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Abstract

The present work arose from the need of repairing steel plates badly damaged by corrosion
in a portion of the structural element of the naval vehicle. The possibility of removing the
portion and replacing it by a patch of a composite material was considered. Its dynamic
behavior is altered by the introduction of the patch and the prediction of its new behavior is
of great interest in many situations. This condition would appear in other real-life situations
like as a localized orthotropic effect caused in the panel by a welding procedure or a metallurgi-
cal process. The first four natural frequency coefficients of the composite repaired panel with
different types of boundary conditions are determined by means of a variational approach.
The displacement function is approximated making use of complete sets of beam functions.
The eigenvalues have been computed from (225×225) secular determinants. An independent
solution is obtained using the finite element method and a reasonably good agreement with
the analytical solution is encountered.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of flexural vibrations of isotropic panels with an orthotropic inclusion
is of interest from an ocean engineering viewpoint since the localized orthotropic
effect changes the dynamic behavior of the original structure. There are several situ-
ations where this condition may appear. One situation is that where in a damaged
vibrating isotropic plate-like-structure the deteriorated (e.g. corrosion) portion
acquires orthotropic-like characteristics. The orthotropic effect may be also caused
by a welding procedure or by repairing an isotropic panel when a damaged portion
is replaced by an orthotropic patch, adding a composite material (usually epoxy).
Previous investigators (Cornwell et al., 1999; Laura et al., 2000; Laura and Gutiérrez,
1984) considered only the fundamental frequency of the structural system and they
are extended here in order to determine the higher frequencies and also to deal with
other boundary condition.

The approach may be also of interest when dealing with offshore platforms.
An excellent survey of previous theoretical and experimental studies dealing with

vibrating fully isotropic or completely orthotropic plates is available in Leissa’s
classical treatise (Leissa, 1969).

2. Analytical solution

The vibrating mechanical idealized model is depicted in Fig. 1. The displacement
amplitude is expressed in terms of series of beam functions, where each coordinate
function satisfies identically the essential boundary conditions at the outer edge of
the plate.

Fig. 1. Isotropic rectangular panel with orthotropic patch.
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Wa(x̄,ȳ) � �M
m � 1

�N
n � 1

AmnXm(x̄)Yn(ȳ) (1)

where Wa(x̄,ȳ) is the approximate displacement amplitude, Xm(x̄), Yn(ȳ) are the beam
functions and Amn are the undetermined coefficients.

The Rayleigh–Ritz method requires minimization of the functional:

J(W) � U�T (2)

where U and T are the maximum strain energy and maximum kinetic energy of the
plate with the inclusion, respectively.

Using Lekhnitskii’s notation, presented in his famous book Anisotropic
Plates(1968), the dynamic functional can be written as:
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D
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where Wx̄x̄ �
∂2W
∂ x̄2; Wȳȳ �

∂2W
∂ ȳ2; Wx̄ȳ �

∂2W
∂x̄∂ ȳ

; and D, n, r are bending rigidity,

Poisson’s ratio and density of the isotropic domain: A, respectively, and
D1, D2, Dk, n2, rp are bending and twisting rigidities for the principal directions of
elasticity, one of Poisson’s ratios and density of the orthotropic domain: Ap, respect-
ively.

The principal directions of elasticity of the orthotropic inclusion are considered
parallel to the plate’s sides, as it is shown in Fig. 1.

The Eq. (3) can be conveniently non dimensionalized by introducing:x �
x̄
a

;

x1 �
x̄1

a
; x2 �

x̄2

a
; y �

ȳ
b
; y1 �

ȳ1

b
; y2 �

ȳ2

b
.

Substituting the Eq. (1) into Eq. (3), integrating and requiring that J(W) be a
minimum with respect to the Amn:

∂J
∂Amn

� 0 (4)
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one obtains a determinantal equation, whose roots are the natural frequency coef-
ficients:

�i � �r h
D
wi a2; with i � 1, 2,... (5)

In the case of the simply supported plate the beam functions are (Blevins, 1979):

Xm(x) � sin kmx (6a)

Yn(y) � sin kny (6b)

both of which satisfy the governing boundary conditions when

km � mp, (7a)

kn � np (7b)

When the plate is fully clamped the corresponding beam functions are (Blevins,
1979):

Xm(x) � (sinkmx�sinhkmx) rm � coshkmx�coskmx (8a)

Yn(y) � (sinkny�sinhkny)rn � coshkn y�coskn y (8b)

with

rm �
coskm�coshkm

sinkm�sinhkm

(9a)

;

rn �
coskn�coshkn

sinkn�sinhkn
(9b)

where km and kn are now the roots of the transcendental equation:

cos k cosh k � 1 (10)

3. Numerical results

Calculation of natural frequency coefficients has been performed for simply sup-
ported and clamped rectangular plates with different relation of sides b /a � l. The
Poisson’s ratio n is assumed to be equal to 0.30 for the isotropic material. In all
cases the patch constitutive characteristics are specified in the corresponding Tables.

