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Abstract

In this study, we evaluated the immunogenicity and efficacy of mucosal delivery of a recombinant modified
vaccinia Ankara virus (MVA) expressing the secreted version of bovine herpesvirus type 1 (BoHV-1) glyco-
protein D (MVA-gDs) without addition of adjuvant in two animal models. First, we demonstrated the capability
of MVA-gDs of inducing both local and systemic anti-gD humoral immune response after intranasal immu-
nization of mice. Then, we confirmed that two doses of MVA-gDs administered intranasally to rabbits induced
systemic anti-gD antibodies and conferred protection against BoHV-1 challenge. Our results show the potential
of using MVA as a vector for the rational design of veterinary vaccines capable of inducing specific and
protective immune responses both at local and systemic level.
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Introduction

Bovine herpesvirus type 1 (BoHV-1) is a pathogen of
cattle that causes respiratory and genital infections and a

major etiological agent of bovine respiratory disease (BRD)
complex. BoHV-1 also establishes latency and immune sup-
pression in infected animals (25, 45) and is responsible for
economic losses due to BRD treatment, weight loss, poor re-
productive performance, and abortions.

In countries with a high prevalence of this infection,
vaccination is crucial to control the disease. Today, vacci-
nation against BoHV-1 infection is performed with live at-
tenuated or inactivated vaccines. The live attenuated
vaccines are considered more effective, but can revert to a
virulent strain and can also induce latency. In contrast, the
inactivated vaccines are safe, but poorly immunogenic, and
usually require repeated applications and coadministration
of adjuvants. Furthermore, due to commercial restrictions of
products derived from seropositive animals, the availability

of vaccines that allow differentiation between infected and
vaccinated animals has gained importance (36). Thus, the
development of vaccines based on nonreplicative viral
vectors could become a feasible alternative.

Modified vaccinia Ankara virus (MVA) has been exten-
sively used as vector for producing human and veterinary
vaccines because of its safety profile and its capability to
induce durable and protective (humoral and cellular) im-
mune responses. In addition, MVA vaccines are stable, can
be lyophilized, and are suitable through different routes of
immunization (9,26). Several researchers have evaluated
MVA in clinical trials for HIV, tuberculosis, and malaria
(16,19,22,44) and also as a potential veterinary vaccine
against rabies, blue tongue, influenza, bovine tuberculosis,
and bovine respiratory syncytial virus (1,4,5,6,47,48).

The local immunity at mucosal surfaces is known to be
essential to control viral replication and spread. Indeed,
secretory immunoglobulin (Ig) A is the predominant Ig
isotype in mucosa and is a crucial effector by neutralizing
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pathogens present in mucosal surfaces (34,35). The upper
respiratory tract is the main route of cattle infection by
BoHV-1 and Israel et al. (23), in fact, demonstrated that
antibodies in the respiratory mucosa are capable of in-
hibiting BoHV-1 replication.

The main target of the adaptive immune response against
BoHV-1 and virus-infected cells is viral envelope glyco-
proteins B, C, and D (gB, gC, and gD). In particular, gD is
essential for attachment and penetration of the virus into
cells (25) and is also considered as an independent neu-
tralization antigen (12,29).

Recently, several authors developed viral vectored vac-
cines expressing BoHV-1 gD and reported the induction of
mucosal IgA after intranasal (IN) immunization. However,
these vaccines induce poor levels of protection against
BoHV-1 infection (27,28,37,50). Previous research has
documented that IN inoculation of MVA elicits mucosal and
systemic immune responses without generation of inflam-
matory reactions in the central nervous system or in the
upper and lower airways (3,8,13,17,21,38).

In a previous study, we demonstrated that a recombinant
MVA expressing a secreted version of gD from BoHV-1
(MVA-gDs) induces a potent and durable systemic anti-gD
humoral response in rabbits when administered by the intra-
muscular route. In addition, this specific response confers
protection against IN challenge with infectious BoHV-1 (15).
Furthermore, IN vaccination with MVA-gDs plus cholera toxin
(CT) as adjuvant induced a local immune response measured as
anti-gD IgA antibodies in nasal and bronchopulmonary washes
in a mouse model (15). Although CT is a strong mucosal ad-
juvant commonly used in research experiments, its toxicity has
precluded its use for human trials and no information is
available concerning veterinary vaccines with this toxin.

