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The representation of sound signals at the cochlea and auditory cortical level has been studied 
as an alternative to classical analysis methods. In this work, we put forward a recently proposed 
feature extraction method called approximate auditory cortical representation, based on an approximation 
to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed 
estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the 
spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory 
spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction 
of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic 
(chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method 
and its variants, we used two objective measures: the perceptual evaluation of speech quality and the 
segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the 
signals, mainly under severe degradation.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

In previous years, several techniques of signal analysis have 
been applied to audio and speech denoising with relatively good 
results in controlled conditions [1]. However, it is widely known 
that the performance of these signal analysis techniques in ad-
verse environments is far from that of a normal human listener [2]. 
On the other hand, there is an increasing number of new signal 
processing paradigms that promise to deal with more complex 
situations. This is the case with sparse coding and compressed 
sensing [3,4]. Their ability to efficiently solve challenging signal 
representation problems could be exploited in order to develop 
new audio and speech processing techniques.

For many years, researchers in the field of signal processing 
have greatly benefited from the use of methods inspired by human 
sensory mechanisms. Some examples of this for audio and speech 
encoding were mel frequency cepstral coefficients (MFCC) and percep-
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tual linear prediction (PLP) coefficients [5]. Auditory representations 
of sound at the cochlea have been widely studied. Different mathe-
matical and computational models have been developed that allow 
the approximate estimation of the so-called early auditory spectro-
gram [6,7]. These investigations have enabled an accurate modeling 
of the discharge patterns of the auditory nerve [8,9].

Although less known, the underlying mechanisms at the level 
of the auditory cortex have also been studied and modeled [10]. In 
experimental conditions – given a sound signal – a pattern of acti-
vations can be found at the primary auditory cortex that encodes 
a series of meaningful cues contained in the signal. This cortical 
representation seems to use two principles: the need for very few 
active elements in the representation and the statistical indepen-
dence between these elements [11]. This behavior of the cortical 
neurons could be emulated using the fundamentals of sparse coding
(SC) [12], the independent component analysis (ICA) [13] and the no-
tion of spectro-temporal receptive fields (STRF). The STRF are defined 
as the optimal linear filter that convert a time-varying stimulus 
into the firing rate of an auditory cortical neuron, so that it re-
sponds with the largest possible activation [14]. These concepts 
have led to the development of a number of contemporary au-
ditory models that incorporate different auditory phenomena, for 
example neural timing information [15], modeling of spectral and 
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temporal content in the cochlear response [9]. A very complete and 
recent review on biologically-inspired models for speech process-
ing is given in [16].

A number of works have explored the use of auditory mod-
els for building robust speech/speaker recognition system. In [17], 
a model of auditory perception (PEMO [18]) is used to obtain 
the features in a digit recognition system, after processed with 
well-established algorithms for speech enhancement (for exam-
ple, the Ephraim and Malah estimator [19]). In [20], authors pro-
posed the use of the model of Li [21] as a front-end in a hid-
den Markov model-based speech recognizer. Here, the speech is 
first pre-processed with state-of-the-art enhancement algorithms 
([19,22] and others). More recently, different modifications of the 
MFCC representation were introduced (noise suppression, tempo-
ral masking and others) and compared to standard MFCC and PLP 
coefficients for speech recognition [23]. As can be seen, these ef-
forts were mainly devoted – differently from our speech enhance-
ment point of view – to build new feature extraction schemes for 
the recognizers while maintaining standard techniques for the en-
hancement itself.

In a previous work [24], the approximate auditory cortical rep-
resentation (AACR) which is a set of activations computed using 
matching pursuit (MP) on a discrete dictionary of bidimensional 
atoms, was presented. These atoms represent the STRF of the au-
ditory cortical neurons. The AACR intends to model the global 
statistical characteristics of the discharge patterns in the auditory 
cortex, in a phenomenological rather than a physiological way. This 
technique provides an approximated representation of the speech 
signal at the auditory cortical level. It has proved to be benefi-
cial with respect to standard spectro-temporal techniques given 
the fact that at this higher level in the auditory path, some as-
pects of the acoustic signal that arrives at the eardrum have been 
reduced or eliminated [16]. Among these superfluous aspects are 
the temporal variability of the signal and the relative phase of 
acoustic waveforms [25]. This approach was then applied to a 
phoneme classification task in both clean and noisy conditions, 
showing the advantages of the intrinsic robustness of the sparse 
coding achieved.