In general the eigenvalues have been evaluated from a (225 × 225) determi-
nantal equation.

Table 1 deals with a study of the convergence of the fundamental frequency coef-
ficient as the number of terms, m, n, is increased in Eq. (1). The case under study
in Table 1 corresponds to the simply supported rectangular plate with orthotropic
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Table 1
Analysis of convergence of the fundamental frequency coefficient �1 � √r h /D w a2 for simply sup-
ported rectangular plates (n � 0.30), with an orthotropic inclusion l � b /a � lp � bp /ap. (D1 /D �
2.856. n2 � 0.757. Dk /D � 0.765. D2 /D � 2.256. rp /r � 2.95). Fig. 1

�1 � √r h /D w1 a2(N � M, x1 � y1 � 0.1)
l � b /a x2 � y2 M � 1 M � 2 M � 3 M � 5 M � 10 M � 15

1 0.3 19.954 19.904 19.869 19.847 19.805 19.792
0.4 19.870 19.628 19.605 19.455 19.381 19.361
0.5 19.607 19.130 19.074 18.865 18.712 18.644
0.6 19.359 18.924 18.510 18.413 18.163 18.107
0.7 19.239 19.060 18.595 18.404 18.182 18.076
0.8 19.268 19.242 19.088 18.798 18.620 18.565
0.9 19.468 19.468 19.439 19.396 19.283 19.223

2/3 0.3 32.320 32.257 32.206 32.175 32.111 32.091
0.4 32.045 31.733 31.696 31.472 31.356 31.324
0.5 31.427 30.802 30.731 30.418 30.181 30.074
0.6 30.848 30.269 29.695 29.549 29.167 29.080
0.7 30.523 30.281 29.621 29.354 29.017 28.854
0.8 30.485 30.449 30.226 29.798 29.529 29.445
0.9 30.741 30.741 30.696 30.632 30.458 30.363

1/2 0.3 49.538 49.464 49.392 49.351 49.259 49.228
0.4 48.948 48.556 48.497 48.178 48.005 47.954
0.5 47.801 47.006 46.920 46.476 46.124 45.961
0.6 46.725 45.998 45.254 45.045 44.489 44.359
0.7 46.079 45.776 44.916 44.567 44.081 43.842
0.8 45.896 45.852 45.560 44.975 44.592 44.469
0.9 46.146 46.146 46.088 45.999 45.748 45.609

inclusions of different dimensions. In these cases the patch does posses the same
aspect ratio as the plate, lp � bp /ap � b /a � l.

In Table 2 a comparison is presented of fundamental frequency values between
those available in the literature, Ercoli et al. (1992), and the ones determined using
the approximate expression Eq. (1) with M � N � 15.

In this case the orthotropic inclusion is centered in the plate (Fig. 2) and its aspect
ratio is the same as the plate, lp � l.

Table 3 depicts the fundamental frequency coefficient (a) for the complete iso-
tropic plate, (b) for the plate with a hole, lp � 2 /3 l, (c) and (d) the plate with two
different types of orthotropic patches, lp � 2/3 l.

Table 4 shows the four lower natural frequency coefficients for simply supported
rectangular plates with an orthotropic rectangular inclusion compared with finite
element values. In this Table the plate’s aspect ratio l and the rectangular inclusion’s
aspect ratio are the same: lp � l. The analytical results are compared with numerical
values obtained by means of a well known finite element code, Algor Professional
Mech./V. E. (1999). The meshes employed were of 50 × 50 elements for the case
of l � 1, 60 × 40 elements for the case of l � 2 /3 and 80 × 40 elements for
l � 1/2; being l � b /a the aspect ratio of the plate.
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Table 2
Comparison of fundamental frequency coefficients of the simply supported rectangular plate (n � 0.30),
with an orthotropic centered inclusion. (l � lp). (D1 /D � 2.856. n2 � 0.757. Dk /D � 0.765.
D2 /D � 2.256. rp /r � 2.95). Fig. 2

�1 � √r h /D w1 a2

b /a � bp /ap x1 � y1 x2 � y2 Ercoli et al. (1992)∗ Present study

1 0.3 0.7 17.45 17.66
0.2 0.8 17.90 18.07
0.1 0.9 19.14 19.22

2/3 0.3 0.7 28.07 28.38
0.2 0.8 28.50 28.77
0.1 0.9 30.23 30.36

1/2 0.3 0.7 42.94 43.42
0.2 0.8 43.23 43.64
0.1 0.9 45.42 45.61

∗ Obtained by means of a powerful finite element code (SAMCEF)

Fig. 2. Centered orthotropic patches in the isotropic simply supported or clamped rectangular panel.

Table 5 depicts a similar comparison for the fully clamped plate, with: lp � l.
Both Tables, 4 and 5, show an adequate agreement between the analytical method
and the finite element method.

