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Abstract

In this paper, we study the behavior of solutions of a perturbed and no perturbed Volterra integro — differential equation,
under suitable assumptions. To clarify the results, some examples and remarks are presented.
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INTRODUCTION

Preliminaries. The Volterra type integro — differential equations had become in a source of many works in the last 30
years. Basically these works can be grouped according the techniques used, in the following fields:

i) Those using Lyapunovs Functions and they are an extension to the integrals and integro — differentials equations,
of the proceedings and techniques of the Second Lyapunov's Method for the Ordinary Differential Equations (see [3, 4, 5,
6,18, 21, 28 — 31, 40, 42, 56, 59, 60, 54]).

i) Those based in the use of the Bellman — Gronwall — Bihari integro — differential inequalities, and the inherent
properties to the space where the unknown function is defined. (see [44 - 46, 47 - 53, 61]).

iii) Those using Functional Analysis tools in general, and Operators Theorytools in particular. (see [1, 2, 20, 22, 23,
24,25,27,32,33,34,35-37,38,39,54,57 - 58,62, 63])

In general, these Works had been motivated for two fundamental reasons:

1) To clarify under which conditions the solutions of the system (1) fulfills specific qualitative conditions (various
boundedness properties, for example) those was clarified in the Ordinary Differential Equations case in the works of
Yoshizawa and Antoziewicz, butin the case we are interested are open problems.
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2) The link with the Ordinary Differential Equations, through practical applications, is one of the most outstanding
features of the Integral and Integro — Differential Equations Study.

The purpose of this work is to study the qualitative behavior of the solutions of the systems:

X()= AQX()+ [BL3)x(s)ds+ () M

y(t)= A(t)y(t)JB(t,s)y(s)ds )

so0, in the first part of this, sufficient conditions to ensure various qualitative properties of the null solution of the sys tem (2)
are obtained. In the second one sufficient conditions that guarantees the uniform bounding and / or the final uniform
bounding of the solutions of the system (1). In each epigraph well known results are generalized.

The study of the systems (1) and (2) are motivated for the recent applications of this class system (in particular, see [51]
and [53] where the case Aconstant, B convolution type and f(t) given, is studied).

Many qualitative results for type (1) equations has been obtained for constructing Lyapunov's Functionals. Such
functionals requires that A(t) be negative, while in our work this condition is not used. So, our results are more general and
can be aplicate to the system (1), when Ais stable, identically zero or completely unstable.

In [11], Burton considers the equation (1) with A is a constant and B(t, s) = B(t, — s) and shows that the existence,
uniqueness, space dimensionality and the parameter variation formula are nearly the same those in Ordinary Differential
Equations Theory.

Mahfoud in [42] gave sufficient conditions that ensures that (1) have bounded Solutions, highlighting that the used method
is new, allowing unify, to improve and extend previous results.

Let specify the basic concepts will be used along this work.

Definition 1. The Null Solution of the system (2) is attractive if for each to > 0 there exists & > 0 such that ‘ (I)to‘ <& =

|y(t’to’¢)| — 0 when t— +o.

Definition 2. The Null Solution of the system (2) is stable if for each to > 0 there exists & > 0 such that ‘d)to‘ <& =
|y(t,t0,<|>)| — 0 when t— +o.

Definition 3. The Null Solution of the system (2) is asymptotically stable if itis both stable and attractive.

Definition 4. The Null Solution of the system (2) is asymptotically stable in a uniform way if it is asymptotically stable, & in
Definition 1 is independent of to and for each &> 0 there exists T > 0 such that ‘ (I)to‘ <& Atxty = | y(t, t0,¢)| <e

Definition 5. The solutions of the system (1) are finally uniformly bounded by the bound B, if there exists B > 0 and for
every o > 0 there exists T = T(a) > 0 such that, for to > 0 and ‘ (I)to‘ <a = | X(t, to,(l))| <B,forallt> to+ T(a).

1. Non — perturbed system case.
In obtaining the results of this epigraph, the Parameters Variation Formula (see [26]) which we now present.

If y(t) is a solution of the system (2), with the initial function ¢in the interval [0, to], that solution expresses as following:

Yt o) = O (6)olt,) + [ 6] Bls,u)y(u)duds

where h'(t) = A(t) h(t).

Now we prove a set of sufficient conditions about some different stability typesfor the null solution of the system (2).

