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Abstract

Given that the role of C-type natriuretic peptide (CNP) in the regulation of vascular tone in

hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide

system to CNP in spontaneously hypertensive rats (SHR) could affect vascular relaxation

induced by the peptide in this model of hypertension, and that other endothelial systems or

potassium channels opening could also be involved. We examined the effect of CNP on iso-

lated SHR aortas, and the hindlimb vascular resistance (HVR) in response to CNP adminis-

tration compared to normotensive rats. Aortas were mounted in an isometric organ bath and

contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner

but was less potent in inducing relaxation in SHR. The action of CNP was diminished by

removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl

ester, and inhibition of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxa-

lin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin

receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was

blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating

that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more

sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normo-

tensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP

increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relax-

ation by activation of the nitric oxide system and opening of potassium channels, but the

response to the peptide is impaired in conductance vessel of hypertensive rats.
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Introduction

C-type natriuretic peptide (CNP) is extensively distributed in the cardiovascular system, par-

ticularly in vascular endothelial cells [1,2]. Given that CNP is an important vasodilator with

few renal actions, it has been suggested that this peptide has a function as a paracrine/autocrine

mediator to regulate vascular smooth muscle tone and blood flow [1,3]. Physiological effects of

CNP are mainly mediated through the membrane-integrated natriuretic peptide receptors

subtypes B and C (NPR-B and NPR-C, respectively), which are strongly expressed in venous

tissue, aortic smooth muscle and aortic endothelial cells [4,5].We previously demonstrated

that acute CNP administration decreases mean arterial pressure and increases excretion of

nitric oxide (NO) metabolic end products in hypertensive rats [6]. In addition, in our previous

studies we showed that the peptide also increases endothelial NO synthase (eNOS) activity

through NPR-C-coupled Gi protein activation in aorta of spontaneously hypertensive rats

(SHR). The response of the NO system to CNP is lower in hypertensive than in normotensive

rats [6,7]. It is well documented that endothelial production of NO causes vasorelaxation pri-

marily by activating soluble guanylyl cyclase (sGC) in smooth muscle cells and by increasing

intracellular cGMP, which in turn activates protein kinase G to induce vasorelaxation by

decreasing cytosolic Ca2+ concentration [8,9].

On the other hand, it has been suggested that CNP induces hyperpolarization of microvas-

cular endothelial cells, activating Ca2+-dependent K+ channels and involving the NPR-B recep-

tor, protein kinase G, eNOS and sGC [10]. Other authors have postulated that CNP acts as an

endothelium-derived hyperpolarizing factor via NPR-C in coronary and mesenteric resistance

vessels [11,12].

The SHR is a model of hypertension with enhanced vascular tone. As in human hyperten-

sion, SHR present endothelial dysfunction with a decrease in the bioavailability and effective-

ness of NO [13]. Aortas of SHR also exhibit enhanced production of reactive oxygen species

(ROS), activation of endothelial cyclooxygenase-1 (COX-1), release of endothelium-derived

contracting factors and prostacyclin (PGI2), which causes little or no relaxation in the aorta of

SHR because expression of the PGI2 receptor is systematically lower than in normotensive

rats, and PGI2 could also activate thromboxane prostanoid receptors [14–17]. However, in

response to other stimuli, production of thromboxane A2 can also contribute to enhanced vas-

cular tone in SHR [18].

The vasoactive nonapeptide bradykinin (BK), which is the main effect or of the kallikrein-

kinin system, can be generated both systemically and locally within the vascular wall in both

endothelium and smooth muscle cells [19]. BK is one of the most potent stimulators of NO

and PGI2 release by endothelial cells [19,20]. In SHR, enhanced BK degradation may contrib-

ute to the endothelial dysfunction observed in these animals [21], even though young hyper-

tensive rats seem not to present lower levels of BK in tissues and, on the contrary, present

elevated levels of BK, as well as BK metabolites, as observed by Campbell and coworkers [22].

Considering this background and the fact that the role of CNP in the regulation of vascular

tone in hypertensive states is unclear, we hypothesized that the impaired response of the NO

system to CNP in SHR could affect vascular relaxation induced by the peptide in this model of

hypertension but other endothelial systems or potassium channels could also contribute to this

impaired response. The capability of central vessels to respond to cardiovascular performance

modifies arterial blood pressure and flow dynamics [23]. In addition to structural changes,

arterial stiffness is strongly affected by endothelial function and vascular smooth muscle tone

[23,24]. Therefore, we investigated the mechanisms involved in the vasodilator effect of CNP

in a genetic model of hypertension by studying endothelium derived NO, involvement of the

prostanoid and kinin systems and participation of potassium channels.
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Materials and Methods

Animals

Fourteen-week-old male Wistar and SHR rats were obtained from the breeding laboratory of

Facultad de Farmacia y Bioquı́mica and Instituto de Investigaciones Médicas A. Lanari, Facul-

tad de Medicina (Universidad de Buenos Aires, Argentina). Rats were housed in a humidity-

and temperature-controlled environment with an automatic 12-hour light/dark cycle. They

were fed standard rat chow from Nutrimentos Purina (Buenos Aires, Argentina) and tap water

ad libitum up to the day of the experiments. Systolic blood pressure (SBP) was measured in

awake animals (tail cuff method) with a MP100 Pulse Transducer, PanLab (Quad Bridge Amp,

ADInstruments), and recorded with a polygraph (Quad Bridge Amp, ADInstruments). Data

were obtained using data acquisition software (PowerLab 8/30 and Labchart, Australia).

Experimental design

All experimental protocols were performed in accordance with the Guide for the Care and Use

of Laboratory Animals (National Institutes of Health, Publication No. 85–23, Revised 1996)

and Regulation No. 6344/96 of Argentina’s National Drug, Food and Medical Technology

Administration (ANMAT). Experimental procedures were approved by the Ethics Committee

of the School of Pharmacy and Biochemistry (CEFFB), Universidad de Buenos Aires,

Argentina.

