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A B S T R A C T

Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the
spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However,
their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study,
we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist
Leu⁠31Pro⁠34-NPY, in rats with chronic constriction injury (CCI). CCI and sham-injury rats were implanted with
a permanent intrathecal catheter (at day 7 after injury), and their response to the administration of different
doses (2.5, 5, 7, 10 or 20 μg) of Leu⁠31Pro⁠34-NPY (at a volume of 10 μl) through the implanted catheter, recorded
14 days after injury. Mechanical allodynia was tested by means of the up-and-down method, using von Frey
filaments. Cold allodynia was tested by application of an acetone drop to the affected hindpaw. Intrathecal
Leu⁠31Pro⁠34-NPY induced an increase of mechanical thresholds in rats with CCI, starting at doses of 5 μg and be-
coming stronger with higher doses. Intrathecal Leu⁠31Pro⁠34 also resulted in reductions in the frequency of with-
drawal to cold stimuli, although the effect was somewhat more moderate and mostly observed for doses of 7 μg
and higher. We thus show that spinal activation of the Y1R is able to reduce neuropathic pain due to a chronic
constrictive injury and, together with other studies, support the use of a spinal Y1R agonist as a therapeutic agent
against chronic pain induced by peripheral neuropathy.

1. Introduction

Neuropathic pain induced by peripheral nerve injury is a serious
public health concern [1,2]. Patients undergoing neuropathic pain typi-
cally suffer allodynia (pain induced by normally innocuous stimuli), hy-
peralgesia (an exaggerated response to painful stimuli), and paresthesia
(tingling, tickling, pricking, numbness or burning sensations) [2–4]. In
addition, neuropathic pain patients also manifest progressive alterations
in quality of life, including severe depression, alterations of sleep, eat-
ing and memory, and functional limitations [5–7]. Unfortunately, and
despite the existence of a number of analgesic drugs available against
neuropathic pain, a large percentage remains refractory to treatment
[2,8,9]. Moreover, most of these drugs also cause some type of adverse
effect, limiting their use in high doses or for prolonged periods of time
[8].

Neuropeptide tyrosine (NPY), a 36 aa peptide [10], is broadly dis-
tributed across the central [11] and peripheral nervous systems [12],
and is strongly conserved through evolution, including in humans [13].
NPY acts through 5

different receptors known so far [14–16]. However, types 1 and 2 re-
ceptors (Y1R, Y2R) seem to be the most relevant in the mechanisms of
pain [16–23]. Only very few dorsal root ganglion (DRG) neurons nor-
mally express NPY, but its expression is strongly upregulated by periph-
eral nerve injury. In contrast, both Y1R and Y2R are regularly expressed
in DRG neurons where they exhibit a complementary expression, the
former primarily in small neurons, and the latter in medium-sized and
large ones. Finally, at the spinal cord level, an abundant NPY-expressing
neuropil is normally detected, and produced primarily by local superfi-
cial dorsal horn interneurons, but also contributed by primary afferent
neurons and descending inputs. Y1R and Y2R expression is also detected
in the spinal cord, both in pre- (Y1R, Y2R) and postsynaptic (Y1R) loca-
tions (for a detailed description of the expression and distribution pat-
terns of NPY, Y1R and Y2R in DRGs and the spinal cord, see [16,17] and
references therein).

An increasing number of studies strongly supports the pain-mod-
ulating role of NPY [19,20,24–30], suggesting that along with its as-
sociated receptors, they could be attractive targets for the develop-
ment of drugs against pain. In

Abbreviations: AUC, area under the curve; CCI, chronic constriction injury; CFA, complete freund’s adjuvant; DRG, dorsal root ganglion; NPY, neuropeptide tyrosine; SLNC, single
ligature nerve constriction; SNI, spared nerve injury; VGLUT2, vesicular glutamate transporter type 2; Y1R, NPY receptor type 1; Y2R, NPY receptor type 2.
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fact, the analgesic impact of the spinal activation of Y1- and Y2Rs in rats
has been analyzed using a variety of pain models such as sciatic nerve
axotomy [31] or spared nerve injury (SNI) [22], skin incision [32], and
acute [22,33] or chronic [21,33,34] inflammation. However, no study
has yet established the potential antiallodynic role of NPY or the selec-
tive activation of its associated receptors in rats with neuropathic pain
induced by a compressive injury of the sciatic nerve.