Those conditions are closely linked with those obtained in [29] and [30], whereby we present an abstract about the results
obtained in those works.
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Consider the system:

y'(t)= AY() - [Glt s y(s))ds o

Theorem A: Letassume that:

a) | G(t, S, y(s))| < B(t, S)| y| , Where B is a continuous function for 0 <s <tand | y| <Hforsome H >0.

b) There exists B > 1 such that ‘ h(t)hfl(s)‘ <pfor0O<s<t

+oot

c) Ij|B(t,S)|det < Mfor some M> 0

00

Then the null solution of the system (3) is uniformly stable.

Theorem B: Let assume that:

a) | G(t, S, y(s))| < B(t, S)| y| , Where B is a continuous function for 0 <s <tand | y| <H forsome H> 0.

t
b) There exists L >0 such that ” h(t)hfl(S)‘dS <Lfort>0.
0

t>0

t
1
o) Sup!|B(t,s)|ds <T

S—>+w

t
g lim I| B(s,u)|du =0
0
Then the null solution of the system (3) is asymptotically stable.
Theorem C: Letassume that:
a) | G(t, S, y(s))| < d(t—S)| y | , Where d is a continuous function for 0 <s <tand | Yy | <HforsomeH >0.

b) There exists K > 1, 1> 0 such that ‘ h(t)h‘l(s)‘ <Kexp [—7»('[—8) for0<s <t

o [d(s)ds < %
0

Then the null solution of the system (3) is asymptotically stable in a uniform way.
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Theorem D: Let assume that:

a) | G(t, S, y(s))| < B(t, S)| y| , Where B is a continuous function for 0 <s <tand | Yy | <Hforsome H >0.

b) There exists K > 1, > 0 such that ‘ h(t)hfl(s)‘ < Kexp [—k(t—s)] foro<s<t

t
c) There exists a constant u > 0 such that SUP j exp [p (t —S)]| B(t, S)| ds < %
20 §

Then the null solution of the system (3) is asymptotically stable in a exponential way.
Now we are ready to expose our results.

Theorem 1.1: Let suppose that the following conditions are fulfilled:

t
a) There exists a >0 such that ” h(t)h™(s)|ds = +r() ; where lim r(t) =o.
0

-+

t
o) Sup[|B(ts)|ds <+

t>0 0

Then the null solution of the system (2) is stable.
. _ 1
Proof: As lim r(t) =0, there exists K> 1 and t2> 0 such that r(t) < R forallt>t,

t—+o0

Then, taking into account the condition (a) in addition to the above, we obtain the inequality

J P e)ds <o - - ” ()h™(s)]ds

Besides, there exists L > 0 such that

Taking into account (1.1) and (1.2) we obtain

t h(t)hfl(s) ds < L forall t>t,
[l jds <

ty

ISSN: 2395-4760

1.1

(1.2)

(*)
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This means that |im h(t) =0 (see [11]). Then itis possible to detemine a constant N >0 such that h(t) <Nforallt>

t—>+o0

to>t2 (1.3)

The value of K noted above can be chosen such that

t
L
B = — .
Stgop'y (t,S)|dS M<K (1.4)

_ L ‘ _

Then there exists ysuchthat0<y<M < R and Sup“ B(t, S)|dS <v.Let's take ¢> 0 and define 6 = &(¢, to) <

t>0
0

. (1—%)8
mln{m,s (1.5)

Let's consider the solution of the siystem (2) such that || (I) ||t < §, suppose that the null solution of this system is not
0

stable, that is to say, we can choose t1 > tg such that
ly(t)| == and |y(t)|<zin[t;,t,) @8)

But, forall t [to ,tl ) the Variation of Parameters Formula allows us to write

S

h(t)h(s)[B(s,u)y(u)duds

0

y(t) = h()h™(t)lto) +

[ S——

then

t S

[Y(®)] < [h(t)[| h™(t) [ olt, )| + [[ (B (s)|[[B(s,u)]| y(u)|duds

0

substituing (1.3), (1.4), (1.5) and (1.6) in the last inequality, the following estimate is obtained

_t
|y(t)| < N‘hl(to)‘% + %ya = (1—Y—KL)8 + %ys =g

which contradicts (1.6). Then the null solution of the system (2) is stable.
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Theorem 1.2. Suppose that the following assertions are fulfilled
. -1
(@) There exists B > 1 such that ‘ h(t)h (S)‘ <p forallt>s>0

+

ts
(b) ”B(s,u)duds<|v| ‘Me R
0

to

Then the null solution of the system (2) is uniformly stable.