Preparation of isolated aortic rings

Animals were randomly assigned to each protocol. The thoracic aorta from Wistar and SHR

was removed immediately after decapitation and placed in cold oxygenated Krebs buffer. The

aorta was carefully cleaned of fat and connective tissue and then cut into 3-5-mm long ring

segments. Endothelium was denuded in some rings by gently rubbing the lumen of aortic seg-

ments. Rings were mounted in 10 mL organ baths filled with oxygenated Krebs buffer at

37 ± 0.5˚C (95% O2, 5% CO2). The composition of the Krebs buffer was (mmol/L): 118 NaCl;

4.7 KCl; 25 NaHCO3; 1.13 NaH2PO4; 2.55 CaCl2; 1.15 MgCl2; 11.1 D-glucose; 0.004 EDTA;

0.11 ascorbic acid, pH 7.4.

Isometric tension (g) was measured using a force displacement transducer connected to a

PowerLab with a LabChart Software recording system (AD Instruments, Australia). Aortic

rings were then progressively stretched to an optimal basal tension of 1 g and allowed to equili-

brate for 60 minutes. During this period, the bathing solution was replaced every 15 minutes

and, if needed, the basal tone was readjusted to 1 g. After control stimulation with KCl (90

mmol/L) and a 30-minute recuperation period, acetylcholine (10 μmol/L) was added to phen-

ylephrine (10 μmol/L) precontracted vessels to verify endothelial integrity. Endothelium-intact

rings were discarded when relaxation with acetylcholine was less than 80%. The composition

of the Krebs buffer enriched with K+ was (mmol/L): 32.8 NaCl; 90 KCl; 25 NaHCO3; 1.13

NaH2PO4; 2.55 CaCl2; 1.15 MgCl2; 11.1 D-glucose; 0.004 EDTA; 0.11 ascorbic acid, pH 7.4.

After the equilibration period, specific protocols were performed on rat aortic rings.

Endothelium-dependent effect of CNP on vascular reactivity

Cumulative concentration-response curves were constructed to CNP (10 pmol/L to 1 μmol/L)

or cANP(4–23) (NPR-C selective agonist, 1 fmol/L to 1 nmol/L) in phenylephrine-precontracted

rings (at EC80 of the maximum response to avoid differences between treated and untreated aor-

tic rings, S1 Fig) in the presence or absence of: Nω-L-arginine methyl ester (L-NAME, non-selec-

tive NOS inhibitor, 0.1 mmol/L); 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, selective
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sGC inhibitor, 1 μmol/L); indomethacin (Indo, non-selective COX inhibitor, 10 μmol/L); D-Arg

[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (HOE 140, bradykinin subtype 2 (B2) receptor antagonist,

0.1 mmol/L). Each blocker was administered 30 minutes before the addition of CNP. Concentra-

tions of CNP and cANP(4–23) used are different since the maximal response was achieved with

lower concentration of NPR-C selective agonist. Only one curve to any one blocker was con-

structed in any single tissue. NO-mediated relaxation was determined by measuring the portion

of CNP-induced relaxation that was abolished by L-NAME. Calculations were performed by

determination of the area under the curve (AUC, in arbitrary units, au) of individual dose-

response curves. The NO-mediated response was then calculated as the difference between the

AUC of CNP-induced relaxation in the absence and presence of L-NAME. In order to evaluate

the capability of smooth muscle to respond to NO in both groups, additional experiments using

sodium nitroprusside (SNP, NO donor, 0.1 pmol/L to 1 μmol/L) were performed. All drugs

were purchased from Sigma-Aldrich.

Endothelium-independent effect of CNP on vascular reactivity

The tests were conducted in endothelium-denuded aortic rings to evaluate the possible role of

potassium channels from smooth muscle in the relaxant effect of CNP. To show that removal

of the endothelium was successful, failure of acetylcholine (10 μmol/L) to relax the rings pre-

contracted with phenylephrine (10 μmol/L) was used. In endothelium-denuded rings, cumula-

tive concentration-response curves were constructed to CNP (10 pmol/L to 1 μmol/L) in

phenylephrine-precontracted rings at EC80, in the presence or absence of: tetraethylammo-

nium (TEA, non-selectively potassium channel blocker, 1 mmol/L); BaCl2 (inwardly rectifying

potassium channel (Kir) blocker, 30 μmol/L); glibenclamide (Glib, ATP-dependent potassium

channel blocker, 3 μmol/L); iberiotoxin (IbTx, selective large-conductance calcium-activated

potassium channel (BKCa) blocker, 0.1 μmol/L); either alone or in combination. Each blocker

was administered 30 minutes before the addition of CNP. Only one curve to any one blocker

was constructed in any single tissue.

Determination of NOS activity and Western blot analysis

NOS activity was measured in aorta rings treated with CNP at a concentration that produces

50% of the maximal response in rings precontracted with phenylephrine. NOS activity was mea-

sured using [14C] L-arginine as substrate, as previously described [6,7]. Aortic rings from Wistar

and SHR rats with or without endothelium were subjected to the same procedure described

above except that, after the maximum vasoconstrictor response to phenylephrine was reached,

CNP was added at a concentration that produces 50% of the maximal vasorelaxant response.