In this work, this approach is adapted to a non-negative matrix 
factorization (NMF) framework. A non-negative auditory cortical 
representation is used in order to propose a novel sound denois-
ing algorithm. NMF is a recently developed family of techniques 
for finding parts-based, linear representations of non-negative data 
[26–29]. These models deal with the temporal continuity of the 
signals (which is also found in our auditory spectrograms), such as 
slow variation of pitch in speech and music through consecutive 
frames, and were applied to monaural source separation. Regard-
ing the speech processing applications, semi-supervised/supervised 
approaches were reported [30–33]. In these systems, first statisti-
cal models for clean speech/noise are estimated. Then, the input 
signal is analyzed to obtain the denoised version, which is then 
applied to the recognition block. In [34] two sparse dictionaries 
are obtained directly from spectrograms of clean speech and noise. 
Then, a representation of the noisy speech is obtained by a linear 
combination of a small number of both type of exemplars, in order 
to feed a robust speech recognizer.

In the biologically-inspired context, the NMF use data described 
by using just additive components, e.g. a weighted sum of only 
positive STRF atoms. This new model still retains its biological 
analogy, in spite of the fact that positive STRF implies only non-
inhibitory behavior. Thus, positive coefficients could be interpreted 
as firing rates of excitatory cortical neurons. The new proposal of 
a non-negative auditory cortical denoising algorithm also differs 
from previous work in the sense that now two STRF dictionary are 
estimated from clean and noisy signals separately. Then, the dic-
tionaries are combined in a mixed dictionary containing the most 
representative atoms for each case, obtaining a better representa-
tion of the important features of sound and noise for the denoising 
stage.

The organization of the paper is as follows. Section 2 presents 
the methods that give the signal representation in the approximate 
auditory cortical domain. Section 3 outlines the proposed tech-
nique to perform the signal denoising in this domain. Section 4
presents the experimental framework and data used in the follow-
ing experimentation. Section 5 shows the obtained results and the 
discussions. Finally, Section 6 summarizes the contributions of the 
paper and outlines future research.

2. Sound signal representation

2.1. Early auditory model

Mesgarani and Shamma [10] proposed a model of sound pro-
cessing carried out in the auditory system based on psychoacoustic 
facts found in physiological experiments in mammals. The main 
idea behind the model is first to obtain a representation of the 
sound in the auditory system. Then, they further decompose this 
representation to its spectral and temporal content in the cochlear 
response.

While the complete model of Shamma consists of two stages, in 
this work only the first stage was used. This stage produces the au-
ditory spectrogram (AS), an internal cochlear representation of the 
pattern of vibrations along the basilar membrane.

In the following, subscript ‘ch’ stands for cochlear, ‘an’ for au-
ditory nerve and ‘hc’ for hair cell. The first part of the model is 
implemented by a bank of 128 cochlear filters xch that process the 
temporal signal s(t) and yield the outputs

xk
ch(t, f ) = s(t) ⊗ hk

ch(t, f ), (1)

where hk
ch is the impulse response of the k-th cochlear filter [10]. 

This is a bank of overlapping constant-Q (QERB = 5.88) bandpass 
filters with center frequencies (CF) that are uniformly distributed 
along a logarithmic frequency axis, over 5.3 octaves (24 filters/oc-
tave, 0–4 kHz). The CF of the filter at location l on the logarithmic 
frequency axis (in octaves) is defined as

fl = f02l (Hz), (2)

where f0 is a reference frequency of 1 kHz [10]. The quantity and 
frequency distribution of the filters proved to be satisfactory for 
the discrimination of important acoustic clues and for an appro-
priate reconstruction of speech signals [9].

These 128 filter outputs are transduced into auditory-nerve pat-
terns xan using

xk
an(t, f ) = ghc

(
∂t xk

ch(t, f )
) ⊗ μhc(t), (3)

where ∂t represents the velocity fluid-cilia coupling (highpass fil-
ter effect), ghc the nonlinear compression in the ionic channels 
(sigmoid function of the channel activations) and μhc the hair-cell 
membrane leakage modeling the phase-locking decreasing on the 
auditory nerve (lowpass filter effect) [10]. Finally, the lateral in-
hibitory network is approximated by a first-order derivative with 
respect to the tonotopic (frequency) axis, which is then half-wave 
rectified as

xk
lin(t, f ) = max

(
∂ f xk

an(t, f ),0
)

[10]. (4)

The AS is then obtained by integrating this signal over a short 
window, modeling a further loss of phase locking. Fig. 1 shows a
scheme of the auditory model as used in this work.
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Fig. 1. Early auditory model.
2.2. Sparse coding of auditory spectrogram

We now suppose that the representation of any bidimensional 
slide signal x ∈ R

m×n obtained from the early auditory model in (4)
is given by a linear combination of atoms representing the STRFs, 
in the form

x = �a, (5)

where � ∈ R
m×n×M is the dictionary of M bidimensional atoms 

and a ∈ R
M is the target representation. The 2-D basis functions of 

the dictionary are vectorized as � = [ �Φ1 . . . �ΦM ] with �Φi ∈ R
[mn]×1. 