Proof: For ¢> 0 let 5(8) < ﬁ and || [0} ||t < 5(8) (1.7). Suppose that there exists t1 > to such that | y(t1)| =g
0
and |y(t)| <z in [t5,1,),

t S
rs y(t) = h(t)h™(t,)o(t,) + J'h(t)h‘l(s) J' B(s,u)y(u)duds, using the assertions (a), (b), (1.7) and the last
0

equality, we obtain immediately

|y(t)| < Ba(e) + B [ [|B(s,)] y(u)|duds s

to

Let r(t) = Sup| y(s)|, then

0<s<t
ts
[y(t)] < r(t) < B3(e) « B [ [|B(s,u)|r(s)duds  9)
to 0
By the Gronwall Inequality, (1.9) becomes

B}?\B(SAO\duds

ly(t)] < r(t) < pa(e) e ©°

ly(t)] < r(t) < Bs(e) €™ < in [t t, ]

Thus | y(tl)| < ¢ which contradicts what we supposed. Hence the null solution is stable and as §is independent of t, itis
uniformly stable.
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Remark 1.1. In [54] is studied the linear differential equation of order n:

+Zpk =0

Where the coefficients pk(t) k=1,2,...,n are continuous real functions, defined on | = [a,—l—oO), aceR. It

demonstrated that the equation, subject to the initial conditions y(k)(to) = y(',‘ ,k=0,1,...,n-1,is equivalent to the
Volterra Equation

y®(t) = g(t)+ J Alt,s)y " V(s)ds .ter (8)

where

A( ka ) du ,s,tel

=2j ¢,

Then, taking into account the above and the Theorem 1.2. we can state the following result:

t
Corollary 1.1. If J. |p2 |duds <M, M e R ; then the null solution of y"+p2(t)y =0, pz(t) >0 is

to

O ey

uniformly stable.

This result completes those were presented in that work, and is consistent with the theory, in particular the case in which
pz(t) is a constant (see too [41] and [43])

Theorem 1.3. Let's suppose that

t
@ lim I|B(s,u)|du =0

S—®

(b)  The hypothesis of the Theorem 1.1. are fulfilled.

Then the null solution of the system (2) is asymptotically stable.
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Proof. The null solution of the system (2) is stable (Theorem 1.1.) we just need to prove that this solution is attractive.

t
We know that Sup“ B(t, S)|dS <vy,where y< M< % (1.10)
20 %

From (1.10.) it follows that there exists g > K such that

yL<ML<

<K (1.11)
2

Also, there exists 0 such that

K
Ll 2-+
YL<Y ( BJ

— < ———%<6<1 1.12
K < (1.12)

Lete = 1. As the null solution of the system (2) is stable, then we can find a number & = §(1, to) < 1 such that

(to> 0 and ||¢||t0 <@ = |y(tty.9)] <1 (1.13)

In the following, we consider the solutions of the system (2) such that ” (1) ”t < &. Between these, suppose that there
0

exists y(t) = y(t,to ,d)) such that

LimSup|y(t)| =u>0 (1.14)

t—>+0w

From the conclusions (1.12) and (1. 14) it follows that there exists t1 > to such that

ly(u)| < % forallust (1.15)

From (@), itis possible to ensure that there exists T > t1 such that

fors>T (1.16)

t K( _YL]H
1 B
£|B(s,u)|du_ To

Apply the Variation of Parameters Formula. Then we can write
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T S
< [h)| ()] 46.)] = [[ROR6)][| B ylu)|duds -
to 0
1.17)

. D h(t)hl(s)\I| B(s.u) | y(w[duds + [[h(©R(s)] |B(s.u)]| y(w)|duds

Note that by conjungating (*) (see the proof of the Theorem 1.1) (1.13) y (1.16) we obtain the following estimate:

t t,
[|h®h(s)| [|B(s,u)|| y(u)|duds < B, (1.18)
T 0 26
On the other hand, (1.11) and (1.15) lead us to
t S
H h(t)h‘l(s)m B(s,u)|| y(u)|duds < &H (1.19)
T t, K®
Accordingly, from (1.13), (1.17), (1.18) and (1.19) we deduce
G—E-FQ
_ K
< [ h(®)|| h(t,)| olt,) ﬂ U 1B(s,u)|| y(u )|duds+[32—eu
Is immediately from (1.12) that %—& <0, then 9—E+% <20 (1.20)
K B K
Also
fim [y(®)] < fim | [(0)][07(to)]| (to) ﬂ U [Bls.u)]| y(u)|duds +

(1.21)

871 |Page editorgim@gmail.com



Global Journal of Mathematics Vol. 8, No. 2, November 11, 2016

www.gpcpublishing.com/wp ISSN: 2395-4760
g_YL_ 2vL
Taking into account (1.14), (1.20), (1.21) and the condition lim | h(t)| = Owe obtain that p< 2—9}1 <y,
t—>+oo

which is a contradiction.