After maximal effect of CNP, rings were removed and placed in stop buffer containing 0.5

mmol/L EGTA, 0.5 mmol/L EDTA and 20 mmol/L HEPES (pH 5.5). Tissue samples were then

homogenized in the stop solution and the homogenates were centrifuged at 12,000 g for 20 min-

utes and separated by Dowex AG 50W-X8 columns (Na+ form, Bio-Rad). The amount of [14C]

L-citrulline was determined with a liquid scintillation counter (Wallac 1414 WinSpectral). Spe-

cific NOS activity was assessed in the presence of L-NAME (0.1 mmol/L). Western blotting was

performed in samples of aorta containing equal amounts of protein (0.080 mg protein/lane)

and separated by electrophoresis in 7.5% SDS-polyacrylamide gels, transferred to a nitrocellu-

lose membrane (Bio-Rad, Munich, Germany), and then incubated with rabbit polyclonal anti-

eNOS antibody (1/500 dilution, epitope at the NH2 terminus, Santa Cruz Biotechnology, CA,

USA) or rabbit anti-phospho-eNOS (Ser1177, 1/500 dilution, Cell Signaling Technology Inc,

Danvers, MA, USA) and a horseradish peroxidase-conjugated goat anti-rabbit secondary anti-

body (1/5,000 dilution). An anti-β-actin antibody (1/5,000 dilution, Sigma Aldrich Chemical
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Co, St Louis, MO) was used as a loading control and data were normalized to β-actin expression

[6]. Samples were revealed by chemiluminescence using an enhanced chemiluminescence

reagent (Amersham Pharmacia Biotechnology, Uppsala, Sweden) for 2–4 minutes. Quantifica-

tion of the bands was performed by digital image analysis using a Hewlett-Packard scanner and

Image J software (NIH—National Institute of Health, USA). All experiments were performed

by triplicate [6].

Hind limb vascular resistance measurement

In order to evaluate if the effect of CNP on resistance vessels differs between normotensive

and hypertensive rats, we calculated hindlimb vascular resistance (HVR) from the mean arte-

rial pressure (MAP) divided by hindlimb blood flow (HBF) before and after peptide infusions.

The infusions were performed by triplicate with each peptide and when stable HBF values

were achieved, the mean was calculated.

Rats were anesthetized with (urethane, 1 g/kg i.p., Sigma Aldrich, USA) [6,7] and a trache-

otomy was performed to allow spontaneous breathing. Body temperature was maintained at

37 ± 0.5˚C using a heating pad controlled by rectal temperature. Blood pressure (BP) and

heart rate were measured by a SP 844 transducer (MEMScAP AS, Norway) connected to a

polyethylene cannula (PE-50, A-M systems, Carlsborg, USA) filled with heparinized saline

(50 IU/mL) and inserted into the left carotid artery. HBF was continuously measured by a

transit-time ultrasound flow probe (model 1PRB3970) and flowmeter (model TS420 Perivas-

cular Flowmeter Module, Transonic Systems Inc., NY, USA) placed around the abdominal

aorta 1–2 mm proximal to the iliac bifurcation. Innocuous water-soluble ultrasound gel was

applied over the opened area to keep tissue hydrated and to maintain adequate flow signal. A

polyethylene cannula (PE-10, Laboratorios Rivero, Argentina) was inserted in the right iliac

artery and advanced to the bifurcation of aorta to allow for direct arterial injection into the left

hindlimb circulation. All hemodynamic variables along with HBF were digitally displayed and

recorded by Power Lab with a LabChart Software (AD Instruments, Australia).

After 10 minutes of stabilization period with saline infusion at 50 μL/min, the vasodilator

responses to CNP (1 μmol/L) and cANP(4–23) (10 nmol/L) were evaluated by bolus administra-

tion directly into the left hindlimb circulation. The maximal doses of these peptides without

changes in blood pressure or heart rate were used. The stock solutions of these agents were

adjusted such that the volume injected was constant at 100 μL, which was injected over 10 s fol-

lowed by prompt resumption of saline infusion at 50 μL/min. In order to verify the vasodilator

response, acetylcholine (3 nmol/kg and 0.3 nmol/kg) was administrated. The doses infused

were kept below the level at which changes of MAP or heart rate may occur, thus ensuring no

or minimal overflow into general circulation at the concentrations used [25].

Statistical Analysis

All values are expressed as mean ± SEM and, each set of experiments were performed by tripli-

cate per rat and n indicates the number of rats used. The Prism program (Graph Pad Software,

Inc., San Diego, CA, USA) was used for statistical analysis. The values of vascular reactivity

responses to CNP are expressed as a percentage of the preceding contraction induced by phen-

ylephrine. The concentration of the agonist producing a half-maximal response (EC50) was

determined after logit transformation of the normalized concentration-response curves, and it

is reported as the negative logarithm (pEC50) of the mean of individual values for each tissue.

The maximal relaxant effect (Emax) was considered to be the maximal amplitude response

reached in concentration-effect curves to CNP.

Vascular Tone Regulation Induced by CNP in SHR
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The results of each variable for each experimental group were analyzed with a two-way

analysis of variance (ANOVA), where one factor was the different treatments and the other

the genotypes (Wistar or SHR). The effect of each factor was tested independently of the effect

of the other, as well as the interaction between both factors. When no interaction between the

two factors was found, the Bonferroni post hoc test for multiple comparisons of the main

effects was applied. In cases where an interaction between the two factors was found, the inter-

action was reported and the simple effects were analyzed using the Bonferroni post hoc test for

multiple comparisons between the subgroups of interest. Comparisons between two groups

were analyzed by unpaired Student t test. P value < 0.05 was considered a significant

difference.

Results

At 14-week old, SHR displayed higher SBP values vs. Wistar rats (Wistar = 119 ± 2; SHR =

189 ± 3�; � p< 0.001 vs. Wistar).

Endothelium-dependent effect of CNP on vascular reactivity

The cumulative addition of CNP to the organ bath solution during sustained contraction

induced by phenylephrine was able to promote concentration-dependent relaxation with simi-

lar maximum effect in intact endothelium aortic rings from Wistar and SHR (Fig 1A). How-

ever, the AUC of vascular response to CNP in SHR was 62.9% of the response in Wistar rats

(Fig 1D) and the relaxation induced by CNP was less potent in aortic rings from SHR than in

aortic rings from Wistar rats (Table 1).