In this context, the aim of this work was to evaluate
immunogenicity and efficacy of MVA-gDs administered by
the mucosal delivery route without adjuvants.

Materials and Methods

Cells and viral stocks

Primary cultures of chicken embryo fibroblasts (CEFs) and
Madin-Darby bovine kidney (MDBK) cells (American Type
Culture Collection) were used as described before (15).

Viral stocks of MVA (wild type) and recombinant MVA-
gDs (15) were propagated in CEFs, purified by centrifuga-
tion through a sucrose cushion and titrated as described
elsewhere (14). The BoHV-1 strain Los Angeles (LA) was
grown using MDBK cells at a low multiplicity of infection
(10). BoHV-1 inactivation was performed with formalde-
hyde 0.2% for 24 h at 37�C.

Animal experiments and sampling procedure

All experiments were performed following internationally
recognized guidelines with the approval of the Institutional
Committee for Care and Use of Experimental Animals,
CICUAE-CICVyA, INTA, Argentina. Mice and rabbits
were housed in animal facilities at the Instituto de Bio-
tecnologia, INTA.

IN immunization of mice. Specific pathogen free female
BALB/c mice, which were 8–10 weeks old, were purchased

from the Animal Services Laboratory, Faculty of Veterinary
Medicine, University of La Plata. After 1 week of adaptation,
the animals were slightly anesthetized with Isoflurane (2-
chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane) and vacci-
nated twice (day 0 and 21) by the IN route. Each dose consisted
of 1 · 107 Plaque forming units (PFU) of purified MVA (n = 6)
or MVA-gDs (n = 6) viruses in 50 lL TMN buffer (0.01 M
Tris-HCl pH 7.5; 1.5 mM MgCl2; and 10 mM NaCl). Fourteen
days after receiving the last immunization, mice were eu-
thanized and bronchopulmonary washes were taken as de-
scribed previously and kept at -20�C until used for enzyme
linked immunosorbent assay (ELISA) tests (15). Serum
samples were taken at days 1, 20, and 34 postvaccination and
assayed for the presence of anti-gD antibodies by ELISA.
Two independent experiments were performed.

Rabbit vaccination and challenge assay. Three-month-
old New Zealand female rabbits were purchased from a
breeding farm located in La Plata, Buenos Aires, Argentina.
Three groups with four animals each were locally anesthe-
tized with 2% xylocaine in spray and then immunized with
MVA, MVA-gDs, or TMN buffer twice by the IN route. Each
dose of viral vaccines contained 2 · 107 PFU of purified virus
and was administered separately by 14 days. All groups were
intranasally challenged with 1.2 · 107 TCID50 of BoHV-1 LA
at 14 days post booster (dpb) using a protocol described
previously (46). This method was selected because it mimics
the natural route of BoHV-1 infection. Seventeen days post
challenge (pch), the animals were euthanized and trigeminal
ganglia were obtained to evaluate latency.

Serum samples were taken from all groups at different
time points, and the presence of anti-gD antibodies was
determined by ELISA. After the BoHV-1 challenge, nasal
swabs were collected daily, processed individually, and in-
oculated in 10-fold serial dilutions over MDBK cells. Viral
titers were calculated by the Reed and Muench method (40)
and expressed as log TCID50/mL. Three blind passages in
MDBK monolayers were performed with negative samples
for BoHV-1 isolation.