Then, (5) can be alternatively written as �x = ∑
1≤i≤M

�Φiai . The de-
sired sparsity is included when the solution is restricted to

min
a

‖a‖0, (6)

where ‖ ·‖0 is the l0 norm, which counts the number of non-zeroes
entries of the vector. This is an NP-complete problem so several 
approximations were proposed [35].

In order to find the required representation, two problems have 
to be jointly solved: the estimation of a sparse representation and 
the inference of a specialized dictionary. The coefficients found 
with methods based on basis pursuit (BP) or MP give both atoms 
and activations with positive and negative values [36,37]. However, 
in some applications it could be useful to work only with positive 
values, thus providing the method with the ability to explain the 
data from the controlled addition of (only positive) atoms. This is 
the objective of non-negative matrix factorization methods.

2.3. NN-K-SVD algorithm

As it was mentioned in Section 1, there are several approaches 
to obtain a nonnegative atomic sparse decomposition of data. 
Among them, in this work the method proposed in [38] is se-
lected given its simplicity, excellent performance in other appli-
cations (for example, image classification [39]) and the possibility 
to explicitly set the number of sparse components to use in the 
approximation.

Aharon et al. introduced the K-SVD as a generalization of the 
k-means clustering algorithm to solve the sparse representation 
problem given a set of signals x to be represented [38]. Moreover, 
they included a non-negative version of the BP algorithm, named 
NN-BP, for producing non-negative dictionaries. The method solves 
the problem

min
a

∥∥x − �La
∥∥2

2 s.t. a ≥ 0, (7)

where a sub-matrix �L that includes only a selection of the L
largest coefficients is used. In the dictionary updating, this matrix 
is forced to be positive by calculating
min
�φk,ak

∥∥Ek − �φkak
∥∥2

2 s.t. �φk, �xk ≥ 0, (8)

for each one of the k selected coefficients. The error matrix Ek is 
the residual between the signal and its approximation with the 
k-th atom �φk and its respective activation ak being updated.

The dictionary itself and the activation coefficients are calcu-
lated from the SVD of Ek = UΣVT . This decomposition is then 
truncated to null the negative entries. Finally, the atoms and ac-
tivations are obtained as the rank-one approximation with the first 
left and right singular vector as φk = u1 and ak = v1. The complete 
algorithm, called NN-K-SVD for short [38], is illustrated in Ap-
pendix A.

3. Denoising methods

3.1. Non-negative cortical denoising

The main idea of the proposed method is that sound and 
noise signals can be projected to an approximate auditory corti-
cal space, where the meaningful features of each one could easily 
be separated. The signals being analyzed could be decomposed 
into more than one (possibly overcomplete) dictionary containing 
a rough approach to all the features of interest. More precisely, 
the method here proposed is based on the decomposition of the 
signal into two parallel STRF dictionaries, one of them estimated 
from clean signals and the other one from noise. The estimation of 
both dictionaries is carried out after obtaining the respective two-
dimensional early auditory spectrograms for each type of signals, 
as was explained before. Given that this type of representation 
is non-negative, a natural way to obtain both the dictionary and 
the cortical activations is to use an algorithm that obtains a rep-
resentation with non-negative constraints. This is especially true 
in the case of denoising applications, where forcing non-negativity 
on both the dictionary and the coefficients may help to find the 
building blocks of the different type of signals [38]. Among the 
several NMF models reported in literature (some of then summa-
rized in Section 1), we chose for our purposes the above outlined 
NN-K-SVD.

Before carrying out the denoising, the dictionaries correspond-
ing to clean signals and noise should be estimated. They are pro-
duced applying twice the NN-K-SVD algorithm described in Sec-
tion 2.3, one for each type of signal. The dictionaries are then 
rearranged according to the activation for the training samples, in 
descending order. From these two sets, a combined dictionary con-
taining atoms of signal and noise is used in our approach. This new 
dictionary is composed by the “most representative” atoms of each 
previous dictionary, by selecting those with greater activation.