NOS blockade with L-NAME reduced the maximal relaxation induced by CNP in aortic

rings from Wistar and SHR (Table 1), and pEC50 was lower in both groups when compared

with CNP relaxation in the absence of L-NAME (Fig 1B and 1C). Similar results were obtained

with sGC inhibitor in both Wistar and SHR, suggesting that CNP-induced relaxation is par-

tially mediated by the NO-cGMP pathway in intact endothelium rings of both groups (Fig 1B

and 1C). However, the extent of CNP-induced relaxation dependent of NO was smaller in

SHR than in normotensive rats (Fig 1D).

In addition, relaxation induced by NPR-C activation was lower compared to CNP induced

response and, the absence of an intact endothelium, abolished the vasodilator effect of NPR-C

stimulation in both groups (Fig 2A and 2B). In order to determine if the difference observed in

NO-dependent response between both groups is due to an altered capacity of smooth muscle

to response to this mediator, cumulative concentration-response curves were constructed to

SNP (Fig 2C). Aortas from SHR showed lower Emax (Wistar = 119.5 ± 4.4 vs. SHR = 105.3 ±
2.3; p< 0.05) and pEC50 (Wistar = 10.89 ± 0.29 vs. SHR = 9.50 ± 0.07; p< 0.01) compared to

normotensive rats.

Aortic rings were pretreated with indomethacin in order to evaluate other endothelium-

derived factors. COX inhibition with indomethacin induced no changes in the effect of CNP

on vascular tone in normotensive rats (Fig 3A). However, in SHR aortic rings, indomethacin

preincubation to inhibit PG synthesis induced an increase in pEC50 of CNP with no changes

in the maximal relaxant response of the peptide (Fig 3B), indicating that PG synthesis inhibi-

tion promotes a more effective relaxant effect of CNP in hypertensive rats versus normotensive

rats.

Similar results were obtained with HOE 140, a B2 receptor antagonist (Table 1). In aortic

rings from SHR, CNP was able to induce a more potent relaxant effect in the presence of B2

receptor blocker, but HOE 140 did not modify the curve obtained with CNP in Wistar aortic

rings as a discernible difference (Fig 3A and 3B).
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On the other hand, in endothelium-denuded rings, endothelium removal diminished the

maximal vasodilator response to CNP and pEC50 in both groups (S2 Fig). In fact, similar values

of Emax and pEC50 for CNP were obtained in aortic rings with intact endothelium in the pres-

ence of L-NAME and in denuded endothelium aortic rings (Table 1).

Determination of NOS activity and Western blot analysis

Fig 4A shows that the activity of NOS was higher in aortas with endothelium from SHR com-

pared with Wistar. In addition, aortic eNOS protein content was higher in SHR than in Wistar

rats, and phosphorylation level at Ser1177 resulted similar in both groups (Fig 4B).

Also, Fig 4A shows the effect of CNP on NOS activity in aortic rings with and without endo-

thelium from Wistar and SHR rats. NOS activity increased significantly in both groups after

CNP addition, but the response of vascular NOS to CNP was more marked in aorta from Wistar

Fig 1. Participation of NO pathway in CNP induced relaxation. Emax: maximal relaxant effect; pEC50:

negative logarithm of the concentration of the agonist producing a half-maximal response; AUC: area under

the curve. Results are expressed as means ± SEM, n = 10 rats / group. (A) Relaxation curves of aortic arteries

with an intact endothelium (e) from Wistar or SHR; ***p< 0.001 for SHR e vs. Wistar e pEC50 values. (B)

Wistar concentration-response curves in the absence or presence of L-NAME (0.1 mmol/L) or ODQ (1 μmol/

L); ***p < 0.001 vs. Wistar e pEC50 values; ##p< 0.01 Wistar e+L-NAME vs. Wistar e Emax values; ###p<
0.001 Wistar e+ODQ vs. Wistar e Emax values. (C) SHR concentration-response curves in the absence or

presence of L-NAME (0.1 mmol/L) or ODQ (1 μmol/L); †††p < 0.001 vs. SHR e pEC50 values; ‡p < 0.05 vs.

SHR e Emax values. (D) AUC based on the individual concentration-dependent relaxation curves to CNP;

***p < 0.001 vs. Wistar NO-dependent response; ##p < 0.01 vs. SHR NO-dependent response.

doi:10.1371/journal.pone.0167817.g001

Table 1. Endothelium-dependent effect of CNP on vascular reactivity.

Emax (%) pEC50

Wistar CNP e 79.8 ± 4.6 9.64 ± 0.27

e + L-NAME 59.1 ± 2.9** 6.61 ± 0.04***

e + ODQ 57.0 ± 5.7*** 6.49 ± 0.05***

e + Indo 75.4 ± 5.0 9.36 ± 0.30

e + HOE 140 71.8 ± 9.7 9.19 ± 0.53

ne 54.8 ± 7.3** 6.74 ± 0.10***

cANP(4–23) e 36.7 ± 2.2*** 12.51 ± 0.36***

SHR CNP e 74.8 ± 3.3 7.64 ± 0.15***

e + L-NAME 56.9 ± 2.0† 6.65 ± 0.05†††

e + ODQ 58.3 ± 3.5† 6.82 ± 0.06†††

e + Indo 75.2 ± 1.2 9.45 ± 0.49††

e + HOE 140 66.4 ± 6.3 9.50 ± 0.48††

ne 55.6 ± 3.1† 6.78 ± 0.06††

cANP(4–23) e 25.5 ± 2.2*** 11.66 ± 0.19†††^^^

L-NAME: non-selective NOS inhibitor (0.1 mmol/L); ODQ: sGC inhibitor (1 μmol/L); Indo: indomethacin, non-selective COX inhibitor (10 μmol/L); HOE 140:

B2 antagonist (0.1 mmol/L); cANP(4–23): NPR-C selective agonist; e: intact endothelium; ne: without endothelium. Emax: maximal relaxant effect; pEC50:

negative logarithm of the concentration of the agonist producing a half-maximal response. Results are expressed as means ± SEM.