Antibody measurement by ELISA

The presence of anti-gD antibodies in samples from vacci-
nated mice and rabbits was determined using a modified ELISA
described previously (51). For the detection of serum antibodies,
anti-mouse IgG + IgM peroxidase-conjugated (Axell) or anti-
rabbit IgG peroxidase-conjugated (Sigma-Aldrich) antibodies
were used. For the determination of IgA antibodies in nasal
and bronchopulmonary washes from mice, anti-mouse IgA
peroxidase-conjugated (Southern Biotechnology) antibody was
used. The reaction was developed by adding 0.4 mg/mL 2-20-
azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ICN Bio-
chemicals) and 0.0015% H2O2 in 50 mM citric acid buffer (pH 5)
and then reading at 405 nm in a Multiskan spectrophotometer
(Labsystems). The optical density (OD) plotted corresponds to
the mean OD value per group minus the background OD.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
version 5.00 for Windows. For mice experiments, we used
Mann–Whitney U test (two tailed), Friedman test, and
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Dunn’s multiple comparison test. One-way analysis of
variance (ANOVA, repeat measures) with Tukey’s Multiple
Comparison Test and two-way ANOVA with Bonferroni
posttest were carried out with rabbit data. p-Values <0.05
were considered significant.

Results

MVA-gDs administered intranasally induces both
mucosal and systemic humoral response in mice

To evaluate the capability of MVA-based viral vector to
induce local immune response without adding an adjuvant,
we vaccinated mice with MVA or MVA-gDs by the IN
route as described in the ‘‘Materials and Methods’’ section.
Fourteen days after the booster, we assessed IgA antibodies
(humoral mucosal response) in nasal and bronchopulmonary
washes. Two doses of MVA-gDs administered by the IN
route induced significantly higher levels of specific anti-gD
IgA in respiratory mucosa than two doses of MVA (Fig. 1A,
B). In addition, the IN immunization of two doses of MVA-
gDs elicited a strong anti-gD systemic response (Fig. 1C).

IN administration of MVA-gDs induces partial
protection against BoHV-1 in rabbits

The rabbit is a useful and well-established animal model
to study both pathogenesis of BoHV-1 and the efficacy of
experimental vaccines against this virus (15,41,43,46). After

demonstrating that IN administration of MVA-gDs is ca-
pable of inducing specific mucosal and systemic immune
responses in mice, we decided to evaluate the efficacy of the
recombinant virus to protect rabbits against a BoHV-1
challenge. As described in ‘‘Materials and Methods’’ sec-
tion, rabbits were IN vaccinated twice with MVA or MVA-
gDs, and 14 dpb all the animals were IN inoculated with
BoHV-1.

In the systemic anti-gD IgG response analysis, no sig-
nificant differences were detected between wild type and
recombinant MVA-based vaccines. However, the anti-gD
antibodies in the MVA-gDs vaccinated group tended to rise
after the booster (Fig. 2A) and a quick response was evident
17 days pch. These results demonstrate that vaccination was
effective in priming the anti-gD response.

We finally assessed BoHV-1 excretion after challenge.
Both TMN (negative control) and MVA vaccinated animals
shed virus for 6 or 7 days (from day 1 to 7 pch) and reached
the peak of excretion on day 2 pch with mean levels of 2.5
and 2.3 log TCID50/mL, respectively (Fig. 2B). No signifi-
cant differences were detected between groups throughout
the evaluated period. In contrast, the MVA-gDs vaccinated
group presented a shorter period of shedding, with a maxi-
mum of 3 days, than the TMN and MVA groups. In addi-
tion, the peak of excretion was delayed 1 day (3 pch) and
showed reduced titers (mean value of 1.4 log TCID50/mL).
The MVA and MVA-gDs means were significantly different
( p < 0.05).

FIG. 1. Mucosal and systemic anti-gD humoral responses induced by intranasal administration of MVA-gDs in mice. The
Balb/C mice were immunized with two doses (days 0 and 21) of MVA or MVA-gDs. Nasal (A) and bronchopulmonary (B)
washes were evaluated undiluted at 14 dpb. The serum samples (C) were diluted 1:25 and tested 20 days pv and 14 dpb. The
samples were evaluated by ELISA. Each bar represents the mean value of the measured OD for each group. Significant
differences: *p < 0.05, **p < 0.01. MVA-gDs, modified vaccinia Ankara virus expressing glycoprotein D; dpb, days post
booster; pv, post vaccination; ELISA, enzyme linked immunosorbent assay; OD, optical density.
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Considering these results and taking into account that
efficacy of vaccines against BoHV-1 is evaluated in terms of
reduction of virus shedding after challenge and also by the
duration of virus excretion (36), our data suggest that the
MVA-gDs vaccinated group was partially protected against
challenge.

