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1. INTRODUCTION

Several analytical solutions have been published on vibrating rectangular plates with free
edge cutouts [1-3]. On the other hand, no solutions are available in the case of plates of
non-uniform thickness.

The present study deals with an approximate solution using a truncated double Fourier
series which satisfies identically the outer boundary conditions and the Rayleigh-Ritz
method. Obviously, the natural boundary conditions at the hole edges are not satisfied but
this is admissible when using the R-R method. The numerical experiments performed show
that good rate of convergence is achieved when going from a (400 x 400) to a (900 x 900)
determinantal equation.

In several instances an independent solution has been obtained using a finite element
algorithm [4] and good agreement with the analytical solution is shown to exist.

When the plate is simply connected the values of fundamental frequency coefficients are
in excellent agreement with the results obtained by Appl and Byers [1, 4].

2. APPROXIMATE ANALYTICAL SOLUTION

For the rectangular plate under study, depicted in Figure 1, the Rayleigh-Ritz variational
approach requires minimization of the functional

JIW']=U[W'] - T[W], (M

where W' is the true displacement amplitude of the plate, U[W'] is its maximum strain
energy and T[W'] is the maximum kinetic energy for the displacement amplitude of the
plate.
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Figure 1. Mechanical system under analysis for different positions of the cutout: (a) x| = a/2, y| = b/2;
(b) xy = a/5, ¥y = b/5 () x1 = a/2, yy = b — by/2; and (d) xi = a — a,/2, y| = b/2.

In the case of rectangular plates with varying thickness its functional can be written (see,
e.g., reference [1]) as

1 O*W' PW\? >*wW' F*w’ O*W'\?
UW]l=-|IDX)\|\ =5+ ] —2(1— — dx'dy
[ ] 2 jj‘ (x ) {( axrz + ay/Z > ( V) |: axzz ay/Z (axlayr> :|} X y

]

and
T[(W'] = % pw? JJh(x’)W’2 dx'dy'". 3)

In equations (2) and (3) the integrals are to be taken over the actual area A of the plate
surface, i.e., not including the cutouts.

In equation (2) above, D(x) is the flexural rigidity of the plate, which in the case under
study takes the form

iy ER) ER(1 4+ ax/p
0 =i T a2

= Do(1 + ax'/a)’. 4)

Taking the lengths of the sides of the rectangular plate to be a and b in the x and y directions
respectively, and introducing

W =W'/a, x = Xx'/a, y=y/b and r=b/a. (5)
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equation (2) can be cast in a non-dimensional form. One gets, for the functional for the
whole system of Figure 1:

5 w.\2  2(1 —
Jha 4 = ﬁ[(l + ax)? {<Wxx + rzyy> - ( 2 i (WiWyy — Wﬁy)}dxdy

Dor r

—Q? jf(l + ax)W2dxdy, (6)
where as usual

Q? = pw?hoa* /Dy, Q = ./phye/Do wa? 7

is the non-dimensional frequency coefficient.

Following previous works [2], the displacement amplitude W (x, y) of the plate is
expressed in an approximated way by means of the following double Fourier series
expression:

M,N

W(x,y) = Y by,sin(mnx)sin(nmy). 8)

mmn=1

Needless to say, the presence of the factor (1 + ax/a)® in equation (6) makes the resulting
analytical expressions particularly lengthy when the cutouts are present. The calculus,
however, is straightforward.

In order to minimize the functional in equation (6), one has to take its partial derivatives
with respect to the coefficients b,,, of expression (8) and equate these derivatives to zero.
That is to say,

0dna
Ob

=0, mn=12,.... 9)

System (9) yields an M N homogeneous linear system of equations in the b,,,’s. A secular
determinant in the natural frequency coefficients of the system results from the
non-triviality condition.

The present study is concerned with the determination of the first four frequency
coefficients, Q2,-,, in the case of isotropic rectangular plates of linear varying thickness for
different locations and sizes of the rectangular holes.

The analytical procedure is not valid in the case of slits [3].

An independent solution has been obtained for several cases using the very efficient
algorithm developed by Bogner et al. [5]. The domain has been subdivided into 800 square
elements of uniform thickness taken equal to the average value of the plate element
thickness. It has been found that, in general, this procedure yields results which
approximate the exact eigenvalue from below.