So, the null solution of the system (2) is attractive and then, being this solution stable, we conclude that this solution is
asymptotically stable.

Remark 1.2.Is easyto see that the conditions a), c) and d) in Theorem B are included in the condition a) of our Theorem.
On the other hand, our condition b) is weaker than the corresponding to the result of Hara, Yoneyama and ltoh; the last

thing applies also for the boundedness ofy(t). Thus our result, wider than the previous, is obtained with weaker
conditions.

Theorem 1.4. Suppose that the following conditions are satisfied
‘ L

(@) There exists L >0, K >0 such that H h(t)hfl(s)‘ ds < R ,forall t> to.
0

t
(b) Sup_[|B(t,s)|ds =M<+
0

t>0

t—>+o0

t

©) Limj|B(s,u)|du =0
0

Then

K
0] IfM< E , then the null solution of (2) is asymptotically stable
(i) If M> E , and the null solution of (2) is stable, then itis asymptotically stable

K
Proof. (i) fM< E , itis proved that the null solution of (2) is asymptotically stable (see Theorem B).

KNa
(i) fM> —  chooseN>1and a > , or equivalently, >1,sothat — <y<< —/——
L N-1 o+l L L(o+2)
: : o : _ K K
The inequality > o+ 1 is inmediate, and accordingly L——OL > 1, therefore E < L -y =
=Y =
Noa Noa
KNa .
L —aY.Thus K<NaK-avylL,thatis to say
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i+ﬂ <1 (1.22)

Na KN

Lete =1. As the null solution of the system (2) is stable, then we can find a number & = §(1, to) < 1 such that
(to> 0 and ”d)”to <&) = |y(t,t0,<|))| <1

In the following, we consider the solutions of the system (2) such that ” ¢ ”t < &%. Between these, suppose that there
0

exists y(t) = y(t,'[0 ,d)) such that

LimSup|y(t)| =n>0

t—>+o0
As a result of the condition (c), itis possible to find t> such that

tp

[|B(ts)|ds < LKN”a (1.23)
0
and
[ Y
) = = 2 .
“B(t S)|dS<N fors>T>1,>0 (1.24)

t;

Apply the Variation of Parameters Formula. Then we can write

[y(®)] = [h(t)][h*(t,)[3, + |h(t)|hh1(s)ﬁ|8(s,u)|| y(u)|duds +

(1.25)
t tp t s
+ [|h©)h(s)| [|Bls,u)]| y(u)|duds + .”h(t)h‘l(s)mB(s,u)||y(u)|duds
T 0 T t,
Hence, (a), (1.13) and (1.23) guarantees that
t ty
[|h®)h(s)| [|B(s.u)|| y(u)|duds < B (1.26)
N o

T 0
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The relations (a), (1.14) and (1.24) guarantees that

S

() B0 (o) dugs = 1o

ty

JY SN

Finally, substituting (1.26) and (1.27) in (1.25) we obtain the estimate

T 5

‘ ‘8 ¥ |”h_l(s)mB(S,U)||y(u)|duds+ po vblp

Na KN

tg 0

Therefore
T s 1 yL
-1
H ‘8 ¥ |t{‘h (s)‘_([|B(s,u)||y(u)|duds+(Na+ﬁ]u
Then
T S 1 'YL
_1 -1
tLlr+nw|y() tI_I)th{ H )‘80+|h(t)|{[‘h (s)wB(s,u)||y(u)|duds+(m+m
o . _ ( 1 yL)
Taking into account the relation (1.22) we obtain p< | — +—— [l <, which contradicts what course.
Noa KN

Remark 1.3. Itis clear that the Theorem 1.4 is a generalization of the Theorem B.