In the present study, we explored the potential analgesic role of
the pharmacological activation of spinal Y1Rs in rats with CCI [35].
Mechanical and thermal (cold) allodynia were used as parameters of
change in rats with CCI treated either with vehicle or the specific Y1R
agonist Leu⁠31, Pro⁠34-NPY.

2. Materials and methods

2.1. Animals

All experiments were performed in 109 male Sprague-Dawley rats
(weight 180–280 g). Animals were maintained in 12 h day/night cycles
(lights on from 7 a.m. to 7 p.m.), with water and food ad libitum. All
experiments were performed according to the recommendations of the
International Association for the Study of Pain (IASP) and the Society
for Neuroscience (SFN) on the use of animals in research, and were ap-
proved by the IACUC of the IRTM (CICUAL-IIMT-12-04).

2.2. Chronic constriction injury (CCI)

CCI was induced in rats previously anaesthesized using Isoflurane
(5% induction, 3.0% maintenance, 0.8 L/min O⁠2 flow rate; Piramal
Healthcare, UK), according to the method by Bennett and Xie [35]. In
brief, the right sciatic nerve was exposed at the midthigh level, and care-
fully dissected from the surrounding tissue. The nerve was ligated us-
ing 4 loose 5.0 silk ligatures, followed by suture in layers of the surgi-
cal wound using Vicryl 5.0 (muscle) and mononylon 5.0 (skin) (Ethicon,
Livingston, Scotland). After a single subcutaneous dose of dexketopro-
fen trometamol (5 mg/kg; Lab Argentia, Bs As, Argentina) and the topi-
cal application of 2% lidocaine hydrochloride gel (AstraZeneca, Buenos
Aires, Argentina) on the surgical wound, the animals were left to re-
cover in a warm environment, before being returned to the animal
house.

2.3. Intrathecal catheterization implantation and agonist administration

A chronic intrathecal (i.t.) catheter (PE 10, o.d. 0.61 mm; In-
tramedic, Clay Adams, Becton Dickinson and Company, New Jersey,
USA) was implanted under anesthesia (as above), according to the
method by Storkson and cols. [36], between the L5 and L6 vertebrae,
with its tip at the lumbar enlargement, in sham rats and rats 7 days af-
ter induction of CCI. The proper location of the tip of the catheter was
tested 24 h before the pharmacological experiments by assessing sen-
sory and motor blockade after i.t. injection of 10 μl of lidocaine (50 mg/
ml; Xylocaína, AstraZeneca, Buenos Aires, Argentina). All animals fail-
ing to show signs of sensory and motor blockade, or that manifested
signs only in the left leg (contralateral to the CCI) were not included in
the study. The pharmacological experiments were conducted on day 14
after CCI.

We used the Y1R agonist Leu⁠31, Pro⁠34-NPY (Tocris Bioscience, Bris-
tol, UK). Leu⁠31, Pro⁠34-NPY, dissolved at a concentration of 1 mg/ml in
0.25% acetic acid and diluted to working concentrations in vehicle (ster-
ile saline), was tested at doses of 2.5, 5, 7, 10 and 20 μg, in all cases to a
final volume of 10 μl. The effect of the agonist was exposed by analysis
of pain-like behavior in sham and injured rats (see below).

2.4. Control experiments

Two types of control experiments were performed: (1) Rats (n = 6)
where the sciatic nerve was exposed but not ligated (sham rats), and
with catheteri

zation and injection of 10 μg of Leu⁠31, Pro⁠34-NPY; (2) Rats (n = 8) with
CCI, and with catheterization and injection of vehicle (0.25% acetic
acid).

2.5. Pain-like behavioral testing

2.5.1. Measurement of mechanical threshold
Mechanical threshold was evaluated using von Frey filaments (1.4,

2, 4, 6, 8, 10, 15 y 26 g; Stoelting, Inc., Wooddale, IL, USA). The medial
aspect of the plantar surface of the ipsilateral hindpaw was mechani-
cally stimulated, following the modified up-down method of Dixon, as
described by Chaplan and cols. [37], to establish the 50% withdrawal
threshold. Mechanical withdrawal threshold was tested previous to the
injection of the agonist (0 min; basal response), and 5, 15, 30, 45, 60,
75 and 90 min after the application of the agonist. A paw withdrawal
reflex obtained with 4.0 g force or less was considered an allodynic re-
sponse.