Fig. 2 shows a diagram of the method here proposed, which 
consists of two stages. In the forward stage (Fig. 1a), the auditory 
spectrogram is firstly obtained. Then, using the combined dictio-
nary, the auditory cortical activations that best represent the noisy 
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Fig. 2. Diagram of the NNCD method for denoising in the cortical domain. (a) Forward stage: cortical representation. (b) Backward stage: denoised reconstruction.
signal (including both clean and noisy activations) are calculated 
by means of the non-negative version of the BP algorithm. In the 
backward stage (Fig. 1b), the auditory spectrogram is reconstructed 
by taking the inverse transform from only the coefficients corre-
sponding to the signal dictionary (synthesis). In this way, the de-
noising of the signal is carried out in the approximate non-negative 
auditory cortical domain. Finally, the denoised signal in the tempo-
ral domain is obtained by the approximate inverse ear model. The 
proposed method is named NNCD, which stands for non-negative 
cortical denoising.

The reconstruction of the auditory spectrogram from the cor-
tical response is direct because it only consists of a linear trans-
formation. However, a perfect reconstruction of the original signal 
from the auditory spectrogram is impossible because of the non-
linear operations in the earlier described in Section 2.1. Shamma 
proposed a method to approximately invert the model and showed 
through objective and subjective quality tests that the resulting 
quality of this approximate reconstruction is not degraded [9].

The idea of using a cortical model for sound denoising was 
also proposed by Shamma in a recent work [10]. The main differ-
ences with our approach are that his cortical representation uses 
the concept of spectro-temporal modulation instead of STRF and 
non-negative sparse coding, and also the way he incorporates in-
formation about signal and noise.

3.2. Speech denoising configurations

We propose applying the NNCD in three different scenarios for 
denoising speech signals degraded by uncorrelated additive noise:
(a) “NNCD speech”: corresponds to the NNCD reconstruction from 
selected atoms of the speech dictionary, discarding the noise 
selected atoms.

(b) “Wiener/NNCD noise”: applies a Wiener filter to the noisy sig-
nal y(t), where the noise estimation n′(t) is given by the 
NNCD reconstruction from only selected atoms of the noise 
dictionary.

(c) “NNCD + Wiener”: applies a Wiener filter to both previously 
NNCD estimations of noise n′(t) and speech s′(t).

In cases (b) and (c), the Wiener filter is estimated by means 
of the Short-Time Fourier Transform (STFT), as |S(ω,τ )|2

|S(ω,τ )|2+|N(ω,τ )|2 . 
Here, S(ω, τ ) and N(ω, τ ) are the STFT representations of s(t) and 
n(t) respectively. Note that in case (c), the Wiener filter is esti-
mated from the speech signal s′(t) instead of s(t) [40,41]. Fig. 3
shows the block diagrams of these configurations.

For comparison purposes, different filtering algorithms were 
also implemented and tested:

• iWiener: the iterative Wiener method [42]. After preliminary 
experimentation, the number of iterations was fixed at 4.

• apWiener: the speech enhancement based on the use of the 
A Priori Signal to Noise ratio in a minimum mean square error 
estimation, as given in [43].

• Wavelet: sound denoising using the thresholding of wavelet 
coefficients. The parameters of this process were: 5 levels of 
a Daubechies 8 function, soft thresholding using the unbiased
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Fig. 3. Schematics of the three configurations proposed to apply the NNCD to speech enhancement: (a): NNCD speech only, (b) Wiener filter with noise estimation given by 
the NNCD, and (c) Wiener filter calculated with the estimation of signal and noise given by the NNCD.
SURE estimator and rescaling using a single estimation of level 
noise based on first-level coefficients [44].

• mBand: Multi-band spectral subtraction, a method that takes 
into account the fact that colored noise affects the speech 
spectrum differently at various frequencies [45]. The param-
eters of the algorithm were fixed at 6 frequency bands with a 
linear spacing between bands.

• BNMF: a recently proposed Bayesian formulation of nonnega-
tive matrix factorization [33]. First, a mean square error esti-
mator for the speech signal is derived, then it learns the NMF 
noise model online from the noisy signal (unsupervised speech 
denoising).