Discussion

BoHV-1 infection is distributed worldwide, and the main
strategy of control used in countries with a high prevalence of
infection is based on vaccination. The licensed vaccines that
are currently used to tackle this infection are live attenuated
or inactivated; however, they present several disadvantages
related to safety and efficacy, respectively. To overcome
these problems, vaccine research is focused on the develop-
ment of rationally designed vaccines based on recombinant
vectors expressing immunogenic antigens also allowing the
differentiation between vaccinated and infected animals.

MVA has several properties that make it an excellent can-
didate to develop human and veterinary vaccines (9). Indeed,
MVA has an excellent safety profile because it is unable to
productively replicate in mammals. In addition, it is geneti-
cally and physically stable and can be produced at large scale.
Finally, MVA induces both humoral and cellular immune re-
sponses even without the coadministration of adjuvants.

Recovery from BoHV-1 relies mainly on cell-mediated
immunity while humoral immunity prevents and controls
reinfection (2). The antibody effector functions include virus
neutralization, complement fixation, and antibody depen-
dent cell-mediated cytotoxicity. BoHV-1 infects the host
through the mucosal surfaces and protection from reinfec-
tion is correlated to levels of mucosal antibodies (23,37,52).

Several studies have reported that MVA-based vaccines
administered intranasally are effective to induce a protective
response against respiratory virus such as influenza (3),
parainfluenza (13), and respiratory syncytial virus (49).
However, our previous work (15) is the only one reporting
the evaluation of a recombinant MVA as vaccine candidate
against BoHV-1. This previous work reports a recombinant
MVA expressing a secreted version of BoHV-1 gD, which
was immunogenic (local and systemic) in mice by IN ad-
ministration with CT and protective against BoHV-1 in-
fection in rabbits vaccinated by the parenteral route.

In the present study, we assessed the immunogenicity and
efficacy of the recombinant candidate vaccine MVA-gDs after
IN inoculation without the coadministration of adjuvants in
two animal models. We observed that the administration of
two doses of MVA-gDs elicited similar magnitudes of anti-gD
specific antibodies in serum and respiratory mucosa of vacci-
nated mice than MVA-gDs coadministered with CT (15). This
result may be due to the immunostimulatory capacity of MVA
(33). In addition, these results support previous studies in
which a systemic immune response could be induced after IN
immunization with MVA-based vaccines (17,26).

Even though antivector immunity could affect re-
vaccination response with the same vectored vaccine, Dra-
per et al. (11) reported that MVA antibody induction using
homologous or heterologous immunization schemes is
clearly antigen dependent. Our results demonstrated that a
homologous prime-boost immunization with MVA-gDs in-
creased (local and systemic) specific humoral immune re-
sponse against BoHV-1 gD protein, thus indicating that
antivector immunity did not interfere with anti-gD specific
immune response (15).

Indeed, Gherardi et al. (17) observed that two doses of
MVA-env administered intranasally induced higher levels
of anti-gp160 serum antibodies than single immunization.
Meseda et al. (31) and Breathnach et al. (5) also reported
high titers of anti HSV-2 gD and anti-equine influenza virus
antibodies in serum and nasal secretions in MVA homolo-
gous prime-boost immunization schemes. However, other
authors documented better humoral responses with heter-
ologous vaccination schemes using protein antigens, DNA
vaccines, or adenovirus vectors as prime and recombinant
MVA as boost (18,24,42).