2.5.2. Assessment of cold allodynia
Cold allodynia was assessed using a modified version of the method

established by Choi and cols. [38]. After acclimatization in individual
cubicles for 15 min, a drop of acetone was gently brought in contact
with the plantar surface of the ipsilateral hindpaw. Applications were
made four times every four minutes, for a total of 108 min from the be-
ginning of the pharmacological experiment. Foot withdrawal was scored
as positive (1) and lack of withdrawal as negative (0). The frequency
of withdrawal was evaluated in 16 min bins (totaling 7 bins), each bin
consisting of the average obtained from 4 consecutive stimulations. The
first 16 min bin represents basal response, previous to agonist injection.

After all behavioral testing, animals were deeply anesthetized using
an overdose of chloral hydrate (1.5 g/kg, intraperitoneal) followed by
cervical dislocation.

2.6. Statistical analysis

All data is expressed as mean ± SEM, and presented as curve graphs
and area under the curve (AUC) bar graphs. Statistical analysis was per-
formed using Two-way repeated measures ANOVA followed by the Bon-
ferroni posthoc test (curve graphs), or One-way ANOVA followed by the
Tukey posthoc test (AUC graphs).

In all cases, levels of significance were established as follows: *
P < 0.05, ** P < 0.01, *** P < 0.001.

3. Results

All rats with CCI showed changes in the position of the injured leg,
including retraction and protection (pain-like behavior). In contrast, in-
jured or sham rats virtually never showed signs of altered pain-like be-
havior in the contralateral paw.

Sham rats treated with 10 μg intrathecal Leu⁠31, Pro⁠34-NPY presented
no significant changes in mechanical thresholds, as tested in the ip-
silateral hindpaw (0 min: 13.41 ± 1.75; 5 min: 15.05 ± 0.12; 15 min:
15.0 ± 0.0; 30 min: 15.0 ± 0.0; 45 min: 15.0 ± 0.0; 60 min:
15.05 ± 0.12; 75 min: 15.0 ± 0.0; 90 min: 15:00 ± 0.0). In contrast, rats
with CCI plus intrathecal injection of vehicle showed clear signs of me-
chanical (Figs. 1 and 3) and cold allodynia (Figs. 2 and 3). Conversely,
as it will be described in more detail in the following sections, intrathe-
cal injection of Leu⁠31, Pro⁠34-NPY in rats with CCI resulted in dose-depen-
dent antiallodynic effects.

3.1. Dose-dependent effects of intrathecal Leu⁠31, Pro⁠34-NPY on mechanical
allodynia in rats with CCI

Intrathecal injection of 2.5 μg Leu⁠31, Pro⁠34-NPY did not significantly
alter the withdrawal threshold of CCI rats as compared to vehi-
cle-treated CCI rats; all rats remained allodynic throughout the 90 min
tested, even though a tendency towards increased withdrawal thresh-
old could be appreciated (Fig. 1A).
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Fig. 1. Ipsilateral hindpaw mechanical withdrawal thresholds of CCI rats treated with 2.5 (A), 5 (B), 7 (C), 10 (D) or 20 μg (E) of Leu⁠31Pro⁠34-NPY (for clarity of the statistical description,
A–E compare each dose of Leu⁠31Pro⁠34-NPY against the same vehicle-treated CCI rat control group; F shows the comparison among doses). Values correspond to the mean ± SEM and were
analyzed by applying Two-Way repeated measures ANOVA, followed by Bonferronís Posthoc Test. P values are as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001. In F, the different
tags are coded as follows: ⁠†2.5 vs. 7; ⁠&2.5 vs 10; ⁠#2.5 vs. 20; ⁠§5 vs. 7; ⁠δ5 vs. 10; ⁠α5 vs. 20; ⁠£7 vs. 20.