3. NUMERICAL RESULTS

All calculations were performed for isotropic simply supported rectangular plates of
linearly varying thickness taking the Poisson ratio equal to 0-3. Table 1 illustrates the case
of rectangular plates with linearly varying thickness and no cutouts present. The results are
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TABLE 1

Values of the first frequency coefficient Q, in the case of rectangular plates with linearly
varying thickness and no cutouts. Comparison with results from the open technical literature
and with the finite element method

r=bla o This work [1, 51t FE results

00 — — 10-487

02 11-508 11-508 11-508

4 0-5 12-958 12-957 12-956
0-8 14-:334 14-335 14-329

00 — — 12-337

02 13-548 13-549 13-549

2 0-5 15-301 15-304 15-301
0-8 16995 16993 16993

00 — — 19-739

02 21-692 21-691 21-692

1 0-5 24-556 24-556 24-556
0-8 27-362 27-353 27-362

00 - — 49-348

02 54-160 54-162 54-161

1/2 0-5 61-010 60-980 61011
0-8 67-537 67-499 67-539

"The mean values of upper and lower bounds have been tabulated.

TABLE 2

Values of Q1-Qy, in the case of rectangular plates with different positions and sizes of the equal
aspect ratio cutouts when o. = 0-2 and bja = 3: analytical and finite element results

Cutout Cutout size
pOSitiOn al/a Ql QZ Q3 Q4
01 53-070 86:695 140-21 183-03 (1) Analytical
52:749 86:631 139-74 181-80 (2) Finite
A element
02 50.897 86003 141-85 168-06 (1)
50.623 85737 141-61 163-90 )
01 53-872 86414 140-54 181-33 (1)
B 53-785 86198 140-27 180-65 2)
02 52721 85031 13893 179-69 (1)
51-584 83-574 13696 176:97 )
01 54-068 86-057 140-70 180-23 (1)
C 54-009 86:012 140-60 181-51 )
02 52:556 84-067 138-27 173-19 (1)
52:330 83951 13792 171-88 ?2)
01 54-135 86-662 140-69 183-12 (1)
D 54126 86:592 140-45 183-08 )
02 53772 85-848 140-30 180-71 (1)
53741 85657 13996 180-06 )
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TABLE 3

Values of Q1-Qy, in the case of rectangular plates with different positions and sizes of the equal
aspect ratio cutouts when o = 0-2 and bja =3, 1 and 3: analytical results

Cutout Cutout size

b/a pOSitiOn al/a Ql QZ Q3 Q4
A 01 34-746 67718 107-97 121-32
02 33-854 66-869 102-58 12290
B 01 35058 67-551 107-36 12166
23 02 34439 66-932 106-64 120-89
C 01 35195 67-261 107-66 121-81
02 34-583 65-780 103-73 120-79
D 01 35219 67-696 107-87 121-69
02 35014 67-034 106-43 121-10
A 01 21-474 54-119 54-151 86:064
02 21-124 52:734 52:768 84-105
B 01 21-583 53-843 54-088 86:424
1 02 21-225 53-541 53-748 87-435
C 01 21:679 53913 54-048 86:121
02 21-476 52831 53-039 84-194
01 21-684 53-898 54-112 86:078
D 02 21-532 52949 53116 84-012
A 01 15-447 30-106 48111 53-886
02 15-:054 29-729 45-684 54-595
B 01 15-581 29-993 47920 53999
32 02 15298 29-669 47-654 53734
C 01 15-654 30-079 48-036 54-026
02 15-541 29-754 47-173 53-833
D 01 15-652 29-884 48-022 54-123
02 15-443 29-195 46-354 53720

compared with determinations available in the open literature and with fundamental
eigenvalues obtained by means of the finite element method. The agreement is excellent for
all the situations considered. Tables 2-4 depict values of Q,-Q, for rectangular plates of
linearly varying thickness and for different positions and sizes of the cutouts when the
parameter o in expression (4) is equal to 0-2. In the case of Tables 2 and 4 the frequency
coefficients have also been determined using the finite element method and good agreement
is observed. Tables 5-7 deal with the situation where o = 0-5. The comparison with finite
element results is presented in Tables 5 and 7. Good engineering agreement is observed for
the first four natural frequency coefficients. For all the situations the parameter b/a has been
taken equal to 3, 3, 1, 3 and 2.