(1.27)

b

Example 1.1. Using the premises of the Theorem 1.4, we show that the null solution of the equation y'(t) =

o' (t)

1 sent
{l+ —} y(t) + —Iﬁ y(s)ds , Where OL('[) is a real positive and continuously differentiable function such

o) |V 3 sy

aft)> 2[(y-a(0))ep (-t)-y] o'(t) 27 . ye R

t
Indeed, from the equation h' (t) = |:1+ a_(t)} h(t) we obtain h(t) = %)exp( , hence “ h ‘
o

0

t
IOL dS But
0

‘ds =
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t

j'oc(s)exp (s)ds = aft)exp (t)—oc(O)—Ioc' (s)exp(s)ds < alt)exp (t)-a(0)-yexp (t)+y

0

t
we will have J‘| ‘ ‘dS < ) xp( )[ (t)exp (t)—(x(O)—'yexp (t)+ y],then
0
‘ _ 1 1 3 L
£|h(t)”h (s)|ds < 1+@[(Y—0t(0))e><p(—t)—v] so=g=y
In consequence, the premise (a) is satisfied. Moreover, taking into account that
0 sent n
S t d < — =
tzop'([| S t20 3 5= 3 t>pj-l+ t S 6 M

it follows that the premise (b) is satisfied. Also, the premise (c) is satisfied because

t
|imj| t,s)|ds = lim

t—>+o0 t—>+ooo

Theorem 1.5. Let suppose that

@  |h(t)h™(s)| < Kexp(-r(t—s)) fort=s>0:K>1,2>0

(b) Sup.ﬂ ts)|ds <»

t>0

A
Thenthereexists y>0,Bf>0and >0, withK-y>1 ,B < Y? and & > such that the null solution of the

system (2) is asymptotically stable in a uniform way for t > 8.

Proof. The condition (a) means that the null solution of the system (2) is asymptotically stable in a uniform way. (1.28)

t
From the condition (b) follows J.| B(t, S)|dS <N<A forN e R: (1.29)
0
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Let N’ such that N < N’ < }, then it is possible to find a continuous function g such that |B(t, S)| < g(t—s) and

S
jg du < N'. Indeed, as N <N’ choose o >0 such that N > N + o.. Also choose a continuous function Jsuch that
0

t
I (B(s,u)|+|3()|)du <N+a <N’

|3(u)[du <a.then  [B(t,S)[+]I(s)] = glt—s).Then [g(s—u)du =
0

0
(1.30)

O ey

Now let’s compare N’ with —

A
() IfFN’' < E then, from the estimates (1.29) and (1.30) follows that the null solution of the system (2) is asymptotically

stable in a uniform way (see Theorem C) for t>s.

A
(i) IfN’ > R then the Theorem will be completely proved if itis possible two constants K; and A1 such that Ky > 1 and

A1 > 0 for which

|h()h™(s)| < Kexp (-1 (t-s)) < < K, exp (=2, (t-3)) . % <N'< % fort>s+5
1

N . . Y A
From the conditions imposed, there exists y >0, >0withK—y>1and < ? such that K exp (—K(I—S)) <

In[l—j
(K—y)exp (—l:%?w—ﬁ} (t—S)J fort>s + 8. Indeed, if 5 > K then fort—s > §itresults that t—

YA
p—+=
K
" 1_% » »
s > B_—Yi}“ therefore (B_Y?j(t_s) < In[l—% and we obtain €XP KB—%)(’[—S)} < l—%,
K

which is egivalentto K exp {(B yh +K?}L—7u]( ) < K—vy and we can write

Kexp (1. (t-s) < (K—y)exp{—[ﬁw%kj(t—s)} ortss s
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K-y
S p .
Now choose & <N < &—k B - K .Letii= u7\,+[3 and K1 = K —1 lets check that h <
K K K-y K-y K K,
A.
N MX"‘B Mmﬁ N
MoK < K K _ <
K, K-y K-y K-y

Remark 1.4. We can see that the results of this theorem are obtained with weaker conditions than the conditions in
Theorem C.

Theorem 1.6. Suppose that

@  |[h({t)h(s)| < Kexp(-nr(t-s)) fort=s>0:Kk>1,2>0

t
(b) 3 >0 such that Supjexp (n(t—s))B(t;s)|ds <
0

t>0

In 1—yj

_YA
P~k

A
Thenthereexists y>0,B>0and >0, withK-y>1 ,B < Y? and § > such that the null solution of the

system (2) is asymptotically stable in a exponential way fort>s + 4.

Proof. To prove this result, is sufficient to repeat the same ideas used in the proof of the Theorem 1.5. with respectto the
existence of K1> 1 and A1 > 0 such that ‘ h(t)h‘l(s)‘ < Kexp (—k(t—s)) <K, exp (—kl ('[—S)) fort>sand N’ <

A
—L <) and combine the above with Theorem D.
1

Remark 1.5. It's easy to verify that the condition (b) of this Theorem is weaker than the condition (c) of the Theorem D.