In contrast, administration of 5 μg or more of Leu⁠31, Pro⁠34-NPY resulted
in statistically significant increases across time in withdrawal thresh-
olds in CCI rats, as compared to vehicle-treated injured rats (Two-way
repeated measures ANOVA, F = 12.35, P < 0.001, for treatment as
source of variation; F = 19.78, P < 0.001 for time as source of varia-
tion; Fig. 1B–E). The onset of antiallodynic effect, shown by statistically
significant differences between Leu⁠31, Pro⁠34-NPY- and vehicle-treated
CCI rats, begun at 15 min (5, 7, 10 and 20 μg) after injection of the ag-
onist. Peak antiallodynic effects were observed between 15 and 45 min
(5 μg), 15 and 60 min (7, 10 μg), and 30 and 90 min (20 μg) after
intrathecal application of Leu⁠31, Pro⁠34-NPY (Fig. 1B–E). In addition,
while rats treated with 5, 7 and 10 μg of Leu⁠31, Pro⁠34-NPY showed
a progressive return to basal allodynic levels at 90 min, rats treated
with 20 μg Leu⁠31, Pro⁠34-NPY maintained a significantly increased me

chanical withdrawal threshold, even up to 90 min after intrathecal ad-
ministration of the agonist (Bonferronís posthoc test, P < 0.001; Fig.
1E). Finally, statistically significant differences were found between
doses at different time-points after injection of Leu⁠31, Pro⁠34-NPY, more
often between 2.5 or 5 μg and 10 and 20 μg (Fig. 1F).

Area under the curve analysis of the mechanical thresholds after
each dose confirmed the antiallodynic effect of Leu⁠31, Pro⁠34-NPY at
doses of 5 μg and higher in CCI rats, as compared to vehicle-treated in-
jured rats (One-way ANOVA, P < 0.001). It also showed presence of a
stronger antiallodynic effect for Leu⁠31, Pro⁠34-NPY at 7, 10 and 20 μg, as
compared to 2.5 μg (Tukey’s post hoc test, P < 0.05 vs. 7 μg; P < 0.01
vs. 10 μg; P < 0.001 vs. 20 μg) or 5 μg (Tukey’s post hoc test, P < 0.01
vs. 20 μg) (Fig. 3A).
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Fig. 2. Ipsilateral hindpaw withdrawal frequency to cold stimulation of CCI rats treated with 2.5 (A), 5 (B), 7 (C), 10 (D) or 20 μg (E) of Leu⁠31Pro⁠34-NPY (for clarity of the statistical de-
scription, A-E compare each dose of Leu⁠31Pro⁠34-NPY against the same vehicle-treated CCI rat control group; F shows the comparison among doses). Values correspond to the mean ± SEM
and were analyzed by applying Two-Way repeated measures ANOVA, followed by Bonferronís Posthoc Test. P values are as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001. In F, the
different tags are coded as follows: ⁠¤2.5 vs. 5; ⁠†2.5 vs. 7; ⁠&2.5 vs 10; ⁠#2.5 vs. 20; ⁠£7 vs. 20; ⁠$10 vs. 20.

3.2. Dose-dependent effects of intrathecal Leu⁠31, Pro⁠34-NPY on cold
allodynia in rats with CCI

Intrathecal injection of 2.5 or 5 μg Leu⁠31, Pro⁠34-NPY did not induce
significant changes in the withdrawal frequency to cold stimuli in rats
with CCI (Fig. 2A–B); animals presented with cold allodynia through-
out the 108 min evaluated, even though a tendency towards a lesser
withdrawal frequency could be observed for rats treated with 5 μg of
the Y1R agonist (Fig. 2B). In contrast, statistically significant reductions
across time in cold allodynia were observed in CCI rats injected with
7, 10 or 20 μg of Leu⁠31, Pro⁠34-NPY, as compared to vehicle-treated in-
jured rats (Two-way repeated measures ANOVA, F = 5.104, P < 0.001,
for treatment as source of variation; F = 10.52, P < 0.001 for time as
a source of variation; Fig. 2C–E). The onset of antiallodynic effect be-
gun at bins 16–32 (10 μg; Fig. 2D) and 32–48 min (7 and 20 μg; Fig.
2C, E) after intrathecal application of the agonist. Peak antiallodynic ef-
fects were of short duration for all three doses (Fig. 2C–E). However,
while rats treated with 10 μg showed a return to basal allodynic levels

90 min after Leu⁠31, Pro⁠34-NPY administration, rats treated with 20 μg
showed a slower return to basal levels (Fig. 2D, E). Finally, statis-
tically significant differences were found between doses at different
time-points after injection of Leu⁠31, Pro⁠34-NPY, more often between
2.5 μg and the other doses (Fig. 2F).

