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Let H be the quantum double of a Nichols algebra of diagonal type. We compute
the R-matrix of 3-tuples of modules for general finite-dimensional highest weight
modules over H. We also calculate a multiplicative formula for the universal R-matrix
when H is finite dimensional. We show the unicity of a PBW basis (or a Lusztig-type
Poincaré-Birkhoff-Witt basis) with a given convex order. © 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4907379]

. INTRODUCTION

A remarkable property of quantum groups, introduced by Drinfeld and Jimbo in the 1980s,
is the existence of an R-matrix for their categories of modules. This R-matrix is related with the
existence of solutions of the Yang-Baxter equation. An explicit formula for the universal R-matrix
of quantum groups was obtained in the 1990s!%!8192! and extended to quantized enveloping super-
algebras'>?7 of finite-dimensional Lie superalgebras.

We can deduce the existence of this R-matrix for quantized enveloping (super)algebras because
they can be obtained as quotients of quantum doubles of bosonizations of the positive part by group
algebras, and these quantum doubles are quasi-triangular.

A natural generalization of the positive part of these quantized enveloping (super)algebras is
the Nichols algebras of diagonal type.” They admit a root system and a Weyl groupoid'®!! control-
ling the structure of these algebras. Moreover, the classification of these Nichols algebras with
finite root system includes (properly) the positive part of quantized enveloping algebras of finite
dimensional contragradient Lie superalgebras and simple Lie algebras. It is natural then to ask for
a formula of the R-matrix in this general context. We answer this question for the subfamily of
finite-dimensional representations with a highest weight in a general context and obtain an explicit
formula for the universal R-matrix when the Nichols algebra is finite-dimensional.

Although Nichols algebras appeared as an important tool for the classification of finite dimen-
sional pointed Hopf algebras,? they have become very attractive for other fields of mathematics.
In particular, they are related with conformal field theories. Indeed, they give place to logarithmic
examples.”*>~> Starting from non-semisimple (logarithmic) conformal field theory®® and the screen-
ing operators, we can obtain a braided Hopf algebra which is a Nichols algebra.?* Then it becomes
interesting how to make a reverse construction in order to obtain new examples of vertex operator
algebras and the corresponding conformal field theories. This was the motivation to their study
in mathematical physics:>* these authors start the translation of some elements from the Nichols
algebra context to the corresponding ones needed to describe the attached vertex operator algebra.
They study the category of Yetter-Drinfeld modules over the Nichols algebra into a braided cate-
gory, which is exactly the category of representations of the quantum double of the bosonization of
this Nichols algebra by the group algebra of a finite abelian group. They complete the computation
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for a particular example,? describing the projective modules, and they give the R-matrix following
the present work. The R-matrix encodes the M-matrix for the dual algebra of the corresponding
quantum double, which is responsible for the monodromy in the CFT language.’

The organization of the paper is as follows. In Sec. II, we recall definitions and results needed
for our work. They are related with quantum doubles and properties of Nichols algebras of diagonal
type. We stress the importance of the Weyl groupoid and the generalized version of root systems.
In Sec. III, we work over arbitrary Nichols algebras of diagonal type and compute the R-matrix of
3-tuples of finite-dimensional modules, generalizing the results in Ref. 26. We restrict our attention
to highest weight modules, which give maybe the most important subfamily of representations.
Finally in Sec. IV, we compute the universal R-matrix for quantum doubles of finite-dimensional
Nichols algebras. The formula involves the multiplication of quantum exponentials of root vector
powers, generalizing the classical ones for quantum groups.

Notation. We denote by N the set of natural numbers and by Nj the set of non-negative integers.

Let k be an algebraically closed field of characteristic zero. All the vector spaces, algebras, and
tensor products are over k. We shall use the usual notation for g-combinatorial numbers: for each
gek*,neN,0<k <n,

n)g=1+g+...+ q"_l, (n)g! = (1)g(2)g - - - (n)g,

(n) _ (n)g!
klq (k)q!(n—k)q!'
Let A be an associative algebra. Given an element a € A such that aV =0, we define the
g-exponential, for each g which is not a root of unity, or it is a root of unity of order > N,
i

N-1
exp,(a) = Z(; &q‘ (1.1)

Let 6 € N. {@,},<; <o will denote the canonical Z-basis of Z°.
Given a Hopf algebra H with coproduct A and antipode S, we will use the classical Sweedler
notation A(k) = h; ® hy, h € H, and denote

A? = (A®id)o A = (id®A) o A.