**p < 0.01 vs. Wistar CNP e

***p < 0.001 vs. Wistar CNP e
†p < 0.05 vs. SHR CNP e
††p < 0.01 vs. SHR CNP e
†††p < 0.001 vs. SHR CNP e
^^^p < 0.001 vs. Wistar cANP(4–23) e.

doi:10.1371/journal.pone.0167817.t001
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rats (Δ[(E+CNP)-E]Wistar = 85.9 ± 6.4; Δ[(E+CNP)-E]SHR = 54.8 ± 7.2�; � p< 0.01 vs. ΔWistar). On the

other hand, endothelium-denuded aortic rings presented lower NOS activity, and although

CNP augmented enzyme activity similarly in both Wistar and SHR (Δ[(NoE+CNP)-NoE]Wistar =

36.7 ± 7.0; Δ[(NoE+CNP)-NoE]SHR = 41.4 ± 3.4; ns), such activity did not reach the levels found in

rings with an intact endothelium (Fig 4A).

Endothelium-independent effect of CNP on vascular reactivity

In denuded endothelium aortic rings, non-selective blockade of potassium channels with TEA

completely inhibited CNP-induced relaxation, suggesting the role of K+ channels in the effect

of CNP on smooth muscle cells from both Wistar and SHR (Fig 5A and 5B).

To determine the ion channel that mediates CNP-induced hyperpolarization, the effect of

pretreatment with the chemical channel blockers was evaluated. The relaxant effect of CNP on

tonic contraction induced by phenylephrine was significantly reduced in the presence of the

specific blocker for inwardly rectifying potassium channel, suggesting participation of the Kir

channels in the relaxant effect of CNP in normotensive and hypertensive rats (Fig 5C and 5D).

Moreover, although Kir channel blockade did not modify pEC50 in aortic rings from Wistar

rats, pEC50 was lower in SHR rats (Table 2).

Since an ATP-dependent member of the Kir potassium channel family (KATP) has been

identified [26], the effect of glibenclamide on the relaxant effect of CNP was tested. Glibencla-

mide failed to modify smooth muscle relaxation induced by CNP in both Wistar and SHR (Fig

5C and 5D).

Fig 2. Participation of NPR-C pathway and smooth muscle response to NO in aorta relaxation. Emax:

maximal relaxant effect; pEC50: negative logarithm of the concentration of the agonist producing a half-

maximal response; cANP(4–23): NPR-C selective agonist; SNP: sodium nitroprusside. Results are expressed

as means ± SEM, n = 6 rats / group in A and B; n = 4 rats / group in C. (A) Wistar concentration-response

curves in the absence (ne) or presence (e) of an intact endothelium; (B) SHR concentration-response curves

in the absence (ne) or presence (e) of an intact endothelium. (C) Wistar and SHR concentration-response

curves to SNP; **p < 0.01 vs. Wistar pEC50 value; #p < 0.05 vs. Wistar Emax value.

doi:10.1371/journal.pone.0167817.g002

Fig 3. Effects of COX inhibition or B2 antagonism on the relaxation induced by CNP. pEC50: negative logarithm of the concentration of

the agonist producing a half-maximal response; e: intact endothelium. Results are expressed as means ± SEM, n = 6 rats / group. (A) Wistar

concentration-response curves in the absence or presence of Indo (10 μmol/L) or HOE 140 (0.1 mmol/L); ns. (B) SHR concentration-

response curves in the absence or presence of Indo (10 μmol/L) or HOE 140 (0.1 mmol/L); ††p < 0.01 vs. SHR e pEC50 values.

doi:10.1371/journal.pone.0167817.g003
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On the other hand, the BKCa channel blocker IbTx attenuated the maximal response to

CNP in denuded endothelium aortic rings from Wistar and SHR rats (Fig 5E and 5F). IbTx

also diminished pEC50 in rings from normotensive rats, but no differences in pEC50 were

observed in hypertensive rats. Finally, our results show that simultaneous addition of BaCl2

and IbTx completely blunted the effect of CNP on vascular smooth muscle (Fig 5E and 5F).

Hindlimb vascular resistance evaluation

SHR showed higher MAP and lower HBF, compared to Wistar rats (Fig 6A). The acute infu-

sion of CNP or cANP(4–23) induced an increase in HBF in both groups, without changes in

MAP (Fig 6A). When we compare the percentage of change of HBF induced by CNP and

cANP(4–23), we observed that the effect of cANP(4–23) on HBF was similar to the effect of

CNP, in Wistar rats (Fig 6B). However, lower values of HBF in response to NPR-C selective

agonist were observed compared to CNP infusion in SHR when comparing HBF in response

to the peptides related to basal blood flow (Fig 6B). In addition, the relative vascular response

to the peptide was higher in SHR than in Wistar rats (Fig 6B). The analysis of vascular tone

in resistance arteries showed that hypertensive rats have higher HVR than normotensive rats

Fig 4. Effect of CNP on NOS activity in aortic rings with (e) and without endothelium (ne). Results are expressed

as means ± SEM, n = 8 rats / group. (A) NOS activity. Statistical analysis: two-way ANOVA followed by Bonferroni post

hoc test; interaction treatment x strain: p< 0.001; simple effects were analyzed by Bonferroni post hoc test; ***p< 0.001

vs. Wistar e; †p< 0.05 vs. Wistar e; ‡p< 0.05 vs. Wistar ne; ###p< 0.001 vs. SHR e. (B) NOS protein expression.