Considering the immunogenicity induced by our immu-
nogen after IN administration in mice, we decided to assess
its efficacy in a BoHV-1 challenge test. Rabbits are an ap-
propriate model since it mimics the pathogenesis of BoHV-1
infection in cattle. Indeed, after IN inoculation, rabbits shed
virus for *5 to 7 days, develop typical respiratory clinical
signs, and BoHV-1 is able to establish latency in trigeminal
ganglia (7,30,32,46). Thus, to test MVA-gDs efficacy, we
immunized rabbits intranasally twice and then challenged
them with infectious BoHV-1 14 days post revaccination.

In agreement with our results, several studies reported
that control animals show periods of viral excretion of 5–

FIG. 2. Evaluation of immunogenicity and efficacy of
MVA-gDs in the rabbit model. (A) Serum anti-gD anti-
bodies were tested by ELISA. The curves represent the
average values of the measured OD at 405 nm over time.
Each sample was diluted 1/15 and assayed in triplicate.
***p < 0.001. (B) Mean nasal virus excretion after BoHV-1
challenge. Titers are expressed as log TCID50/mL of nasal
secretions. BoHV-1, bovine herpesvirus type 1.
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7 days after BoHV-1 challenge and the peak of excretion
was on day 2 pch (15,32,43,46). Importantly, the vaccine
candidate curtailed the period of viral excretion and the
level of virus shedding compared with the control groups.
However, in our study rabbits showed no respiratory clinical
signs and we could not detect viral DNA in trigeminal
ganglia (data not shown). These discrepancies with other
authors could be due to the age of the animals and/or to the
viral strain used in our study (30,32,43). In addition, after
BoHV-1 challenge, the MVA-gDs vaccinated animals
showed an increase in serum anti-gD IgG (anamnestic re-
sponse), which suggests that animals had been primed for
gD-specific antibody responses.

Current vaccines only partially protect against disease and
not against infection; therefore, improved vaccines are re-
quired based on new immunogens, delivery, and formula-
tions, which will protect against both infection and latency.
Besides, since latently infected animals are considered res-
ervoirs of the virus, new vaccines should also prevent the
establishment of latency. Since we were unable to detect
viral DNA in the trigeminal ganglia of the three vaccinated
and challenged groups (data not shown), we could not
confirm that vaccination with the recombinant vaccine im-
pairs the establishment of latency after challenge.

Overall, our data suggest that IN administration of two
doses of MVA-gDs conferred partial protection to rabbits
against BoHV-1 challenge.

Several live vector vaccines have been evaluated as
vaccine candidates against BoHV-1 in animal models and
cattle. Bovine adenovirus 3 (28,39,50), human adenovirus 5
(20,37), and Newcastle disease virus (27) expressing gD
elicited specific humoral immune response, but conferred
low levels of protection against BoHV-1 infection in coin-
cidence with our observations of immunogenicity and par-
tial protection induced by MVA-gDs in the rabbit model.

BoHV-1 gD is the major target of neutralizing antibodies
and cytotoxic T lymphocytes and is considered the principal
antigen in the development of rationally designed vaccines.
However, the immune response elicited by gD seems to be
insufficient to fully protect animals after challenge. A fea-
sible approach to improve vector immunogenicity could be
the incorporation of sequences of other relevant BoHV-1
proteins such as gB and gC or cytokines. Another possibility
could be the implementation of heterologous immunization
schemes combining MVA-gDs with DNA or adenovirus-
based vaccines.

Finally, this study shows the capability of MVA-gDs of
inducing both specific (local and systemic) humoral re-
sponse in mice and protection against BoHV-1 infection in a
rabbit model.

Conclusion

In the last years, the rational design of recombinant
vaccines that overcame the limitations of conventional
vaccines has gained importance. MVA-based vaccines are
considered as excellent candidates. In this study, we dem-
onstrated that a recombinant MVA expressing a secreted
form of bovine herpesvirus-1 gD administered intranasally
without the addition of adjuvant is capable of inducing local
and systemic humoral immune response in mice. In addi-
tion, we tested this candidate vaccine in the rabbit model

and observed that mucosal delivery conferred protection
against BoHV-1 challenge.
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