Mineral Phosphate Solubilization in *Burkholderia tropica* Involves an Inducible PQQ-Glucose Dehydrogenase

Pamela Romina Bernabeu¹, Sabrina Soledad García¹, Gimena García Ferreyra¹, Verónica Inés Guidi¹, María Lina Galar¹, José Luis Boiardi¹ and María Flavia Luna¹,²*

¹Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), UNLP, CCT-La Plata-CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
²Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), Argentina.

Authors’ contributions

This manuscript is the result of teamwork. Author PRB designed all the experiments and managed the analysis and discussion of results. Author SSG contributed with experiments in flasks and gluconic acid and phosphorous determinations and managed literature searches. Author MLG carried out the supervision of experiments in flasks and bioreactors in relation with enzyme activities measures. Authors GGF and VIG realized all the experiments in bioreactors and enzyme activities measures. Author JLB contributed with the discussion of results, organization and planning of the manuscript. Author MFL developed the experimental design, supervised the experiments and managed the analysis and discussion of results. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BMRJ/2016/24405

(1) Joao Lucio Azevedo, University of São Paulo, Department of Genetics, Brazil.

(1) Rama Bhat, Mangalore University, India.

(2) Eduardo Ortega, University of Havana, Cuba.

Complete Peer review History: http://sciencedomain.org/review-history/13635

Original Research Article

ABSTRACT

Aims: The objective of this work was to provide knowledge about the mechanism and regulation of the mineral phosphate solubilization in *Burkholderia tropica*. To this end, the expression of the direct extracellular oxidative pathway in *B. tropica* was studied using different culture approaches.

Corresponding author: E-mail: mafla@quimica.unlp.edu.ar;
Study Design: Plate assays and batch cultures in flasks and bioreactor were carried out in this study with B. tropica Mto-293 like target organism. The experiments were achieved at least three times with two repetitions per time.

Place and Duration of Study: Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales, UNLP, CCT-La Plata-CONICET, between November 2014-2015.

Methodology: Qualitative plate assays with different Carbon sources were carried out for the evaluation of Mineral Phosphate Solubilization phenotype. Batch cultures in flasks were carried out with different Carbon, Phosphorus and Nitrogen sources to determine quantitatively soluble phosphorus, gluconic acid and other ketoacids in the supernatants, and also PQQ-linked glucose and gluconate dehydrogenase activities in whole cells. Cultures with some of the conditions mentioned before were carried out in bioreactor specifically to control pH.

Results: This organism was able to produce significant amounts of gluconic acid via the expression of a PQQ-GDH and also showed a significant activity of GaDH. However, the direct oxidative pathway was only observed under conditions of Phosphorus starvation and/or Nitrogen fixation.

Conclusion: The Mineral Phosphate Solubilization phenotype for B. tropica can be ascribed to the expression of the direct oxidative pathway which involves the expression of an active PQQ-linked glucose dehydrogenase. Nevertheless, this pathway is not expressed constitutively in this bacterium. Environmental conditions, like low P and N availability, led to an active extracellular glucose oxidation. Therefore, mineral phosphate solubilization in B. tropica involves an inducible pyrroloquinoline quinone-linked glucose dehydrogenase. These findings may contribute to the use of this bacterium as plant growth promoting bacteria reducing the dependence on chemical fertilizer.

Keywords: Burkholderia tropica; phosphate solubilization; PQQ-GDH; nitrogen fixation.