Given the nature and characteristics of the artificial/real signals, 
the Wavelet denoising was used in the experiments with artificial 
signals, where mBand and BNMF were used in the experiments 
with speech data.
4. Experimental framework

A series of experiments were carried out to demonstrate the ca-
pabilities of the proposed technique. The first of this were carried 
out on artificial “clean” sound signals constructed by a mixture of 
chirps and pure tones. Then a second series of experiments were 
developed to work with real data consisting of speech signals of 
complete sentences from a single speaker. Noises with different 
frequency distributions and non-stationary behaviors were addi-
tively aggregated to the signals at several signal to noise ratios 
(SNRs). The proposed technique was then applied to obtain the de-
noised signals and the performance was evaluated by two objective 
methods: the perceptual evaluation of speech quality (PESQ) score 
[46] and the classical segmental signal-to-noise ratio (SNRseg) [47].

4.1. Artificial and real signals and noises

A total of 1000 artificial signals were obtained by concatenat-
ing 7 different subsignal segments of 64 ms each at a sampling 
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Fig. 4. Example of spectro-temporal receptive fields (STRF) estimated from the early auditory representation of artificial signals and white noise signals, showing the most 
active atoms of each dictionary (left). A single atom with axis labels and colorbar is also showed (right). The top 8 rows show the 64 most important STRF for clean signals, 
whereas the last row show the respective STRF for the noise signals. The dimensions of each atom follow the setup outlined in Section 4.2.
frequency of 8 kHz. Each segment consisted of the random com-
bination of up or down chirps and pure tones. In order to restrict 
all the possible combinations of these features so that a relatively 
simple dictionary was able to represent them, the spectrogram was 
divided in two frequency zones, below and above 1200 Hz. Inside 
each zone only one of the features could occur. Also, the frequency 
slopes of the chirps are fixed in each zone. Experiments with this 
type of signals were designed just to illustrate the operation of the 
method, also for sanity check and to show the feasibility of the 
method.

The clean speech data was extracted from a widely-used 
database in the speech recognition field, the TIMIT corpus [48]. 
The data used in this work corresponds to the set of 10 speech 
sentences of the speaker FCJF0 in dialectic region number 1. Sen-
tences have a mean length of 5 seconds.

Two kinds of noise with different frequency content were used. 
On the one hand, the white noise, which exhibits a relatively high 
frequency content with a non-uniform distribution in the early au-
ditory spectrogram (due to its logarithmic frequency scale), and 
on the other hand voice babble and street noises with mainly low 
frequency content in that representation. The white noise was gen-
erated by an HF radio channel and the babble noise was recorded 
in a crowded indoor ambient, both taken from the NOISEX-92 
database [49]. The street noise corresponds to an outdoor record-
ing and was taken from the Aurora database [50]. In all the ex-
periments, the noise was first conveniently resampled to the same 
rate and resolution of the clean signals. The noisy signals were ob-
tained by additively mixing the signals at different SNRs.

4.2. Combined clean-noisy dictionary estimation

First, the auditory spectrograms of clean signals were obtained. 
Then, the training data for the estimation of the dictionaries was 
extracted by means of a sliding time-frequency windowing using 
frames of 64 ms in length with an overlapping of 8 ms.

The dictionaries were generated using complete dictionaries. 
For the artificial data, 512 atoms of size 64 × 8 were calculated. 
Here, the 64 coefficients correspond to a downsampled version of 
the original 128 coefficients representing the range 0–4 kHz, while 
the 8 columns correspond each to a window of 8 ms. For speech 
data, based on preliminary experiments, the number of columns 
was reduced to 4, given that with 8 windows the dictionary learn-
ing process becomes computationally very intensive. Thus, in this 
case, the dictionaries have 256 atoms of size 64 × 4.

For the artificial data, 1/10 of the total number of signals was 
used as training data (100 random selected chirp signals). For 
the estimation of noise dictionaries, the same ratio of 1/10 was 
used as the balance of training/test data. For the speech sentences, 
a 10-fold leave-one-out method was applied, where each partition 
consisted on 9 sentences for train and 1 sentence for test.

From each dictionary, the most active atoms were collected. 
Then, they were combined to form new dictionaries with atoms 
containing both clean and noisy features. The reported results con-
sist of the mean value obtained for the 10 partitions.

4.3. Denoised signals quality estimation

For the speech denoising experiments, two well-known objec-
tive speech quality measures were evaluated: the PESQ score and 
the segmental signal-to-noise ratio (SNRseg).

The PESQ score is an objective quality measure introduced by 
the International Telecommunication Union (ITU) as a standard for 
evaluation of speech quality after transmission over communica-
tion channels [46]. It uses an auditory representation based on 
bark scale to compare the original and distorted speech signals. 
It has been shown to be very well correlated with perceptual tests 
using mean opinion score (MOS) [51] and robust automatic speech 
recognition results [52]. The measure has an ideal value of 4.5 for 
clean signals with no distortion, and a minimum of −0.5 for the 
worst case of distortion.