Area under the curve analysis of the withdrawal frequency to cold
stimulation after each dose confirmed the antiallodynic effect of Leu⁠31,
Pro⁠34-NPY at doses of 10 μg and higher in CCI rats, as compared to ve-
hicle-treated injured rats (One-way ANOVA, P < 0.001). It also showed
presence of a stronger antiallodynic effect for Leu⁠31, Pro⁠34-NPY at 7, 10
and 20 μg, as compared to 2.5 μg (Tukey’s post hoc test, P < 0.05 vs.
7 μg; P < 0.01 vs. 10 or 20 μg) (Fig. 3B).

4. Discussion

In the present study, we show that the intrathecal administration
of a selective Y1R agonist reduces mechanical and cold allodynia in
a dose-dependent manner in rats with chronic constriction injury of
the sciatic nerve. We
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Fig. 3. Area under the curve analysis of ipsilateral mechanical withdrawal threshold (A) or withdrawal frequency to cold stimulation (B) of CCI rats treated with 2.5, 5, 7, 10 or 20 μg
and compared with vehicle-treated injured rats. Values correspond to the mean ± SEM and were analyzed by applying One-Way ANOVA, followed by Tukey’s Posthoc Test. P values are
as follows: * p < 0.05, ** p < 0.01 and *** p < 0.001.

thus confirm previous observations in rats with other types of peripheral
neuropathy or inflammation (see below), supporting the potential value
of spinal Y1R activation for the induction of analgesia.

4.1. Methodological considerations

In the present study, we used the Y1R agonist Leu⁠31Pro⁠34, report-
edly a high affinity, selective agonist (relative to the Y2R), but also
presenting affin
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ity for the Y4R and Y5Rs (see [39]). This could imply that the effects of
the Y1R agonist presented here may reflect actions other than through
the Y1R, especially when testing the highest doses. However, to this
date, there are no reports of the presence of Y4R and Y5R in the ro-
dent spinal cord. Moreover, Y4 and Y5Rs are restricted to particular
upper brain regions (see [40]). This would only leave potential for ac-
tions through the Y2R. However, early in vitro studies have shown that
Leu⁠31Pro⁠34 has a high selectivity for the Y1R over Y2R in binding assays
[41,42], and that it is devoid of agonistic potency at Y2Rs [42]. Nev-
ertheless, future in vivo experiments, with co-application of Leu⁠31Pro⁠34

and a selective Y1R antagonist, will be needed to confirm the assump-
tion of Y1R-only antiallodynic effects reported here and elsewhere. And,
if high doses of Leu⁠31Pro⁠34 do have non-specific behavioral effects, it re-
mains to be established.

Another issue to be addressed is the use of different concentrations
of Leu⁠31Pro⁠34. In a previous study by Xu and cols. [31], the effects of
Leu⁠31Pro⁠34 on the flexor reflex in decerebrated normal and axotomized
rats was reported. The authors found that low doses of Leu⁠31Pro⁠34 re-
sult in facilitation of the reflex, whereas high doses induce its depression
(and hence suggesting its analgesic potential). In our present behavioral
study, we did not detect such dual effects; Leu⁠31Pro⁠34 application virtu-
ally always induced a dose-dependent decrease in mechanical and cold
allodynia.

Finally, it should be mentioned that in the spinal cord of rat, axo-
tomy or strong SLNC of the sciatic nerve induces a moderate decrease in
the immunohistochemical expression of the Y1R in lamina II [43]. Two
possible causes have been advanced: (1) a decrease in central primary
afferents (see [44] and references therein), due to a concurrent decrease
after peripheral nerve injury in the expression of Y1R, normally pre-
sent in DRG neurons [43]; and (2) a decrease of Y1R expression in local
spinal cord neurons ([43]); none of these hypotheses has yet been fully
confirmed. Medium SLNC, comparable to the CCI model used here, has
also been shown to induce moderate Y1R expression decrease in DRGs,
but without altering its spinal expression [43]. Altogether, what would
the extent of a potential decrease in pre- and postsynaptic Y1R expres-
sion after CCI is currently unknown. However, based on the data pre-
sented here, it appears as if it would not be enough to alter the capac-
ity of an Y1R agonist to reduce the allodynic responses observed in CCI
rats.