1. INTRODUCTION

Soils are typically abundant in a variety of organic and inorganic forms of insoluble Phosphorus (P), but deficient in soluble forms of P essential for plant growth. In order to avoid P-deficiency in agricultural soils phosphate fertilizers are widely applied. However, a significant portion of added P is rapidly immobilized as insoluble forms and becomes unavailable to plants [1]. Mobilization of P by microbial action is a possible way to provide soluble P to plants. Many reports show that some soil bacteria solubilize insoluble minerals through the production of acids, increasing the availability of P and other nutrients to plants in deficient soils [2]. Several bacterial genera have been reported to express “mineral phosphate solubilizing” (MPS) capacity such as Pseudomonas, Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium, Micrococcus, Aereobacter, Flavobacterium, Erwinia and Gluconacetobacter [3-5]. It is generally accepted that the expression of a direct extracellular oxidative pathway is the principal mechanism for MPS bacteria [5,6-8]. This pathway (also called nonphosphorylating oxidation) is widely distributed among Gram-negative bacteria. It involves the periplasmic oxidation of aldoses into the corresponding aldonic acid by the quinoprotein glucose dehydrogenase (PQQ-GDH) [9]. Gluconic acid is the most frequent agent responsible for the MPS phenotype and is often further oxidized to 2-ketogluconic by action of a gluconate dehydrogenase (GaDH) [10]. These strong organic acids produced by bacteria are considered to play a significant role in dissolve poorly soluble calcium phosphates present in soils [11-13]. Burkholderia spp. are considered promising candidates for been used as biofertilizers [14-17] and can be classified, according to Bashan and Holguin [18], as “plant growth promoting bacteria”. Among the different capacities expressed by Burkholderia spp. leading to promote plant growth we can mention: N2 fixation, expression of 1-aminocyclopropane-1-carboxylic acid deaminase activity, antagonism against different plant pathogenic fungi, production of siderophores and MPS capacity [19-21]. Nahas [22] reported that B. cepacia showed the highest MPS activity among 42 soil bacterial isolates. On the other hand, gluconic acid was identified as responsible for the dissolution of tricalcium phosphate by B. cepacia CC-A174 [23] and B. cepacia DA23 [24]. It has been reported that B. tropica possesses the most notable MPS capacity among the different Burkholderia spp. associated with plants [16]. But, the phosphate solubilizing mechanism and
its regulation has not been mostly studied in this species. To this end we have studied the expression of the direct extracellular oxidative pathway in *B. tropica* growing under different culture conditions. It is shown that this organism was able to produce significant amounts of gluconic acid via the expression of a PQQ-GDH and also showed a significant activity of GaDH. But, the direct oxidative pathway was only observed under conditions of P-starvation and/or Nitrogen fixation (nutritional and energy stress respectively).

2. MATERIALS AND METHODS

2.1 Organisms and Maintenance

Burkholderia tropica MT-293 (ATCCBAA 569) [25] kindly provided by Dr. Jesús Caballero-Mellado (Centro de Ciencias Genómicas, Cuernavaca, Morelos, México), was maintained at 4°C in LB medium [26] for monthly subcultures and in LGI medium [27] with 20% glycerol at -80°C.

2.2 Cultures and Growth Conditions

Plate assays were carried out using the National Botanical Research Institute's phosphate medium (NBRIP) [28] containing (L⁻¹): Ca₃(PO₄)₂ (TCP), 5.0 g; MgCl₂.6H₂O, 5.0 g; MgSO₄.7H₂O, 0.25 g; KCl, 0.2 g; (NH₄)₂SO₄, 0.1 g; agar, 14.0 g and 10.0 g of different C-sources. Bacterial cultures of *B. tropica* with concentrations of approximately 1.10⁶ CFU mL⁻¹ were centrifuged and resuspended in the same volume of saline solution pH 6.0. 50 µL of these cell suspensions were plated onto NBRIP medium. Plates were observed two days after incubation at 30°C. Formation of clearing zones around colonies indicated P-solubilization ability.

Batch cultures were performed employing the NBRIP liquid medium with 10 or 30 g L⁻¹ of glucose or glycerol as carbon source, and 2.5 g L⁻¹ of (NH₄)₂SO₄ (non-BNF conditions or N-available conditions). TCP was replaced by K₂HPO₄ (2.0 g L⁻¹) in experiments with soluble P. When the organism was grown under BNF conditions, (NH₄)₂SO₄ concentration was decreased to a starter dose of 0.132 g L⁻¹ [27, 29]. Bacteria were grown at 30°C in 1.0 L flasks containing 250 mL of liquid NBRIP medium (two flasks per treatment) on a rotary shaker stirred at 200 or 100 rpm for non-BNF or BNF, respectively. Negative controls (non-inoculated flasks) were carried out to quantify the solubilized P in the culture conditions regardless of microbial activity. *B. tropica* was also grown at 30°C in a 2.0 L LH (Incelltech 210) bioreactor with a working volume of 1.0 L. pH was automatically maintained at 6.0±0.1 by addition of either 0.5 M NaOH or 0.25 M H₂SO₄. Foam formation was prevented by automatic addition of an antifoam agent. Cultures were flushed with air (20 to 25 L h⁻¹). These cultures were carried out on NBRIP liquid medium with glucose (30 g L⁻¹) and K₂HPO₄ (2.0 g L⁻¹) under non-BNF conditions. Instantaneous additions of chloramphenicol (CP) (final concentration 200 µg mL⁻¹) and PQQ (final concentration 10 µM, either alone or 2 h after CP pulse) were made at 18 h of bacterial growth (exponential phase). CP pulse was performed for inhibition of protein synthesis and addition of exogenous PQQ was made to reconstitute PQQ-GDH apoenzyme.