4. Conclusions

The results are in good agreement with those available in the literature, (Ercoli
et al., 1992). The maximum difference between them is of the order of 1.1% for the
case (x1 � y1 � 0.3; x2 � y2 � 0.7).
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Table 3
Fundamental frequency coefficients for rectangular plates. �1 � √r h /D w1 a2. Hole or inclusion dimen-
sions: x1 � 0.3 , y1 � 0.1 ; x2 � 0.6 , y2 � 0.3. lp � 2/3l. Material I: D1 /D � 2.856. n2 � 0.757.
Dk /D � 0.765. D2 /D � 2.256. rp /r � 2.95.Material II: D1 /D � 1.164. n2 � 0.451. Dk /D � 0.492.
D2 /D � 0.228. rp /r � 1.75

�1 � √r h /D w1 a2

b /a (a) Solid bp /ap (b) Plate (c) Inclusion (d) Inclusion
Plate with a hole Material I Material II

Simply supported panel 2.0 12.337 4/3 12.098 12.004 12.045
1.5 14.256 1 14.020 13.862 13.897
1.0 19.739 2/3 19.940 19.160 19.092
2/3 32.076 4/9 30.539 31.051 30.533
1/2 49.348 1/3 45.592 47.679 46.272

Clamped panel 2.0 24.578 4/3 24.771 23.539 23.919
1.5 27.005 1 27.082 25.936 26.347
1.0 35.985 2/3 35.329 34.454 34.970
2/3 60.761 4/9 57.502 58.126 58.491
1/2 98.311 1/3 90.507 94.009 94.069

Table 4
The four first natural frequency coefficients for simply supported rectangular plates (n � 0.30), with an
orthotropic inclusion. (l � lp), (D1 /D � 2.856. n2 � 0.757. Dk /D � 0.765. D2 /D � 2.256. rp /r �
2.95). (1) Analytical method; (2) Finite element technique

�i � √r h /D wi a2; i � 1, 2, 3, 4
b /a � bp /ap (x1 � y1 � �1 �2 �3 �4

0.1) x2 � y2

1 0.3 (1) 19.7921 48.0247 49.2518 77.2083
(2) 19.4231 47.5597 49.1775 76.8069

0.6 (1) 18.1071 46.3881 48.6905 79.4222
(2) 17.6742 45.1601 47.7025 75.5841

0.8 (1) 18.5650 44.5278 46.7526 74.8224
(2) 18.1388 43.4016 45.4923 70.9274

2/3 0.3 (1) 32.0909 60.8707 96.9704 110.3120
(2) 31.5731 60.4586 96.5279 109.5351

0.6 (1) 29.0804 60.0053 93.1890 107.8250
(2) 28.4523 58.1825 91.6603 105.8564

0.8 (1) 29.4446 58.3664 87.3141 106.7190
(2) 28.8351 56.3258 85.7706 103.3371

1/2 0.3 (1) 49.2286 77.8527 127.3600 164.9280
(2) 48.6088 77.3192 126.2948 164.2072

0.6 (1) 44.3588 76.3894 124.0480 158.0730
(2) 43.5420 73.8752 121.4296 155.9128

0.8 (1) 44.4690 74.2272 123.4660 147.2980
(2) 43.7080 71.3904 118.5908 145.1816
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Table 5
The four first natural frequency coefficients for clamped rectangular plates, with an orthotropic inclusion,
(l � lp), (D1 /D � 2.856. n2 � 0.757. Dk /D � 0.765. D2 /D � 2.256. rp /r � 2.95). (1) Analytical
method; (2) Finite element technique

�i � √r h /D wi a2; i � 1, 2, 3, 4
b /a � bp /ap (x1 � y1 � �1 �2 �3 �4

0.1) x2 � y2

1 0.3 (1) 36.043 71.081 73.334 104.725
(2) 36.031 70.879 73.329 104.315

0.6 (1) 30.643 67.107 69.145 106.760
(2) 30.196 66.281 68.347 106.073

0.8 (1) 29.441 62.136 65.240 99.181
(2) 29.322 61.528 64.364 97.106

2/3 0.3 (1) 60.715 92.344 144.159 149.202
(2) 60.695 92.226 143.686 149.157

0.6 (1) 50.826 87.903 134.427 144.494
(2) 50.115 86.912 133.033 141.962

0.8 (1) 48.073 82.772 122.832 139.145
(2) 47.841 81.664 121.351 136.625

1/2 0.3 (1) 97.944 125.112 176.314 247.662
(2) 97.901 124.968 176.064 246.922

0.6 (1) 80.596 117.738 170.761 229.292
(2) 79.738 116.444 168.430 226.639

0.8 (1) 75.418 109.135 164.680 208.064
(2) 75.046 107.686 161.972 206.181

The accuracy can be considered satisfactory from a practical engineering point of
view. On the other hand, it is also possible, in principle, to increase the number of
terms in the summation on Eq. (1) to reduce this difference.

One concludes that in the case of clamped edges the agreement between analytical
and finite element results is better than in the case of simply supported edges. Future
work will consider different combinations of boundary conditions and the presence
of concentrated masses.
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