Statistical analysis: unpaired Student t test to compare between two groups; ***p< 0.001 vs. Wistar.

doi:10.1371/journal.pone.0167817.g004
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Fig 5. Effect of potassium channels blockade on relaxation induced by CNP. Emax: maximal relaxant effect; pEC50: negative

logarithm of the concentration of the agonist producing a half-maximal response; ne: aortic rings without endothelium. Results are

expressed as means ± SEM, n = 6 rats / group in A and B; n = 7–8 rats / group in C to F. (A) Wistar concentration-response curves in

denuded aortic rings in the absence or presence of TEA (1 mmol/L); ###p< 0.001 vs. Wistar ne Emax values. (B) SHR concentration-

response curves in denuded aortic rings in the absence or presence of TEA (1 mmol/L); ‡‡‡p< 0.001 vs. SHR ne Emax values. (C) Wistar

concentration-response curves in denuded aortic rings in the absence or presence of BaCl2 (30 μmol/L) or Glib (3 μmol/L); #p< 0.05

Wistar ne+BaCl2 vs. Wistar ne Emax values. (D) SHR concentration-response curves in denuded aortic rings in the absence or presence

of BaCl2 (30 μmol/L) or Glib (3 μmol/L); ††p< 0.01 SHR ne+BaCl2 vs. SHR pEC50 values; ‡p< 0.05 SHR ne+BaCl2 vs. SHR ne Emax

values. (E) Wistar concentration-response curves in denuded aortic rings in the absence or presence of IbTx (0.1 μmol/L) or IbTx+BaCl2
(0.1 μmol/L + 30 μmol/L); *p< 0.05 Wistar ne+IbTx vs. Wistar ne pEC50 values; ##p< 0.01 Wistar ne+IbTx vs. Wistar ne Emax values;
###p< 0.001 Wistar ne+IbTx+BaCl2 vs. Wistar ne Emax values. (F) SHR concentration-response curves in denuded aortic rings in the

absence or presence of IbTx (0.1 μmol/L) or IbTx+BaCl2 (0.1 μmol/L + 30 μmol/L); ‡p< 0.05 SHR ne+IbTx vs. SHR Emax values; ‡‡‡p<
0.001 SHR ne+IbTx+BaCl2 vs. SHR ne Emax values.

doi:10.1371/journal.pone.0167817.g005
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(Fig 6C and 6D). Acute infusion of CNP induced a drop in HVR in both groups (Fig 6C). Sim-

ilar results were observed with the NPR-C selective agonist in both groups, but the effect was

more marked in SHR (Fig 6D).

Discussion

In the present study we demonstrated that CNP-induced relaxation of isolated aortas from

normotensive and hypertensive rats involves endothelial NO production and opening of

potassium channels. Differences between SHR and Wistar rats in the vascular response to

CNP were also observed in conduit and resistance vessels. Elevated peripheral vascular resis-

tance along with increased arterial stiffness are two main factors involved in development and/

or maintenance of high blood pressure. In addition to structural changes, arterial stiffness is

strongly affected by endothelial function and vascular smooth muscle tone [23,24]. Our results

showed that CNP-induced relaxation could be one of the impaired mechanisms in hyperten-

sive states.

Previous findings demonstrate that the role of endothelium-derived NO in CNP-induced vas-

cular relaxation is controversial. Madhani et al. showed that endothelial NOS appears to nega-

tively modulate the relaxant effect of CNP in mouse aortic rings, and Liang et al. showed that

basally released endothelium-derived NO inhibits the response of vascular smooth muscle to the

peptide [27,28]. However, Brunner and Wölkart demonstrated that NO system blockade dimin-

ishes the relaxant effect of CNP in coronary vessels [11]. In the present study we observed that

relaxation induced by CNP in an intact conductance vessel requires the presence of an intact

NO system and sGC activity, as well as the activation of NPR-C receptor, since CNP was less

effective in inducing relaxation after NOS blockade or sGC inhibition and L-NAME blunted the

response of NPR-C selective agonist in aorta. Consistently with our findings, it was recently

determined that CNP-induced relaxation in intact aorta involves intracellular calcium increase

and NO production in endothelial cells of normotensive rats [29].

Moreover, it is widely known that prostanoids, which are synthesized by cyclooxygenases,

are also endothelium-derived factors that regulate vascular tone. Under physiological condi-

tion, resting endothelial cells synthesize and release PGI2 to induce vascular smooth muscle

Table 2. Endothelium-independent effect of CNP on vascular reactivity.

Emax (%) pEC50

Wistar ne 54.8 ± 7.3 6.74 ± 0.10

ne + BaCl2 35.5 ± 3.6* 6.68 ± 0.11

ne + Glib 56.8 ± 3.3 6.80 ± 0.06

ne + IbTx 32.2 ± 3.5** 6.37 ± 0.05*

SHR ne 55.6 ± 3.1* 6.78 ± 0.06**

ne + BaCl2 34.0 ± 3.2† 6.39 ± 0.05††

ne + Glib 55.7 ± 5.7 6.64 ± 0.08

ne + IbTx 37.8 ± 3.3† 6.91 ± 0.05

BaCl2: Kir channel blocker (30 μmol/L); Glib: glibenclamide, KATP channel blocker (3 μmol/L); IbTx: iberiotoxin, BKCa channel blocker (0.1 μmol/L). Emax:

maximal relaxant effect; pEC50: negative logarithm of the concentration of the agonist producing a half-maximal response. Results are expressed as

means ± SEM.