The segmental signal-to-noise ratio is another quality measure 
here evaluated. It was obtained as the frame-based average SNR 
value calculated from the original and the processed signals. Here, 
short segments of 15–20 ms are used (instead of the whole sig-
nals). This time domain measure was computed as in [47], using 
the MATLAB code provided in [53].

5. Results and discussions

5.1. Non-negative STRF dictionaries

Fig. 4 shows a selection of STRFs from a combined dictionary. 
Here, the most active (best trained) atoms are presented, 64 atoms 
for chirp signals and 8 atoms for white noise signals.
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Fig. 5. Example of the denoising of an artificial signal with a combination of 7 windowed segments of random chirps and pure tones. The spectrograms (STFT) of the clean 
signal (top), a noisy version obtained by the addition of white noise at SNR = 0 dB (middle) and the denoised signal (bottom) are shown. The temporal signal at the top of 
the figure is given as reference.
Table 1
Raw PESQ scores obtained for artificial signals. The NNCD scheme applied was the 
scenario (a) given in Section 3.2. In bold face, the best result obtained for each 
experimental condition.

Noise SNR (dB) Signal

Noisy Wavelet NNCD

White 12 1.93 1.79 2.16
6 1.40 1.43 2.11
0 0.69 0.87 1.99

Voice babble 12 1.82 1.72 2.05
6 1.23 1.14 2.01
0 0.56 0.53 1.91

Model distortion: 2.11

It can be clearly seen the features captured by the STRFs in each 
dictionary are the more prominent ones contained in the training 
signals. For the first group, some atoms (see, for example, num-
ber 2, 3 and 4 in the first row) capture portions of pure tones or 
chirp signals, while others show the combination of them. For the 
second group, the atoms show mainly the high energy characteris-
tics of the noise signals. Thus, in the context of sparse coding given 
in Section 2.2, each segment of the input signal can be represented 
by a linear combination of selected atoms from these dictionary.

5.2. Artificial signals denoising

Our scheme for denoising was applied using the representa-
tion discussed above. The reconstruction of the denoised auditory 
spectrogram was obtained by selecting only the clean atoms from 
the 32 greatest activations selected by the NN-BP algorithm. Fig. 5
shows the short-time Fourier transform (STFT) for a clean (top), 
noisy with white noise at SNR = 0 dB (middle) and denoised signal 
(bottom), with the temporal signal above the clean spectrogram. In 
the spectrogram shown at the bottom, the effects of the denoising 
carried out in the cortical representation by the NNCD can be seen, 
where the most important features are reconstructed.

Table 1 shows the PESQ scores obtained of denoising the ar-
tificial signals. For all cases, there was an increase in the PESQ 
score when the NNCD was applied to the noisy signals and our 
method also outperformed the results obtained with the baseline. 
The improvement was more marked when the noise energy was 
higher (SNR = 0 dB) and smaller when the signals become cleaner 
at larger SNR (lower energy of the noise).
The PESQ score for the original (clean) signal after transforma-
tion using the auditory model and reconstruction back to the time 
domain is 2.11. This score measures the distortion from the best 
quality (PESQ MOS of 4.5) that is introduced by the use of the 
early auditory model, which is only approximately invertible. Even 
if the noise is completely removed by the NNCD, there is an intrin-
sic error introduced by the auditory analysis method. For reference, 
the PESQ obtained using the NNCD method in the same condi-
tions as in Table 1 but on clean signal (SNR = ∞) was 2.105. The 
result is almost identical to the one of the auditory model, show-
ing that no additional degradation was introduced. This is because 
the number of selected coefficients in the NN-K-SVD method is 
enough to the preserve the quality of the reconstructed signal. In 
this way, the method not only provides a good enhancement in 
the noisy case but also preserve the signal when there is no noise. 
The PESQ values greater than the model distortion (for example, 
2.16 for white noise at SNR = 12 dB) are pointing out that small 
amount of noise are beneficial for the quality of the signal ob-
tained. This effect might be due to the stochastic resonance, which 
concern to non-linear systems (like our proposal) [54].