2.3 Analyses

Samples of batch cultures were taken at 8-12 h intervals during 2 days for measurements of pH, biomass dry weight [30], glucose consumption and product formation. Samples of batch cultures grown in medium with TCP were diluted 1:1 (v/v) using 0.1 M HCl to dissolve the residual insoluble phosphate and measured against a blank identically treated [31]. Samples were centrifuged 10 min at 10,000 g and the resulting supernatant was employed for glucose, gluconic acid and soluble P assays. Glucose concentrations in media and supernatants were determined with a glucose oxidase enzymatic kit (Wiener, Argentina). Gluconic and 2-ketogluconic acid production were determined in bacterial supernatant by High Performance liquid chromatography (HPLC) with a Hamilton PRP-X300 (250 x 4.1 mm ID, 7 µm pore size) column equipped with Waters 717 plus autosampler and UV detector. UV absorption was monitored at 210 nm. The mobile phase was H₂SO₄ 5 mM applied at a flow rate of 2.0 mL min⁻¹. Column temperature was maintained at 25°C. Soluble P concentrations were measured by the method described by Clesscler et al. [32].

2.4 Enzyme Assays

PQQ-GDH and gluconate dehydrogenase (GaDH) *in vitro* activities were measured spectrophotometrically using 2,6-dichlorophenol-indophenol (DCIP) as the electron acceptor and glucose or gluconate respectively as C sources [33,34] Samples (20 mL) from batch cultures were taken during exponential growth phase (17-20 h of growth) and centrifuged for 10 minutes at 12,000 g at 4°C. Cells were washed
twice in phosphate buffer 10 mM (pH 6.0) containing 5 mM MgCl$_2$ to a final concentration of 4.50 mg mL$^{-1}$ dry weight. This washed cells suspension was employed to determine the PQQ-GDH activity in whole cells. The final concentration of cells in the reaction mixture was 0.10 mg mL$^{-1}$ dry weight. When enzyme activity was measured in the presence of exogenous PQQ, the mixture was preincubated for 15 min at 30°C with 100 mM PQQ in 10 mM Na$_2$HPO$_4$-5 mM MgCl$_2$ prior to the addition of glucose.

3. RESULTS

3.1 Plate Assays

Qualitative estimation of P solubilization was performed in agar plates supplemented with TCP. The MPS phenotype was visualized by appearance of significant clearing halos around colonies of _B. tropica_ in plates containing glucose, arabinose, galactose and xylose (all substrates of PQQ-GDH). In plates supplemented with glycerol, sodium gluconate, maltose and fructose, _B. tropica_ showed growth but no appearance of solubilization zones (data not shown).

3.2 Cultures

No activity of PQQ-GDH could be found in batch cultures of _B. tropica_ under conditions of free availability of soluble P (KPO$_4$H$_2$) and available N ((NH$_4$)$_2$SO$_4$) (Table 1), either using glucose or glycerol as C-source. Expression of PQQ-GDH led to gluconic acid production in cultures with glucose using TCP as the sole P-source both in the presence of available N or BNF conditions and also in cultures with soluble P under BNF conditions (Table 1). Production of gluconic acid concomitantly led to significant appearance of soluble P in supernatants of TCP containing cultures. A significant PQQ-GDH activity was detected in media containing glycerol and TCP, but P solubilization could not be observed because of the absence of organic acids derived from PQQ-GDH activity (Table 1). GaDH activity was observed under all tested conditions suggesting that it is synthesized constitutively but 2-ketogluconate was consistently undetectable irrespective of the growth conditions. Soluble P concentration of negative controls (non-inoculated TCP containing media) remained almost constant (between 2 and 8 mg L$^{-1}$) along the experiment.

