are omitted in this theorem, but F and g are odd, then the system (1) has a l ocal 
center at the origin. This can be demonstrated, using Lemmas 2 and 3, as in the proof of the previous theorem (see 
[35] for another demonstration). We recommend consulting [42,54,58] for other results in this direction.  

 

2.1 Stability and bounded. The definitions required for this section can be found in [66]  

Consider the system: 

 

(16) 

 

where  is a continuous function that satisfies condition initial (c). 

Denote by  orbit system (16) having as an initial condition point P. If this orbit is an oval surrounding the 

origin, denote by   in the closed region contained orbit. 

The following result, will play a key role in this section. 
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Lemma 13. Suppose that  to a P (different origin) is defined and 

     (17) 

Then for any  with , the solution  does not cut the curve  in 

the half-plane  

 

Proof. Consider the following cases. 

1.  

The proof is trivial. 

2.  or  

We assume that the Lemma is invalid and let  

Then  and for some  will have: 

   (18) 

Is  the solution of (6) having initial condition in (P) such that 

 

Consider first the case  

Then  and  defining solutions  of equations defined on  

      (19) 

and 

      (20) 

 

which exist on  for some   and satisfy: 

     (21)  

where  

Conversely, for a solution  of (19) on , the solution  of the equation  

with  and the solution  of the equation  with  define a solution (1). 

Therefore, the uniqueness of solutions of (1) allows us to affirm the uniqueness of the solutions of (20) on . Similarly, 
solutions (20) are unique. Thus, it follows from the C and (17): 

 

which contradicts (21). Therefore, in this subcase,  not short . Consider now that 

 The proof this subcase, is performed similar to the above, it suffices to consider the equations: 

 and  

This completes the proof.  

In [43] and [53], we provide results on stability of the null solution (1) and the boundedness of solutions, using the Second 
Method of Lyapunov. In such cases, if considered the following assumptions: 

     (22) 
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because use of a certain Lyapunov function whose derivative along the system (1) was defined negative under the 
condition becomes (22). 

In this section, we are interested and study the system (1) when the condition (22) is not fulfilled. Note, moreover, that 

there  such that  is defined for , provided that (22) is not met. 

Theorem 7. Suppose  and  satisfy (h) for   and  

     (23) 

Then the null solution of (1) is uniformly stable. 

Proof. Define the function  as  for  and  for . Then 

Lemma 3 shows that the source is a local center system: 

 

(24) 

 

Therefore, there is a neighborhood V of the origin such that for any , orbit  of the solution 

(24) is an oval that surrounds the origin. Let  and  points in which  crosses the y-axis, 

with . For him Lema C and (22) any solution  of (1) with initial conditions  

and  not cross the curve  in the right half plane and therefore the solution intersects the axis 

and at a certain instant  or tends to the origin as . In these cases,  is a solution of (24) for 

 and therefore intersects the positive axis and at a certain instant  The uniqueness of solutions of (24) 

implies that . Thus, the solution  is defined for all later time and remains in the region 

 for all  By the same argument, it is clear that any solution  of (1) with initial 

conditions  and  remains in . Since the choice of the neighborhood is arbitrary, 

the null solution of (1) is uniformly stable.  

Corollary 1. Suppose  for ,  and  satisfy (11) for  and conditions (12) 
and (23) holds. Then the null solution of (1) is uniformly stable.  

Proof. Through the transformation , the system (1) becomes the system: 

 

(25) 

 

where  y  It is easy to  verify 

that the system (25) satisfies the conditions of Theorem 7. This completes the proof.  

The following results are referred to the boundedness of the solutions of the system (1). 

Theorem 8. Suppose  and  satisfy (5) and ((6) or (F)) for  and also satisfy the following 
condition: 

    (26) 

Then the solutions of (1) are uniformly bounded. 

Proof. Define the function  as  for  and  for  and 

consider the system (24). Note that (4) holds for this system. 

 

First we show, that for any  large enough, there exist  such that the orbit  encircles the 

origin. By Lemmas 11 and 12, for any ,  intersects the curve  Therefore, under Lemas 

4 and 11, it is sufficient to show that  for some  
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But this is obviously the case that  is oscillating, that is, there is a sequence   tending to , such that 

 

Suppose there is  such that  for  

Choose  such that . Then it is easy to obtain that . Thus in any case, 

  is an oval, for certain  

Of the latter, easily get there  such that for any  with  is an oval that 

surrounds the origin. 

The rest of the show is similar to the Theorem 8.  

Corollary 2. Suppose  for  large, F (x) and g (x) satisfy (5) and ((12) or (F)) to  and that the 
condition (26) is met. Then the solutions of (1) are uniformly bounded. 

Proof. By transforming , this reduces to Theorem 8.  

 

3. Concluding remarks. Take the system 

 

 

it is easy to see that the condition  it fails, however it has a center at the origin (see [26]). 

On the other hand, if the system (1) we   you can easily check the condition (h) is not always true. 

Thus, the question arises: 

Under what additional conditions, we obtain the existence of a center (local or global) in these systems?. 
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