In order to demonstrate the benefits of using the auditory rep-
resentation of the signal, an experiment replacing this model with 
the short-time Fourier transform was carried out. Here, two dic-
tionaries trained with clean chirp signals and white noise were 
obtained. Then, the NNCD method was applied in the same con-
ditions as in Table 1 for noisy signals at SNR = 0 dB. The PESQ 
obtained was 1.27, which is better than the wavelet denoising 
(0.87) but lower than the result obtained using the NNCD method 
(1.99). This result would be supporting the intrinsic robustness of 
the sparse representation when using the auditory model.

5.3. Speech denoising

In Fig. 6, a subset of 64 atoms from the dictionary trained with 
speech data is shown. It can be seen that different particularities 
of the signals are learned, for example, onset events (see atoms 
number 1 and 3 in the first row), offset (atom number 5 in the 
first row), combination of formants (atoms number 2 and 7 in the 
first row), energy spreading in a wide frequency range possibly 
given by fricative phonemes (atom number 1 in the last line), etc.

Fig. 7 shows an example of the denoising of real data sig-
nals corresponding to speech data. The clean signal corresponds 
to the sentence /She had your dark suit in greasy wash water all 
year/ (shown in the top spectrogram). The signal is then contami-
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Fig. 6. Examples of spectro-temporal receptive fields (STRF) calculated from the early auditory representation of speech signals (left). A single atom with axis labels and 
colorbar is also showed (right). The dimensions of each atom follow the setup outlined in Section 4.2.

Fig. 7. Example of the auditory cortical denoising result of a speech signal contaminated with white noise at SNR = 0 dB. The spectrograms (STFT) of the clean signal (top), 
the noisy signal (middle) and the denoised reconstructed signal (bottom) are shown. The acoustic signal at the top of the figure is given as reference.
nated with white noise at SNR = 0 dB. The effects of the noise can 
be seen in the middle spectrogram, where almost every impor-
tant speech feature has been masked by the noise. The denoising 
scheme, however, is able to recover the most prominent formants 
and to reduce the energy noise as shown in the bottom spectro-
gram.

For the measures of PESQ and SNRseg, a 10-fold cross valida-
tion procedure was applied by training a dictionary with 9 signals 
and testing with the remaining one. In each case, white and street 
noise were added with SNR of 12, 6 and 0 dB. The results are 
summarized in Tables 2 and 3. They show the mean and standard 
deviation of PESQ and SNRseg scores obtained for the cross vali-
dation scheme, being tested on the three different scenarios in the 
application of NNCD and compared with different baseline meth-
ods (see Section 3.2). For each experimental condition, the method 
that obtained the best denoising quality is emphasized in bold-
face.

It can be seen that state-of-the-art method performs better only 
at very high SNR (12 dB), while the NNCD method achieves good 
results in realistic conditions when the energy noise increases at 
lower SNR. Here, our method obtains the larger differences in the 
PESQ and SNRseg scores between the noisy and denoised signals. 
For example, in the case of white noise at SNR = 0 dB the method 
improves the PESQ from 1.63 up to 2.12 and SNRseg from −2.77 to 
4.56. With respect to the other denoising methods, the NNCD ap-
proach performs better for both measures, PESQ and SNRseg, under 
real and very high non-stationary noise, like the street noise used 
in these experiments. As an example, it can be seen an improve-
ment in PESQ at SNR = 0 dB from 1.79 up to 2.24 and in SNRSeg 
from −3.54 up to 3.94. This type of noise presents a more complex 
structure, which could be captured by our approach.

6. Conclusions

A new denoising method of audio signals was presented, in-
spired by the biological processing carried out at the primary au-
ditory cortical level. The method obtains a sparse coding of the 
spectrogram at cochlea level using a non-negative approach. The 
atoms of the dictionary are calculated from clean signals and noise. 
Then, the denoising signal is obtained by inverting the model using 
only the atoms corresponding to the signal, discarding the noise 
activations.

The performance of the method using synthetic and real sig-
nals with additive noise was obtained through two objective qual-
ity measures. Results showed that our proposed method and its 
variants can improve the quality of sound signals, specially under 
severe conditions.

Future research will be devoted to further improve the perfor-
mance and also investigate the application of this technique in the 
preprocessing stage of robust classification systems.
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Table 2
Mean raw PESQ scores obtained for speech sentences from the TIMIT corpus. The ‘W’ and ‘S’ on the left column stand for White and Street noise. The three scenarios for the 
NNCD based speech enhancement given in Section 3.2 are denoted as (a), (b) and (c). In bold face, the best quality for each case. For reference, the score for the clean signal 
after transformation to the cortical domain and reconstruction back to the time domain is 2.15.