A subalgebra A of H is a (right) coideal subalgebra A if A(A) C A® H.

We denote by ZJ/ D the category of (left) Yetter-Drinfeld modules over H; i.e., the category
of H-modules and H-comodules V (with coaction ¢) such that 6(% - v) = hjv_1S(h3) ® h; - vp for all
heH,veV.

GivenR=);a; ® b, € HQ® H, we set the elementsof H @ H @ H

R(1:2) = Za" ®b®1,RM = Za[ ®1®b;, R*= Z 1®a;®b,.
i

L L

Il. PRELIMINARIES

We recall some definitions and results which will be useful in the rest of this work. They are
mainly related with quantum doubles of Hopf algebras and Nichols algebras of diagonal type.

A. Skew-Hopf pairings and R-matrices

Let A,B be two Hopf algebras. A skew Hopf pairing between A and B (see Ref. 13, Sec.
3.2.1,Ref. 17, Sec. 8.2) isalinear mapn : A ® B — k such that

n(xx’,y) = n(x’, y1)(x, y2), n(x,1) = &(x),
n(x,yy’) =n(x,y)(x,y’), n(l,y) = &(y),
n(S(x),y) = n(x,87'(y)),
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for all x,x” € A, y,y’ € B. In such case, A ® B admits a unique structure of Hopf algebra, denoted
by D(A, B,n) and called the quantum double associated to 77, such that the morphisms A - A ® B,
a—a®l,B— A®B,b+— 1® bare Hopf algebra morphisms and

(a®1)(1®b)=a®b, (1®b)a®l)=n(a,S(by))(ay® by)n(as,bs).

When A is finite-dimensional and 7 is not degenerate, B is identified with the Hopf algebra A*.
D(A,B,n) = D(A) is the Drinfeld double of A, which admits an R-matrix,

R = Z(l ®b)®(a;® 1), 2.1)

i€l

where {a;}ier, {bi}ier are dual bases of A, B: n(a;, b;) = 6;;.

B. Weyl groupoids and convex orders on finite root systems

Fix 6 € N, a non-empty set X # 0, and p: I — Sy, where I = {1,...,0}. The pair (X, p) is
a basic datum of rank |X| and type 0 if plz. =1id for all i € I. We set the quiver Q, with arrows
{0 = (x,i,pi(x)) 1 i € LLx € X} over X, with target #(c]) = x and source s(c}") = p;(x). We adopt
the convention

Pi (x) Pi P (x)
X e . X 1 . t-1 1
0—,‘]0—12 O-It_o—ho—iz O'it .

2.2)

In any quotient of the free groupoid F(Q,), i.e., the implicit superscripts are the only possible to
have compositions.

Given (X, p) a basic datum of type I, a Coxeter datum is a triple (X, p,M), where M =
(M) cx, m* = (mj‘].),-,_,- <1, are Coxeter matrices such that

S((O’fa'j)m?j) =x, i,jel, xelX. (2.3)

The Coxeter groupoid ‘W (X, p,M)!! is the groupoid generated by Q,, with relations

(oFo) i =id,, ijel xeX. (2.4)

Notice that for i = j, (2.4) says that either o is an involution when p;(x) = x or else that o is the
inverse arrow of o%'(x) when p;(x) # x.

Given a family of generalized Cartan matrices C = (C*),ex, C* = (Cf(j)i, je1, With row invari-
ance

cf=cli™ forall xeX.ijel 2.5)
set s7 € GLg(Z) such that
s;‘(aj):aj—cfja'i, jel, ielxelX. (2.6)

By (2.5), s7 is the inverse of 5% i) A generalized root system (GRS for short) [Ref. 11, Definition
1] is a collection R = R(X, p,C,A), where (X, p), C are as above, and A = (A¥), ey is a family of
subsets A* ¢ Z!'such that

A*=ATUAY, AL:=A NN, AT = A, 2.7)

A* N Z(Ii = {i(li}; (28)
sH(AY) = AP, 2.9)
(pip))"1i(x) = (x),  my; = |A* N (Noa; + Noa,)), (2.10)

forall x € X,i # j € I. Here, A}, AX the set of positive, respectively, negative, roots.