*p < 0.05 vs. Wistar ne

**p < 0.01 vs. Wistar e
†p < 0.05 vs. SHR e
††p < 0.01 vs. SHR e.

doi:10.1371/journal.pone.0167817.t002
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relaxation, while the release of vasoconstrictor prostanoids, such as thromboxane, is limited

[30]. Therefore, we evaluated participation of prostanoids in the relaxant effect of CNP. There

was no difference in the Emax to CNP in aortic rings from Wistar and SHR incubated with

indomethacin. An increase in CNP relaxant potency by inhibition of prostaglandin synthesis

Fig 6. Effect of acute CNP infusion on hindlimb vascular resistance in Wistar and SHR. MAP: mean arterial pressure; HBF: hindlimb blood flow; HVR:

hindlimb vascular resistance. Results are expressed as means ± SEM, n = 5 rats / group. (A) Time course data of MAP and HBF before and after intraarterial

infusion of CNP (1 μmol/L) or cANP(4–23) (10 nmol/L). The infusions were performed by triplicate with each peptide and when stable HBF values were

achieved, the mean was calculated. The horizontal black lines show the significant differences from the corresponding baseline values. Statistical analysis:

two-way ANOVA followed by Bonferroni post hoc test; interaction treatment x strain: p< 0.001; simple effects were analyzed by Bonferroni post hoc test; * p<
0.001 vs. Wistar basal; # p< 0.001 vs. SHR basal. (B) Maximal HBF response to CNP or cANP(4–23) in normotensive and hypertensive rats. Statistical

analysis: two-way ANOVA followed by Bonferroni post hoc test; interaction treatment x strain: p< 0.001; simple effects were analyzed by Bonferroni post hoc

test; *** p< 0.001 vs. Wistar CNP; ### p< 0.001 vs. SHR CNP; ††p< 0.01 vs. Wistar cANP(4–23). (C) Comparison between basal and CNP-induced HVR. HVR

was calculated from MAP divided by HBF. Statistical analysis: two-way ANOVA followed by Bonferroni post hoc test; interaction treatment x strain: p< 0.001;

simple effects were analyzed by Bonferroni post hoc test; *** p< 0.001 vs. WistarBasal;
### p< 0.001 vs. SHRBasal;

‡‡‡p< 0.001 vs. SHRCNP. (D) Comparison

between basal and cANP(4–23)-induced HVR. HVR calculated as MAP divided by HBF. Statistical analysis: two-way ANOVA followed by Bonferroni post hoc

test; interaction treatment x strain: p< 0.001; simple effects were analyzed by Bonferroni post hoc test; *** p< 0.001 vs. WistarBasal;
### p< 0.001 vs. SHRBasal;

‡‡‡p< 0.001 vs. SHRcANP(4–23).

doi:10.1371/journal.pone.0167817.g006

Vascular Tone Regulation Induced by CNP in SHR

PLOS ONE | DOI:10.1371/journal.pone.0167817 December 9, 2016 14 / 20



was observed only in SHR. This result may be due to SHR having an abnormal production of

prostanoids inducing activation of thromboxane prostanoid receptors of the vascular smooth

muscle cells, which initiate endothelium-dependent contractions and contribute to endothelial

dysfunction in this model of hypertension [30,31]. In SHR, the response of NO system to vaso-

active substances is decreased, included to CNP as we demonstrated in our present work.

However, we cannot dismiss the functional antagonism due to the known imbalance between

vasodilator and vasoconstrictor substances in SHR. The endothelium-dependent contractions

correlate with the severity of hypertension and also increase with the aging process, appearing

even in normotensive aged rats [30]. However, despite these differences, the present study

showed for the first time that CNP is able to induce a similar maximal relaxant response in

aorta from both normotensive and hypertensive young adult rats.

Additionally, it is well established that vascular tone may also be modulated by the local kal-

likrein-kinin system, which is different from the circulating plasma components [32,33]. BK

can modulate vascular functions via numerous mechanisms, including prostanoids, NO, intra-

cellular calcium, potassium channels, and ROS generation [34–37]. All these events occur via

two G-protein-coupled receptors: B1 and B2. B1 is induced by inflammation and injury while

B2 is constitutively expressed in vascular smooth muscle and endothelial cells. Via stimulation

of phosphpolipase A2 and C, activation of endothelial B2 receptors by bradykinin promotes an

enhanced cytosolic calcium concentration and the formation of prostaglandins and NO [20].

Our results show that B2 receptor blockade did not modify the vasorelaxant response induced

by CNP in aortic rings from normotensive rats. Conversely, B2 receptor blockade enhanced

the effect of CNP in SHR. It is known that BK induces COX-2 synthesis, which is related to

synthesis of prostacyclin from endothelial cells [38], and given that SHR present high levels of

BK [22] and an imbalance in the effect of prostanoids, this could explain our results with B2

receptor blocker inhibiting the increased vasoconstrictor effect of prostaglandins. In this

regard, the possible crosstalk between both pathways, PG and CNP, in hypertensive states

needs to be assessed.

Moreover, we demonstrated that, in the presence of an intact endothelium, CNP is able to

induce relaxation in aorta from Wistar and SHR. However, CNP was substantially less potent

in promoting aorta relaxation in hypertensive rats and this could be due to a reduced NO-

dependent component in CNP induced relaxation, in association with lower increase of NOS

activity in response to CNP in SHR. Removal of the aortic endothelium resulted in attenuation

of CNP relaxant effect similar to that observed following NOS blockade in both groups, and

the extent of NO-independent component was similar between normotensive and hyperten-

sive rats. On the other hand, SNP-induced relaxation was different between groups, suggesting

that a decrease in NO-mediated relaxation induced by CNP could be due to altered endothe-

lium-dependent mechanism and/or vascular smooth muscle cells response in SHR. Several

studies have suggested that reduced NO bioavailability in smooth muscle of SHR can be

related to increased production of reactive oxygen species [13], but also vascular remodeling

related to hypertensive states could be causing the lower response of vascular smooth muscle

to a NO donor [24].

On the other hand, aortic endothelial NOS expression and basal NOS activity were higher

in SHR than in Wistar rats, in agreement with our previous findings in 16 week old rats [6].

CNP induced an increase in NOS activity in intact endothelium aortic rings from both groups

and in denuded aortas from Wistar rats. However, the present study demonstrated that CNP-

induced NOS stimulation was lower in SHR than in Wistar rats. Previously, we demonstrated

that CNP acute infusion stimulates NOS activity in both vascular endothelium and smooth

muscle cells through NPR-C receptor activation in Wistar rats [7] and it was described that

protein levels of NPR-C receptor are decreased in the aorta of SHR compared with
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normotensive rats [39] supporting our results. Considering that basal NOS activity is enhanced

in SHR, we cannot dismiss the possibility that the lower vascular relaxation induced by CNP

in these rats could also be related with the fact that this enzyme may be is in the upper limit of

its response.