![Fig. 1. Gluconic acid, glucose and dry weight of _B. tropica_ Mto-293 cultures growing with glucose 30 g L$^{-1}$, P soluble and non-BNF at controlled pH, before and after an instantaneous addition of PQQ. Data are mean of at least three replicates](image)

Table 1. PQQ-GDH and GaDH activities, gluconic acid and soluble P of _B. tropica_ Mto-293 cultures growing under different conditions

<table>
<thead>
<tr>
<th>Culture medium supplemented with (g L$^{-1}$)</th>
<th>PQQ-GDH</th>
<th>GaDH</th>
<th>Final gluconic acid (g L$^{-1}$)</th>
<th>Final soluble P (ppm)</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Glu: 10·KPO$_4$H$_2$</td>
<td>NDa</td>
<td>363±16</td>
<td>ND</td>
<td>-</td>
<td>2.89±0.25</td>
</tr>
<tr>
<td>Glu: 30·KPO$_4$H$_2$</td>
<td>NDa</td>
<td>412±25</td>
<td>ND</td>
<td>-</td>
<td>2.76±0.15</td>
</tr>
<tr>
<td>Glu: 30·TCP</td>
<td>416±16</td>
<td>617±51</td>
<td>14.3±1.5</td>
<td>40±5</td>
<td>3.48±0.12</td>
</tr>
<tr>
<td>Gly: 30·KPO$_4$H$_2$</td>
<td>NDa</td>
<td>215±16</td>
<td>ND</td>
<td>-</td>
<td>6.26±0.25</td>
</tr>
<tr>
<td>Gly: 30·TCP</td>
<td>167±16</td>
<td>104±17</td>
<td>ND</td>
<td>< 10</td>
<td>6.75±0.15</td>
</tr>
<tr>
<td>BNF Glu: 10·KPO$_4$H$_2$</td>
<td>100±45</td>
<td>450±63</td>
<td>1.3±0.5</td>
<td>-</td>
<td>3.36±0.15</td>
</tr>
<tr>
<td>Glu: 10·TCP</td>
<td>221±57</td>
<td>637±98</td>
<td>4.1±1.5</td>
<td>32±2</td>
<td>4.18±0.12</td>
</tr>
<tr>
<td>Glu: 30·KPO$_4$H$_2$</td>
<td>147±43</td>
<td>287±63</td>
<td>4.2±0.3</td>
<td>-</td>
<td>2.78±0.15</td>
</tr>
<tr>
<td>Glu: 30·TCP</td>
<td>232±47</td>
<td>411±36</td>
<td>10.9±2.9</td>
<td>50±2</td>
<td>3.69±0.12</td>
</tr>
<tr>
<td>Gly: 30·KPO$_4$H$_2$</td>
<td>91±12</td>
<td>218±23</td>
<td>ND</td>
<td>-</td>
<td>7.05±0.10</td>
</tr>
<tr>
<td>Gly: 30·TCP</td>
<td>107±14</td>
<td>119±60</td>
<td>ND</td>
<td>< 10</td>
<td>6.85±0.15</td>
</tr>
</tbody>
</table>

a Enzymatic activities are expressed as mmol of reduced DCIP min$^{-1}$ mg protein$^{-1}$ (assuming 60% protein content in the biomass). Data are mean of at least three replicates.

c PQQ-GDH activity was not detected even with the addition of exogenous PQQ in the reaction mixture.
PQQ-GDH could not be detected (and gluconic acid was not produced) in *B. tropica* cultures performed with glucose and a soluble P-source under non-BNF conditions, even after the addition of exogenous PQQ in the reaction mixture of *in vitro* measurements (Table 1). Nevertheless, an instantaneous addition of PQQ to those cultures (at controlled pH) led to an immediate excretion of gluconic acid (Fig. 1) and to those cultures (at controlled pH) led to an immediate excretion of gluconic acid (Fig. 1) and a concomitant increase in PQQ-GDH activity from not detected levels to 220±10 nmoles reduced DCIP min⁻¹ mg protein⁻¹ (assuming 60% protein content in the biomass). Addition of CP before the PQQ pulse led to the same results, indicating that *de novo* protein synthesis was not a mechanism of PQQ-GDH activity control (data not shown).