If M=(M*)yex, M* = (mj.‘j)i,jd, then W = W(X,p,M) is the Weyl groupoid of R. By
Ref. 11 [Theorem 1] there exists an isomorphism of groupoids W — W(X, p,C). Indeed, let
G =XXGLy(Z)x X, ¢F = (x,57,pi(x)), i € I, x € X, and W' = W(X, p,C) the subgroupoid of
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G generated by all the ¢*. There exists a morphism of quivers Q, — G, of +— ¢} with image W',
which is the desired isomorphism.
fw=0f 0j,anda e 79, then define w(a) = 57+ 8i,(@). Now,

(A)* = U{w(ai) ciel,we W(y,x)} 2.11)

yeX
is the set of real roots of x. The length of w € W (x,X) is
{(w) = min{m € Ny : Fiy,...,i, € Isuchthatw = a'j‘l YT

An expression w = o-j.‘l -+ 0, is reduced if m = {(w).

Proposition 2.1 (Ref. 6, Prop. 2.12). Let w = sff - Si,y t(w) = m. The roots B; = s, - Si;
(ai;) € AX are positive and pairwise different.

Moreover, if R is finite and w is an element of maximal length, then {;} = A%, so all the roots
are real. O

For the last part of this subsection, assume that R is finite.

Definition 2.2 (Ref. 4). Given a root system R and a fixed total order < on AX, we say
that it is convex if for each «, € AX such that @ < 8 and « + g € AX, then a < a + B < B.
It is said strongly convex if for each ordered subset a; < ... < a; of elements of AX such that
a =Y a; € AX,itholds that | < @ < ay.

Theorem 2.3 (Ref. 4). Given an order on A%, the following are equivalent:

(1)  the order is convex,
(2)  the order is strongly convex,
(3) the order is associated with a reduced expression of the longest element. O

C. Weyl groupoid of a Nichols algebra of diagonal type

Let q = (g;;) € (K*)?. Let y :Z%xZ% — K* be the bicharacter such that y(a;,a;) = ¢
Given 1 <i <0, we say that q is i-finite if for all 1 < j #i < 6, there exists m € Ny such that
(m+1)g,,(1- ql.zl.q,-jqj,-) = 0. In such case, define

af=2,a},= —min{m € No|(m + 1)q,,(1 - ¢7.q;i9;j) = O},
and set s} as the Z-linear automorphism of Z? given by (??). If q is i-finite for all i, A = (a?j)l <i.j<6
is the generalized Cartan matrix associated to q.

Let X = (k¥)”?. We define p; : X > X by pi(q)jx = x(sNe;),s}ay)) if q is i-finite, or
pi(q) = q otherwise. Such p;’s are involutions and G, will denote the orbit of q by the action of the
group of bijections generated by the p;’s.

Note that Cq = C ({1.. . ..,0},Gq. (p)1<i<0.(CYgeg,) is a connected Cartan scheme, see Refs. 11
and 12. Therefore, the associated Weyl groupoid ‘W, is called the Weyl groupoid of q.

Given V a vector space with a fixed basis xi,...,xg, we can consider the braided vector space
(Vic), where c: V®V —» Ve Visgiven by c(x; ® x;) = g;jjx; ® x;, 1 <i,j < 6. (V,c) is of diag-
onal type. The Nichols algebra of (V,c) is the graded braided Hopf algebra B¢ = @, 084 which is
the quotient by the maximal homogeneous Hopf ideals of T(V') with trivial intersection withk & V.
A first relation with ‘W, is the following:

—a?j = max{n € Ny : (ad.x;)"x; # 0}, i#j.

A second relation between ‘W, and the corresponding Nichols algebras is described by Lusztig
isomorphisms, as we shall see in Subsection II D.
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D. Lusztig Isomorphisms of Nichols algebras
Set q as in Subsection II C. U, will denote the algebra presented by generators E;, F;, K;, Kl.",
L;, Llfl, 1 <i <6, and relations
XY =YX, XY e{K, L 11 <i <0},
KK;'=L,L;'=1, EF;-FE=23;K; —L)),

KiEfKi_l = qi;Ej, L,-EJ-LI.‘1 = quilEh
LiF;L;" = q;iF;, K.FK;'= q;, Fj.