Interestingly, CNP is able to induce a similar decrease in the magnitude of peripheral vascu-

lar resistance in normotensive and hypertensive rats, but the blood flow response to this pep-

tide differs between both groups of animals. The vasorelaxant effect of CNP could be mediated

by NPR-C activation in normotensive rats, since changes in blood flow are similar between

CNP and cANP(4–23) infusions. In contrast, we showed that activation of NPR-C receptor pro-

motes lower increase of blood flow than CNP infusion in hypertensive animals, suggesting the

participation of other receptor in CNP-induced relaxation in SHR. Therefore, in a conduc-

tance vessels we demonstrated that CNP has a similar maximal vasodilator effect in normoten-

sive and hypertensive rats, and that the vasorelaxant potency of NPR-C receptor activation is

lower in SHR. Conversely, the vasodilator effect of CNP in peripheral resistance vessels is

higher in hypertensive rats compared to normotensive rats. Moreover, activation of NPR-C

pathway induces similar effect on blood flow compared to CNP administration in normoten-

sive rats. Meanwhile, the vasodilator effect of NPR-C selective agonist is lower than CNP effect

in SHR.

It is known that CNP can induce opening of potassium channels in different vascular beds

and animal models. We tested involvement of potassium channels in CNP-induced relaxation

in aortic smooth muscle cells from normotensive and hypertensive rats. In endothelium

denuded aortic rings, the non-selective blockade of potassium channels with TEA blunted the

vasorelaxant effect of CNP in aorta from both Wistar and SHR.

Our results suggest that aortic smooth muscle hyperpolarization elicited by CNP depends

on inwardly rectifying K+ channels. Studies performed in isolated mesenteric artery support

this finding: CNP mediates smooth muscle hyperpolarization and relaxation via NPR-C activa-

tion and the opening of Kir channels [40]. However, barium partially diminished the vasore-

laxant response to CNP in aortic rings. This may be due to the fact that expression of the Kir

channel is more abundant in the smooth muscle of autoregulatory vascular beds such as the

coronary and cerebral circulations [41,42]. Indeed, the expression of the Kir channel appears

to increase as the diameter of the artery decreases [43,44]. In addition, although Kir channels

blockade diminished pEC50 in rings from hypertensive rats, no differences in pEC50 were

observed in normotensive ones.

We also found that glibenclamide, a KATP channel blocker, induced no changes in the relax-

ant effect of CNP, indicating that ATP-dependent potassium channels are not involved in

these mechanisms in Wistar and SHR.

On the other hand, functional BKCa channels are constitutively present in vascular smooth

muscle cells from various species, while small-conductance Ca2+-activated K+ and intermedi-

ate-conductance Ca2+-activated K+ channels are more relevant in endothelial cells [45,46].

BKCa channels contribute to the control of vascular tone, promoting K+ outward current and

leading to membrane hyperpolarization in vascular smooth muscle cells. They facilitate feed-

back regulation against the rise of intracellular Ca2+, membrane depolarization and vasocon-

striction [47]. In smooth muscle cells of femoral arteries from SHR, Ca2+ influx and BKCa

channel activity are increased [48], and the inhibition of BKCa channels by specific blockers

causes strong constriction of the aorta [49]. Our results indicate that smooth muscle relaxation

induced by CNP would be partially mediated by opening of BKCa channels given that IbTx

partially decreased maximal response to CNP in Wistar rats. Although BKCa channel blockade

also diminishes CNP-induced relaxation in hypertensive rats, we found that pEC50 was lower

only in normotensive rats when endothelium-denuded rings were pre-incubated with IbTx.
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Therefore, the results obtained with Kir and BKCa blockers in Wistar and SHR suggest

that, although both potassium channels are involved in the vasodilator effect of CNP, this effect

appears to be more sensitive to channel BKCa in Wistar rats, while CNP vasodilatory potency

is more affected by opening of Kir channels in SHR.

In summary, we can conclude that CNP-induced relaxation in aorta involves NOS/sGC

pathway activation in vascular endothelium. In normotensive and hypertensive rats, both NO

production and hyperpolarization contribute to CNP dilator responses. The main finding of

this study is that the vasodilator response to CNP in aorta is less potent in young adult male

SHR than in normotensive rats, probably due to the impaired activity of the endothelial NO

system in hypertensive rats. And although endothelium-independent response to CNP, medi-

ated by opening of potassium channels, is similar in both SHR and Wistar rats, participation

of the Kir and BKCa channels in vascular tone is different.

These results may be construed as an important step in the understanding of the possible

cross-talk between CNP, NO and potassium channels in vascular function regulation under

physiological and hypertensive states.

Supporting Information

S1 Fig. Contraction induced by phenylephrine in aortic rings from Wistar and SHR. PE:

phenylephrine; Emax: maximal relaxant effect; pEC50: negative logarithm of the concentration

of the agonist producing a half-maximal response. Phenylephrine response of aorta was

expressed as % of KCl 90 mM response. Results are expressed as means ± SEM, n = 8 rats /

group; ���p< 0.001 vs. Wistar Emax.

(TIF)

S2 Fig. Relaxation induced by CNP in denuded aortic rings. Emax: maximal relaxant effect;

pEC50: negative logarithm of the concentration of the agonist producing a half-maximal

response. Results are expressed as means ± SEM, n = 8 rats / group. (A) Wistar concentration-

response curves in the absence (ne) or presence (e) of an intact endothelium; ���p< 0.001 vs.

Wistar e pEC50 values; ##p< 0.01 vs. Wistar e Emax values. (B) SHR concentration-response

curves in the absence (ne) or presence (e) of an intact endothelium; ††p< 0.01 vs. SHR e

pEC50 values; ‡p< 0.05 vs. SHR e Emax values.

(TIF)
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