4.2. Spinal activation of the Y1R reduces mechanical and cold allodynia in
rats with CCI

The observed reductions reported here in mechanical and cold al-
lodynia in rats with CCI after intrathecal application of a Y1R agonist
are in line with previous studies, where it was observed that intrathe-
cal application of NPY [22,34,45] or Leu⁠31, Pro⁠34-NPY [31] in intact
rats [31,34,45], rats with sciatic nerve axotomy [31,45] or rats with SNI
[22] results in depression of the flexor reflex [31,45], increases in the
nociceptive threshold in the hot plate and paw pressure tests [34], and
reductions in mechanical and cold allodynia, and mechanical hyperal-
gesia [22].

Our results also correlate with studies using a different approach to
show the effects of selective NPY-receptor activation, namely the co-ad-
ministration of NPY and Y1R antagonists. Thus, co-application of NPY
and an Y1R antagonist attenuates the analgesic effect of the peptide in
rats with SNI [22] or plantar incision [32], as shown by increases in
mechanical allodynia [22] and thermal hyperalgesia [32] after treat-
ment. Similarly, it was observed that the analgesic effect of intrathecal
NPY in rats with chronic [21] or acute [22,33] hindpaw inflammation
induced by intraplantar injection of carrageenan-, CFA- [21] or forma-
lin [22,33] is blocked by co-administration of a Y1R selective antago-
nist; animals showed an increase in thermal hypersensitivity [21] or in-
creased aversive responses [22,33]. More recently, the analgesic effect
of Y1R activation during chronic inflammation has been confirmed in
rats with CFA-induced inflammation, where the intrathecal administra-
tion of Leu⁠31, Pro⁠34-NPY resulted in reduced thermal hyperalgesia [20].

More indirect evidence comes from studies in rats where death of
Y1R-expressing spinal neurons was induced by receptor-mediated in-
ternalization of a conjugate consisting of the toxin saporin and NPY
[29,30]. Since at least in

the rat the Y1R seems to be expressed in large quantities in spinal neu-
rons [46], while the Y2R protein seems to be absent (see [17] but also
next section for recent data from RT-PCR studies)), neuronal death pu-
tatively occurs only for Y1R-expressing neurons. In normal rats thus
treated, the deletion of Y1R-expressing spinal neurons resulted in reduc-
tions in the nocifensive responses to heat and chemical stimuli of the
skin [29,30]. Moreover, it also resulted in reduced thermal hyperalge-
sia in rats with CFA-induced hindpaw inflammation [29]. Altogether,
these studies highlight the preponderant role of Y1R-expressing spinal
neurons in pain modulation, and further support the value of Y1R acti-
vation for antinociception.

4.3. Possible mechanisms of antiallodynic actions of Y1R activation

A crucial aspect to take into consideration to understand the antial-
lodynic actions of spinal Y1R activation is where exactly this agonist
is acting. For a number of years, the exact localization of the Y1R and
Y2Rs in DRGs and the spinal cord was the subject of intense debate.
On one hand, Y1R-like-immunoreactivity seemed to be exclusively as-
sociated to the cell body of a subpopulation of small DRG neurons (no
evidence for its axonal transport was found at that time) [47–49], and
in a number of interneurons localized in lamina II of the dorsal horn of
the spinal cord [43,48,50], supporting its postsynaptic localization. On
the other hand, the Y2R appeared to be not only expressed in a subpop-
ulation of small and medium-sized DRG neurons, but also to undergo
axonal transport, meaning that it could be present at spinal presynaptic
sites [49,51]. Today, it is known that both Y1R and Y2Rs expressed in
DRG neurons undergo axonal transportation and exhibit presynaptic lo-
calization in the central endings of primary afferents [52,53], and that
the Y1R is also postsynaptic at the spinal cord level, expressed in a wide
variety of neuronal types, as shown in rat [46] and mouse [25]. So far,
presence of the Y2R in spinal cord neurons has been elusive (see [17]),
although we have recently reported presence of Y2R mRNA in rat dorsal
horn by means of RT-PCR analysis [54]. Therefore, when addressing the
effects of NPY and its analogues, the antiallodynic effects could depend
on mechanisms involving both pre- and postsynaptic locations.