Example 1.2. This example will show the application of the preceding Theorem. Consider the scalar equation y'(t) =
t t

—ky(t) + %Iexp (—C(t—s))y(s)ds, where A >0, ..C > 1. It's easy to see that %Iexp (— C(t—s))y(s)ds
0 0

and from this ‘ h(t)hfl(s)‘ < < exp (— A (t — S)) <Kexp (— A (t — S)) thatis the condition (a).

On the other hand, (7L—C)2 = (X+C)2 —4(7»C—1) > 0 and (7»—C)2 +4< (7»+C)2 from the hypothesis 1L.C > 1.
Then 4+ C > (A +Cf —4(rC-1)
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If we choose to = 0 and use the Laplace’s Transform to solve the given equation, we obtain

Y(t,0,¥,) = —Y°—[(C+o,)exp (o, t)-(C+ar, )exp (a, )]

o — A,

~(r+C)x(r+C}F-4(rC-1)
2

1-exp [(M—C)t] < X(C—p),thereby 1-ex [(”_C)t] < A .From B(t,S) = exp (—C(t—s)) we have
(C-u)

where ol , = .As 1.C > 1, is possible to find 0 < pu < C such that k(C—u), then

t t

!ex'o (n(t-s))B(t,s)ds = exp ((H—C)t)lexp (C-p)s)ds = 1‘e’€2[fﬂu—)c)t]

< X hence the premise (b) is satisfied.

Then Stijopjexp n(t-s))|B(ts)|ds = .

As a conclusion of this epigraph, we show how is possible to use the integro-differential inequalities derived and applied in
[44, 45]. Here are involved a set of continuous functions defined in | = [0,+oo) such that 0 < a(t) <1, b(t) >0 and

T](t) is positive and monotone nondecreasing, and the constants o >0, 0<y<1 and O<p<2.

Theorem 1.7. Suppose that the following conditions are fulfilled

o a(t)

@  |hR)]|[h ()| 6lto)| = 2(1_Y)§K;Ke R’
® | h(t)||h* H )| y(w)]ds < XEEVE)

1-y

Then all the solutions of the system (2) are bounded and the null solution thereof is stable.

If in addition the null solution of the linear homogeneous equation h' (t) = A(t)h(t) is uniformly stable, then all the
solutions of the system (2) are uniformly bounded and the null solution of this system is uniformly stable.
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Proof. From the Variation of Parameters Fomula

< [h(t)]| (o) || 6(to) ﬂh )[|[h (s H |B(s,u)||y(u)|duds  (@.31)

Taking into account the premises (a) y (b), the inequality (1.31) becomes |y(t)| < ZOZf(t)) +
-
J || Y\S |dS, and this expression matches with the inequality obtained in the proof of the Theorem 3 of
7o
[46], for T]('[) 1. Therefore it follows that
alt
) T
a1 [P ) ot
From the last expression and the premises (a) y (c) we obtain the boundedness for y(t).
We show that under the conditions imposed, the null solution of the system (2) is stable.
From (a) we observe that
1)) )] ot ) - ) « 241 - e

On the other hand, For all e> 0 choose 6= 8(8,1:0) > 0 such that

5.t K—{ Y ER ISR } a9

4

Let's consider the solution of the system (2) thatsatisfies the inequality

8(e.to) < [ 0], (1:34)
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Suppose that there exists t1 > to such that |y(t1)| = gand |y(t)| <gen [to ,tl). Appliying the Variation of Parameters
K,5

(1—y)[1—';j+\/(1_ﬁ(1_p)2—|v|

4

Formula and using (1.31), (1.32), (1.33) and (1.34) it follows that | y(t)] < <e

then |y(t1)| <e

The contradiction obtained means that the null solution of the system (2) is stable.

Now, using that the null solution of the linear homogeneous equation h' (t) = A(t)h(t) is uniformly stable, is possible to

choose L > 1such that | h(t)” h_l(S)‘ <Lfort>s>0.

Observe that the choice of a and Lis independent of to, therefore 8 = 5(8), hence the boundedness of all the solutions, as
well as the stability of the null solution of the system (2), is uniform.

Remark 1.6. Even we used the Theorem 3 on the premises of this Theorem, without difficulty we can choose others
Theorems in [44, 45] in order to obtain similar results.