For the double Fourier series in equation (8), M = N = 20 have been used, that is to
say a secular determinant of order 400 was generated for all the situations. For these
values of M and N satisfactory convergence is achieved for all situations as has been
checked by incrementing M and N to 30 (i.e., a determinant of order 900). As usual, special
care has been taken to manipulate such large determinants and 80 bit floating point
variables (IEEE—standard temporary reals) have been used in order to obtain reliable
results.

In general, no dynamic stiffening effect has been found.
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TABLE 4

Values of Q1-Qy, in the case of rectangular plates with different positions and sizes of the equal
aspect ratio cutouts when o = 0-2 and b/a = 2: analytical and finite element results

Cutout Cutout size
pOSi‘[iOIl al/a Q] QZ Q3 Q4
01 13-277 21-685 35055 45993 (1) Analytical
13-197 21-671 34936 45:663 (2) Finite
A element
02 12.736 21-515 35474 42-108 (1)
12.668 21-448 35416 41-050 (2)
01 13-473 21-570 35105 45739 (1)
B 13-453 21-511 35025 45632 (2)
02 13-138 21163 34-728 45450 (1)
13-102 21-080 34-577 45258 (2)
01 13-540 21-664 35167 45984 (1)
C 13-537 21:643 35-098 45958 (2)
02 13-432 21-455 35113 44788 (1)
13-421 21-404 35034 44-475 (2)
01 13-533 21499 35195 45841 (1)
D 13-521 21-487 35176 45666 (2)
02 13-230 20963 34-667 43-531 (1)
13-179 20934 34-589 43-165 (2)
TABLE 5

Values of Q1-Qy, in the case of rectangular plates with different positions and sizes of the equal
aspect ratio cutouts when o. = 0-5 and bja = 3: analytical and finite element results

Cutout Cutout size
pOSitiOn al/a Ql QZ Q3 Q4
01 59-845 97-939 158-53 202:65 (1) Analytical
59-500 97-838 15803 201-57  (2) Finite
A element
02 57.500 97-083 160-09 18814 (1)
57.196 96-799 159-72 18388 (2)
01 60-662 97-789 158-78 200-05 (1)
B 60-547 97-547 158-48 19898 (2)
02 59-290 96-377 15690 198-:52 (1)
57928 94-785 154-69 19513 (2)
01 60-882 97-400 158-85 20195 (1)
C 60-816 97-349 15874 201-31  (2)
02 59-154 95182 156:04 193-13 (1)
58904 95:046 155-64 19186 (2)
01 60-987 98-:055 15897 20298 (1)
D 60-982 97-991 15873 20297  (2)
02 60-663 97-203 158-35 202:03 (1)
60:639 97-011 15793 201-81  (2)
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TABLE 6

Values of Q1-Qy, in the case of rectangular plates with different positions and sizes of the equal
aspect ratio cutouts when o = 0-5 and bja =3, 1 and 3: analytical results

Cutout Cutout size
b/a pOSitiOn al/a Ql QZ Q3 Q4
A 01 39-301 76473 120-61 137-11
02 38362 75-477 114-86 138-60
B 01 39-611 76-384 119-78 137-40
23 02 38916 75785 119-16 136-46
C 01 39-760 76:062 120-30 137-50
02 30-049 74-418 11606 13629
D 01 39-803 76-557 120-66 137-46
02 39-621 75-920 119-62 13665
A 01 24-336 60937 61-113 97412
02 23-994 59-351 59-534 95-235
B 01 24-430 60:625 61-088 97-802
1 02 24-029 60-357 60-781 99-187
C 01 24-537 60-800 60-991 97-459
02 24-305 59-445 59988 95-354
01 24-551 60-745 61-173 97-337
D 02 24-435 59-765 60-189 94-854
A 01 17-494 34-040 54267 60-739
02 17-095 33-601 51-543 61-448
B 01 17-613 33-876 54-131 60-784
32 02 17-281 33-498 53937 60-613
C 01 17704 34-014 54263 60-850
02 17-579 33-652 53-286 60-565
D 01 17-708 33787 54-285 60-978
02 17-543 32:976 52:559 60-583

The approach presented here can be extended in a straightforward manner to the case of
rectangular plates of general anisotropy and also to other combinations of boundary
conditions, using the appropriate complete set of eigenfunctions.
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