Uy 0 (respectively, Uy %) will denote the subalgebra generated by K;, Kl.‘1 (respectively, L;, Ll.‘l),
1 <i<86,and (Llé’ will denote the subalgebra generated by K;, Kl.‘l, L;, and Li‘l. Also, (LI(;’ (respec-
tively, Uy) will denote the subalgebra generated by E; (respectively, F;), 1 <i < 6.

Uy is a Z°%-graded Hopf algebra, with grading determined by

deg(K;)=deg(L;) =0, deg(E;)=«a;, deg(F;)=—a;.
Uy admits a Hopf algebra structure, with comultiplication determined by

A(Kl) =K;®K;, A(El) =EQ®1+K;QFE;,
A(L)=Li®L;, AF)=F®L +1®F,

and then &(K;) = e(L;) = 1, &(E;) = e(F;) = 0.

Note that U is isomorphic to kZ* as Hopf algebras, and the subalgebra U (respectively,
Us0) generated by U, K', 1 < i < 6 (respectively, Uy, L;") is isomorphic to T(V #KZ? (respec-
tively, T(V*)#KZ). Uy is the associated quantum double.

Here, Uy is isomorphic to 7(V) as braided graded Hopf algebras in kéﬁ,’y D, with actions and
coactions given by

Ki'Ej:QijEp 5(Ei)=Ki®Ei.

A(E) = E(1)® E(y) denotes the braided comultiplication of E € U, . As it is No-graded, we will
consider A, ,(E), the component of A(E) in Uy (n — k) ® Uy (k), if E € Uy is homogeneous of
degree nand k € {0,1,...,n}.

By Ref. 9, Prop. 4.14, the multiplication m : Uy ®‘ng ® Uy — Uq is an isomorphism of
7Z9-graded vector spaces.

We consider some isomorphisms involving Uy [Ref. 9, Sec. 4.1].

(a) Leta =(ay,...,ag) € (k¥)’. There exists a unique algebra automorphism ¢,, of U such that
¢a(Ki)) = Ki, @a(Li) = Li,  ¢u(E;) = aiE;,  @a(Fi) = a;'F. (2.12)
(b) There exists a unique algebra antiautomorphism Q of U such that
QK;) = Ki, QL) =L;, UE)=F, QUF)=E,:. (2.13)
It satisfies the relation Q? = id.

As in, Refs. 9 and 12 Iq+ will denote the ideal of (LIJ such that the quotient Uy /Iq+ is isomor-
phic to the Nichols algebra of V; that is, the greatest braided Hopf ideal of U, generated by
elements of degree > 2. Set

I7=QUY), wE=UNIE ug= Uy /(I + 1)),
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and 1150, nlfo the corresponding images on the quotient. Note that 14 is the quantum double of

u;#kZ". The following result follows by Ref. 9, Lemma 6.5, Theorem 6.12.

Proposition 2.4 (Ref. 12, Proposition 3.5, Ref. 9, Theorem 5.8). There exists a unique non-
degenerate skew-Hopf pairing n : ua' ® ug such that

n(Ki,Lj) = qij, n(EiF;) =—06;, n(E,L;) =n(K;i,F;)=0, (2.14)
forall 1 <i,j < 6. It satisfies the following condition: for all E € ug, F € ug, K € ua’o, Le u;O,
n(EK.FL) = n(E.F)n(K.L). (2.15)

Moreover, if 8 # v € NY, then nl(“ﬁ)ﬁ@“ = (. O

o)~y

Assume that all the integers a?]. are defined, so the automorphisms sf,', are defined. For simplic-
; : - 9 . _ .4 _ pi@
ity, we denote E,, F;, K, L, the generators corresponding to U, ,(q), aij = s i = 4ip 4, = i@,
We also define

—api—l

hai) = (=apig,, ]_[ (@5 pdpidip — 1) €K, i # p. (2.16)
s=0

Fix p € {1,...,0}.1fi # p, we consider the elements’