Remark 1.7. The obtained results in this section generalizes those of [47, 53], where they study a particular case of (1)
under stronger conditions than the here considered.

STUDY OF THE PERTURBED SYSTEM

Hereinafter, we stablish a set of results that are sufficient conditions to ensure the uniform boundedness and the uniform
final boundedness of all the solutions of the system (1). The fulfilling of these properties by the solutions of the system (2)
is an essential part of the premises of all the theorems of this section.

Let us specify the definitions of these concepts.

Definition 6. The solutions of the system (2) are uniformly bounded if and only if for all o > 0 there exists B(Oc) >0 such
that

t, 20 A ||<|>||to <antzty = y(t,t,,0)=pa)

Definition 7. The solutions of the system (2) are finally uniformly bounded if and only if there exists B > 0 and for some
a >0 itcan find T(Oc) >0 such that

20 [0 <o = Y(tt,0)=pla) ; vz t,+T(a)
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Another result we will use is the following two Theorems obtained in [29]:

Theorem E. For the system (2) the following qualitative properties are equivalent:

0] The null solution is asymptotically stable in a uniform way.

(i) The null solution is asymptotically stable in a exponential way.

(i)  All the solutions are uniformly bounded and finally uniformly bounded.

Theorem F. Suppose that the following premises are fulfilled

t+1

@ Sup j| Als)|ds <+

t>0 t

t
®  Sup||B(ts)|ds <+

t=0 §
(c) The solutions of the system (2) are uniformly bounded and finally uniformly bounded.

t
@) Sup exp(—t)_[exp(s)f(s)ds < +o
0

t>0

Then the solutions of the system (1) are uniformly bounded and finally uniformly bounded.

Remark 2.1. From the Theorem E is inmediate that from each Theorems 1.5. and 1.6. follows the uniform bounded and
the final uniform bounded of all the solutions of (2).

In what follows we will discuss our results.
Theorem 2.1. Suppose that the following conditions are fulfilled

(@ The premises of Theorem 1.5.

0 |f(t) <L LeR

t+1
© Sup [|A(s)|ds <+
t20
In[1- 7
. , YA K .
Thenthereexists y>0,3>0and >0 ,withK—-y>1,3< ? and § > —7» such that the solutions of system

2
BK

(1) are uniformly bounded and finally uniformly bounded fort>s + 4.
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Proof. From (a) follows that every solution y(t) satisfies

y(t) is uniformly and finally uniformly bounded fort> & 2.1)
t

In the other hand, one of the premises of Theorem 1.5.is Sup_ﬂ B(t, S)|dS <A (2.2)
t20 j

Furthermore, from (b) follows the inequalities

t t

Sup| exp (1) [exp (s)f(s)ds| < Supexp (~t) [exp (s)]f(s)]ds <

(2.3)
<SupL(1-exp(-t))=L<+xo
t=0
Hence, from (c) and the conclusions (2.1), (2.2) and (2.3) the Theorem is proved. (see Theorem F)

Because of the equivalence of the premises (i), (i) and (iii)itis possible to prove the following result.

Theorem 2.2. Suppose that the premises (b) and (c) of the Theorem 2.1. and the premises of the Theorem 1.6. are

w

2
BK

of the system (1) are uniformly bounded and finally uniformly bounded fort > s + &. It is possible to guarantee the uniform
boundedness and final uniform boundedness of all the solutions of (1) using as a part of the premises the results of [44,
45, 60], as illustrated below. In [45] it has shown the following result

YA

fulfilled. Then there exists y>0,f>0and 6>0 ,withK—y>1 , < — and 8> such that all the solutions

Theorem G. Let X(t) be a solution of the system (1) such thatits derivative X' (t) is a continuous function. Suppose that
the following conditions are fulfilled

ot

@ Mf@\ - bit)a(s)(|x(5)] +| X))

(b) Mx(o)‘ﬂf(tﬂ < a(t)| x(t)|

(© I a(t) dt <+
@ B(t)<K R
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(e) The premises of Theorem G

YA

Thenthereexists y>0,B>0and >0 ,withK-y>1,pB< and & > such that all the solutions of the

)

_Th
K

system (1) are uniformly bounded and finally uniformly bounded fort>s + 6.