From a presynaptic point of view, it has been proposed that Y1R ac-
tivation would have a role in the release of excitatory neurotransmitters
[55]. This has been recently confirmed in rats with chronic hindpaw
inflammation [20], where it was observed that the spinal NPY-related
analgesic effect depends on the Y1R-dependent inhibition of substance
P release from primary afferent nerve endings. Moreover, the authors
demonstrated in mouse that the inflammatory condition resulted in in-
creased affinity of Y1R G-protein coupling [20]. Altogether, the antial-
lodynic effect of intrathecal Leu⁠31, Pro⁠34-NPY observed here in CCI rats
may at least in part be dependent on the activation of presynaptic Y1Rs,
leading to reductions in excitatory neurotransmitters release, which in
turn would result in reduced excitability of spinal interneurons and pro-
jection neurons (see [17,18]). If CCI or other neuropathic conditions are
also capable of altering Y1R G-protein coupling, it remains to be estab-
lished.

In addition to its presynaptic action, intrathecal Leu⁠31, Pro⁠34-NPY
most certainly acts upon postsynaptic Y1Rs. Between 70–80% of all neu-
rons present in laminae I–III are excitatory interneurons [56–58]. These
interneurons are considered glutamatergic, based on their content of
the vesicular glutamatergic transporter type 2 (VGLUT2) [59,60], and
they also express the neuropeptide somatostatin [48]. Conversely, sev-
eral Y1R-expressing interneurons in laminae I–II colocalize with somato-
statin [48], and 97.5% of axonal nerve endings produced by somato-
statinergic interneurons in laminae I–II also coexpress VGLUT2 [61],
supporting their excitatory nature. Finally, it has been demonstrated
that the application of NPY onto rat spinal cord slices selectively inhibits
the majority of laminae I–II excitatory interneurons [55,62,63] through
induction of an Y1R-dependent hyperpolarizing potassium conductance
[62,63].

The Y1R-dependent antiallodynic effect could also be based, even
if seemingly contradictory, on the inhibition of inhibitory interneu-
rons (see [18]). It has been demonstrated in the rat that peripheral
neuropathy induces alter
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ations in the anionic homeostasis of lamina I interneurons due to a de-
crease in the expression of the potassium-chloride transporter (KCC2).
This has been shown to lead to changes in the transmembrane anionic
gradient, where activation of GABAergic receptors (typically expressed
in inhibitory interneurons [64,65]) would result in excitatory instead
of inhibitory effects [66]. As a consequence, the normally inhibitory
GABAergic neurotransmission would become excitatory during neuro-
pathic pain conditions. While co-expression of NPY and GABA has been
demonstrated in inhibitory spinal interneurons [67,68], the presence of
NPY receptors remains to be demonstrated. However, the potential ex-
pression and activation of Y1R in GABAergic inhibitory interneurons
could, during neuropathic conditions, act blocking the above described
aberrant GABAergic-dependent excitation.

Finally, it could be speculated that agonists targeting the Y1R could
also act upon projection neurons. In fact, a number of projection neu-
rons expressing the Y1R have been identified in laminae I, IV–VI and
X [46]. Moreover, it is possible that these neurons also expressed the
receptor for substance P, NK1 [69]. If the already described postsynap-
tic actions of NPY onto spinal laminae I–II Y1R-expressing interneurons
[55,62,63] also apply to nociceptive projection neurons remains to be
established. However, if true, it could imply that Y1R activation in a
number of spinal projection neurons expressing this receptor was capa-
ble of directly modulating the transmission of pain-related information
to the CNS during CCI.

In conclusion, and in agreement with previous studies using models
of partial or complete transection of peripheral nerves, skin injury and
acute and chronic inflammation, we here show that spinal pharmaco-
logical modulation of the Y1R significantly reduces mechanical and cold
allodynia in rats subjected to constrictive injury of the sciatic nerve. It
is likely that such modulation took place both at pre- and postsynaptic
sites, inhibiting the transmission of pain signals to upper levels of the
nervous system, although the exact mechanisms require further eluci-
dation. Nevertheless, together with other studies, our data supports the
concept of using spinal Y1R agonists as a therapeutic strategy against
chronic pain induced by peripheral neuropathy.
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