4. DISCUSSION

As said, most bacteria showing the MPS phenotype convert extracellular glucose rapidly and stoichiometrically to gluconic acid via a PQQ-GDH. This way is considered the main glucose catabolic pathway in these bacteria and normally PQQ-GDH is expressed constitutively, although modulated by the carbon and energy source requirements [12,30,35]. Our results indicate that the presence of aldoses would be necessary for the activity of the direct oxidative pathway and expression of a MPS phenotype in *B. tropica*, as already reported by Caballero Mellado et al. [16]. On the other hand, batch cultures show that *B. tropica* did not express PQQ-GDH constitutively indicating that, contrary to that reported for other bacteria expressing a strong MPS phenotype [6,36], the direct oxidative pathway is not the primary way of aldose sugars utilization by this bacterium. Only under conditions of P starvation and/or BNF the direct oxidative pathway could be detected regardless of the carbon source used, glucose or glycerol. In *Pseudomonas aeruginosa*, PQQ-GDH is not constitutive but inducible by glucose, gluconate, mannitol and glycerol [6]. On the other hand, PQQ-GDH of *Enterobacter asburiae*, although constitutive, showed a fivefold increase in activity under P starvation but enzyme activity was not completely repressed by the presence of available P in the medium [12]. Goldstein and Liu [37] have reported that the MPS trait in *Erwinia herbicola* is induced / repressed by low/high levels of exogenous P and found some genes involved on phosphate starvation metabolism. In some microorganisms, the phenomenon of phosphate-starvation-inducible gene expression involves specific phosphate regulated genes and several of these are also inducible by other stress conditions [37]. Therefore, P availability seems to play an important role in regulating PQQ-GDH expression in some bacteria [38-40] including *B. tropica*, as shown in this work.

The biochemical pathways and genetics of PQQ-GDH synthesis and expression have been studied in many bacteria [32,41,42]. Van Schie et al. [42] showed that the synthesis of PQQ-GDH holoenzyme and the PQQ cofactor could be non-coordinated and the control of PQQ-GDH activity by PQQ synthesis maybe widespread among bacteria. The genes responsible for PQQ production have been cloned and sequenced in several bacterial genera, including *Pseudomonas*, *Methylobacterium*, *Acinetobacter*, *Klebsiella*, *Enterobacter*, and *Rahnella* [43-46]. Analysis of PQQ biosynthesis genes from a variety of Gram negative bacteria showed that *pqqABCD* genes are conserved, and presence of additional genes is variable [47]. Choi et al. [43] have reported that genes involved in PQQ biosynthesis can be induced under nutrient limitation. Additionally, overexpression of *pqq* biosynthetic gene(s) in some bacteria resulted in gluconic acid production and the amount of PQQ, but not apoprotein, limited acid secretion [47]. On the other hand, some reports show that genes which induce MPS ability (in bacteria with MPS negative phenotype) are not directly involved in PQQ-GDH holoenzyme or PQQ biosynthesis, but in the synthesis of a transporter protein [48]. In *Pseudomonas cepacea*, another gene called *gabY* may act as a functional MPS gen in the expression and / or regulation of the direct oxidative pathway [49]. However, the biochemical and genetic mechanisms regulating the biosynthesis of PQQ and their assembly to give an active PQQ-GDH still remain not clearly known [47,48,50]. From our results it seems that PQQ-GDH expression in *B. tropica* is regulated by the amounts of the cofactor PQQ. But, as shown in the *in vitro* assays, the presence of PQQ was not enough to lead to expression of an active PQQ-GDH. Only active growing cultures added with exogenous PQQ led to expression of PQQ-GDH in cultures with soluble P and available N. Cells were not only unable to express PQQ-GDH activity but also needed an active metabolism to produce gluconic acid. It seems that the expression of the direct oxidative pathway in *B. tropica* is not regulated by the induction of holoenzyme synthesis. Nevertheless, some other factor besides the PQQ is necessary in order to detect enzymatic activity. Under either
P starvation or BNF PQQ synthesis was induced leading to the expression of an active PQQ-GDH.

5. CONCLUSIONS

On the basis of these results we conclude that the MPS phenotype already reported for B. tropica [16] can be ascribed to the expression of the direct oxidative pathway which involves the expression of an active PQQ-GDH. However, this pathway is not expressed constitutively in this bacterium. Environmental conditions, like low P and N availability led to an active extracellular glucose oxidation. Therefore, mineral phosphate solubilization in B. tropica involves an inducible pyrroloquinoline quinone-linked glucose dehydrogenase. These findings provide knowledgement about the mechanism and regulation of the mineral phosphate solubilization in B. tropica, and may contribute to the use of this bacterium as plant growth promoting bacteria reducing the dependence on chemical fertilizer.

Further studies using molecular tools are required to continue explaining the complexity of the expression of a MPS phenotype in this bacterium.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

23. Lin TF, Huang HI, Shen FT, Young CC. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresource Technol. 2006;97(7):957-960.

34. Matsushita K, Shinagawa E, Ameyma M. D-glucurate dehydrogenase from bacteria, 2-keto-D-glucurate-yielding, membrane-

© 2016 Bernabeu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.