Proof. The condition (e) ensures that the solutions X(t) of the system (1) are bounded. In the other hand, from (b) of
Theorem G and the boundedness of X(t), it follows that f(t) is bounded. If in addition it used the condition (c) and the

Variation of Parameters Formula, it results that the solutions y(t) of the system (2) are bounded. In consequence from

this last conclusion and the premises (a) and (b) follows that (see Theorem 1.5.) this solutions are bounded and finally
bounded in a uniform way (2.4)

As f(t) is bounded, is inmediate that

t

Sup|exp (-t) [exp (s)f(s)ds | <+ 25)

t>0 0

Combining the premises (b) and (d) and the conclusions (2.4) and (2.5) the prove of the Theorem is obtained.

Theorem 2.4. Suppose that

(a) 3p>0$uchthatSUpJ.eXp (t-s))|B(ts)|ds <

t>0

t
®  Sup[|Bt,s)|ds <
t>0 0

t+1
© Sup _“Rt S |d5<+oo
t20
t+1
(d) Sup _[|A )|ds <+
t20
(e) The premises of Theorem G.
Thenthereexists y>0,B>0and >0 ,withK-y>1,pB< Y_ and & > [ j such that all the solutions of the

B—"

system (1) are uniformly bounded and finally uniformly bounded fort>s + 3.

Remarks 2.2.
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. If, instead of Theorem G, we consider other results of [45] (Theorems 2, 4 or 5), we obtain the same result for the
Theorems 2.3.and 2.4.

. It's clear thatifinstead of Theorems 1, 2, 4 or 5 of [45], we choose the first corollary of these Theorems, we obtain
the same conclusion.

Following the notation of [46], for all s € [0,+oo), denote Z(t,s) the square matrix of order n > 1 that satisfies the
differential equation

y'(t) = Ct)y(t) : P(s)yls) =1 ™)
where P(t) is a Squire matrix of order n, derivable, bounded and nonsingular, such that 1 < P(t) <P.
In what follows, we will need the result from [46].

Theorem H. Let Z(t,S) be a solution of the equation (N) if the following inequalities are satisfied:
@ |Ztt) < K,

(b) Z(t,u)f(u)dul < K,

Se—

t

P(t)Z(t,s)[Als)-C(s) ]+ [ Z(t,u)P(u)(B(u,s)-P' (u) Z(u,s)[ A(s)-C(s)] )du ds

to

(©

O t—y

In
A
N
A
H

We will have all the solutions of the system (1) are uniformly bounded and the null solution of the system (2) is uniformly
stable.

Theorem 2.5. Suppose that the following premises are satisfied

@ |[h({t)h™(s)|< Kexp(-r(t-s)) fort=s>0:k>1,2>0

t+1

b  Sup I| As)|ds <+

t>0 t

t
© Sup.[|B(t,s)|dS<x
t>0 0

(d)  the premises of Theorem H, with Z(t,S) = Kexp (—(t—S))
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M

B_

A
Thenthereexists y>0,p>0and 620 ,withK—-y>1,3< Y? and 8 > such that all the solutions of the

TA
K

system (1) are uniformly bounded and finally uniformly bounded fort>s + &.

Proof. The condition (d) allows us to ensure that the solutions X(t) of the system (1) are uniformly bounded and then,

following the same process when f(t) = 0, we conclude that the solutions y(t) of the system (2) have the same

propertyFrom this last assertion and the premises (a) and (c) we arrive to the conclusion that the solutions of the system
(2) are

uniformly bounded and finally uniformly bounded (2.6)

Substituting Z(t,S) Kexp( ( )) in the premise (c) of Theorem H, we obtain

t

Sup|exp (~t)[exp (s)f(s)ds | <+ 2.5)

t>0 0

Combining the premises (b) and (c) with the assertions (2.6) and (2.7) (see Theorem F) we conclude the proof.

Theorem 2.6. Suppose that the following premises are satisfied

@  |[h({t)h(s)| < Kexp(-r(t-s)) fort=s>0:K>1,2>0

t+1
®) Sup I|A )|ds <+
t>0 t
t
(© 3u>0suchthat Sup|exp (- jexp s)ds| <z
t>0 0

(d) the premises of Theorem H, with Z(’[,S) = Kexp (—(t—S))

YU

Thenthere exists y>0,B>0and 6>0 ,withK-y>1,pB< ? and 4 > such that all the solutions of the
system (1) are uniformly bounded and finally uniformly bounded fort>s + 8.
Remark 2.3. If, instead Theorem H, we consider one of the Theorem of [46], we obtain equivalent results to Theorems 2.5.

and 2.6.
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