SNR 
(dB)

Signal NNCD

Noisy iWiener apWiener mBand BNMF (a) (b) (c)

W 12 2.25 (0.14) 2.59 (0.15) 2.53 (0.15) 2.66 (0.21) 2.41 (0.10) 2.46 (0.08) 2.31 (0.14) 2.52 (0.08)
6 1.92 (0.13) 2.19 (0.08) 2.17 (0.09) 2.18 (0.12) 2.18 (0.10) 2.26 (0.08) 1.97 (0.12) 2.36 (0.05)
0 1.63 (0.18) 1.86 (0.15) 1.84 (0.16) 1.84 (0.18) 1.80 (0.09) 1.99 (0.13) 1.67 (0.17) 2.12 (0.10)

S 12 2.57 (0.13) 2.61 (0.13) 2.73 (0.13) 2.86 (0.11) 2.30 (0.14) 2.67 (0.11) 2.65 (0.12) 2.71 (0.11)
6 2.21 (0.10) 2.18 (0.12) 2.39 (0.09) 2.49 (0.11) 2.06 (0.16) 2.45 (0.07) 2.30 (0.09) 2.51 (0.05)
0 1.79 (0.13) 1.76 (0.15) 2.00 (0.10) 2.11 (0.09) 1.82 (0.13) 2.14 (0.08) 1.89 (0.11) 2.24 (0.06)

Table 3
Mean SNRseg obtained for speech sentences from the TIMIT corpus. The ‘W’ and ‘S’ on the left column stand for White and Street noise. The three scenarios for the NNCD 
speech enhancement given in Section 3.2 are denoted as (a), (b) and (c). In bold face, the best result for each condition. For reference, the score for the clean signal after 
transformation to the cortical domain and reconstruction back to the time domain is 5.41.

SNR 
(dB)

Signal NNCD

Noisy iWiener apWiener mBand BNMF (a) (b) (c)

W 12 6.98 (3.42) 8.43 (1.82) 10.04 (2.95) 6.91 (1.99) 1.59 (0.30) 5.60 (1.14) 7.63 (3.47) 5.79 (0.90)
6 1.84 (2.54) 4.50 (1.54) 5.14 (2.12) 5.14 (2.56) 1.62 (0.31) 5.21 (0.62) 2.68 (2.52) 5.24 (0.70)
0 −2.77 (2.00) 2.10 (0.85) 0.04 (1.92) 2.25 (0.23) 1.57 (0.16) 3.84 (0.84) −2.01 (2.04) 4.56 (0.79)

S 12 7.10 (2.31) 6.33 (1.33) 8.67 (2.23) 7.09 (1.31) 1.54 (0.22) 5.75 (0.79) 8.24 (2.40) 5.68 (0.48)
6 1.93 (2.24) 3.79 (1.05) 4.13 (2.40) 4.52 (1.59) 1.69 (0.36) 5.26 (0.50) 3.51 (2.15) 4.95 (0.36)
0 −3.54 (2.27) 1.71 (0.61) −1.19 (2.55) 2.37 (1.07) 1.57 (0.30) 3.94 (0.54) −1.94 (2.23) 3.89 (0.33)
Initialization: Set the NN random normalized dictionary �(0) ∈ R
m×n×M . 

Set J = 1 and repeat until convergence.
Sparse coding stage: use the NN version of the Basis Pursuit decomposition 
algorithm to calculate ai for i = 1, . . . , M .

min
a

‖x − �a‖2
2 s.t. ‖a‖0 ≤ L ∧ a ≥ 0.

Dictionary update stage: for k = 1, . . . , L

• Define the samples that use �φk : ωk = {i|1 ≤ i ≤ M, ai(k) �= 0}.
• Compute Ek = x − (�a − �φka(k)).
• Choose only the columns corresponding to ωk , and obtain Eωk

k .
• Set A = Eωk

k ,

�φk =
{

0, u1(i) < 0
u1(i), otherwise

a(k) =
{

0, v1(i) < 0
v1(i), otherwise

where u1 and v1 are the first singular vector of A.
Repeat J times:

�φ = A a

a′a
. Project: �φ(i) =

{
0, �φ(i) < 0
�φ(i), otherwise

a = �φ′ A
�φ′ �φ . Project: a(i) =

{
0, a(i) < 0
a(i), otherwise

Normalize �φk .

Set J = J + 1.

Fig. 8. The NN-K-SVD algorithm.
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Appendix A

The pseudocode for the NN-K-SVD method is showed in Fig. 8
[38].
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