ErowrEiom = Ei Flopy Frop = Fi
and recursively,
Ef o= EEf i = (Kp - Ef ) Ep = (adcEp)" " Es
i) = EvEimip) = Lo~ Ej () Ep»
Emip)= FpFimpy = L Filp) Eps
Fimsio)= FoFime) = Kp  Fi ) Fp-

If p is explicit, we simply denote El.im(p) by EF, . By Ref. 9, Corollary 5.4,

EZmFi - FiEifm = (m)qpp(q;:l[;_quiqm - l)LpE'+ .17

i,m-1°
Theorem 2.5. There exist algebra morphisms
T, T, :ug = lp(q) (2.18)
univocally determined by the following conditions: for everyi # p,
Ty(Kp)=T,(K,) = K, T,(K)=T,(K) = K,"'K,,
Tp(Lp)=T,(Ly) =L, Ty(L)=T,(L)=L,"'L,

i

T(Ep)=F,L,", T)(E)=Ej,,,»
Ty(F,)=K,'E,, Tp(F) = o) 'Ef
T,(E))=K,'F,, T,(E) = ho(P) " E; o
T,(Fp)=E,L,", I,(F)=F;,

Moreover, T,,T,, = T, T, = id, and there exists j1 € (K such that

T,ods= 40T, 0 @y (2.19)
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By Ref. 12, Proposition 4.2, we have for all @ € 79,
Tp((ugda) = (p;0) 58 a- (2.20)

For w € Hom(q',q) ¢ Wy with {(w) = nand w = s?ls,-2 -+-s;, (areduced expression of w), let
ug[w] be the k-subalgebra of uy generated by the elements Ti(TTiz' - Ti, [(E;), 1 <k <n. Then
ug[w] is independent from a choice of reduced expressions of w, see Ref. 12, Theorem 4.8.

Theorem 2.6 (Ref. 10). The correspondence w — uglw] gives a bijection from Hom(W,q)
to the set of right coideal subalgebras of uy. Moreover for w, € Hom(qi,q) and w, € Hom(qz,q),
ug[wi] € uglws] if and only iff(wl’lwz) = {(wy) — £(wy). O

lll. R-MATRIX FROM A VERSION OF A UNIVERSAL R-MATRIX

Most of the ideas we shall give in this section are modifications of Ref. 26, Sec. 4. Let
q € (k)% and y : Z% x Z% — k* the associated bicharacter. We will compute an R-matrix for
some modules of 14 from canonical elements of uq. If M = |AY] < oo, the canonical elements can be
obtained by Proposition 4.6.

A. Equations for canonical elements
We recall Ref. 12, (3.18), (3.19),
YX =n(X1,S))n(X3,¥3)Xoh, (3.1
XY = (X, W)X, SH))HhXs, X €uZ’ Y € ul®. (3.2)
Define the k-linear homomorphism 7 : 11y ® 1tq — 11q ® 11 by
T(X®Y)=Y®X.

Given X € 1150, Y e u(fo, we define the k-linear homomorphisms

Mg’ =k A5 =nX.Y), Yeus
Heiul® >k, dg(X)=n(X,Y), X eul

Lemma3.1. Let1 <i < 6andf € Ng. Set
NG(B;1) = {v € N§ —{0,a:}| B —v € Nj - {0, }}.

(@) Let B ¢ {0,a;,2a,},Y € uaiﬁ. SetY’, Y e u{liﬁmi such that [E;,Y] = K;Y' = Y"L,. Then,
AY)- Y QLP+1QY +F,@Y"L¥ +Y'® F,LP ) (3.3)
€ Byatpitla_y ® u‘;—b’wLY'
In particular,
(7, ®id(AX)) = =Y L;, (id® 75 )NAY)) =-Y". (34

(@) Let B ¢ {0,a;,2c;}, X € ua'ﬁ. Set X', X" € ufiﬁ_w such that [X,F;] = X"K; — L;X'. Then,

AX)-(X®1+KP@X +X"K¥ ® E; + E;,KPF ¥ @ X') (3.5)

+ By +
eaneNg(ﬁ;i)uqu ®u

ap-y°

In particular,

(id ® A2 )AX) = -X"K;, (2, ® id)(AX)) = ~X'. (3.6)
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Proof. We prove (i); (ii) can be proved analogously. Note that
ANE)=E;®1®1+K,QE;®1+K;®K;®E,.

Define Y7, Y" as the elements of u, _ 5+a, Satisfying the same property as (3.3) with Y’, Y” in place of
Y’,Y"”. By (3.1), we have

YE; =n(E;, S(F))n(1, LA)Y"L* + n(K:, S()n(1, LP)EY
+n(Ki, SO))(E;, FiLP* K Y’
=n(E;,—FL™* (1, LP)Y"LY + n(Ki, \n(1, LP)EY
+1(Ki, Dn(E;, FiLP)K;Y’
=Y'L,+EY -K,Y’,
so the proof is complete. O

Fix B € Ng andmg := dimug , = dimug le also {E(ﬁ)} {F(ﬁ)} bases of the spaces uqﬂ, ap

which are dual for 7. Then the matnx i (E)(;B), Fy )]15)%5,"[f is invertible, we call [bxy]lsx’yﬁmﬁ to
its inverse.

Lemma 3.2. Forall X € 11;/3, Y € u;_ﬁ, it holds

X = Z bEn(x, FP)EP), (3.7)
Y = Zbﬂn (EP Y)FP. (3.8)

Proof. We prove (3.7); the proof of (3.8) is similar. We have

n| D e X EVEL FP | = " bfin(x, P m(EL FP)

XY XY

= > 6, FP) = n(X, ),

y
forall 1 < z < m. (3.7) follows since Mg gxig_ is non-degenerate. O

Let Cg be the canonical element of u ap ® Uy p ie.,

mg
Cp= > VREL o FD.
x,y=1

Lemma 3.3. Let 1 < i < 6. The following identities hold:

[1® Ei,Cpia,;] = Co(E;i ® L;) — (E; ® K;)Cg, (3.9)
[Cpra; Fi ® 1] = (L; ® F;)Cp — Cp(K; ® Fy). (3.10)
Proof. We prove (3.9). LetY € Ug gy LetY’, Y" € Ug g be such that [E;,Y] = Y'K; — L;Y".

Using (3.7), we have
(3 ®id)([1 ® E;,Cpa;]) = Z b(f;ai)n(E)({Hai)’Y)[Ei’F;—ﬁ—m')]

XY

= | B, ) BRI EE ) P = (B Y] (B
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Now using (3.4), (3.7), and (3.11), we compute
(Hy®id)(Cs(E; ® L;) — (E; ® K;)Cg)
= Z bO(ELE. V) FPL; - n(EEP Y)KFP)

= Z bydn(E; @ ED, AY)FPLi - n(EY ® E, AY)KF)
= > bA-nEL Y FP L+ n(EL, YK
=-Y"Li+ K;Y' = [E;,Y] = (1y ®id)([1 ® E;,Cpa,])-

Then (3.9) follows since n'“ﬁgxui_ﬁ is non-degenerate; (3.10) is similar. O

Lemma 3.4. Let Cj = (K ® 1)(S ® id)(Cp). For every e € N,

Z CsC) = 60 = Z CC, (3.12)
B, veng B. veNld
By=a By= a

Proof. If @ =0, (3.12) is clear. Assume a # 0. We show the first equation of (3.12). Since
Mg xug_ is non-degenerate, it suffices to show that

D (07 ®idy)(CsC) =0, forall ¥ eug . (3.13)
B, YENg
Bry=a
Write A(Y) = 3 5 yeng YBY(1 ® LP), where Y BV ¢ u(Lﬁ ® uaiv. Further write Y&Y = 3 Y—(?:Q ®
B+y=a
Y_(fnfl)', where Y(ﬁ Ve ug_ and Y_(f; N e u;_v. The left hand side of (3.13) is
By eNd x
B+{y:(9 ¥ y
— Z Z b(ﬁ)b(*/) /U(E(ﬁ) Y:{([jn‘()’Lﬁ)n(K«/S(Ei\f)), Yﬂ(,ﬂr’n\{))F;ﬁ)F;’{)
B yeng "N
By=a
=, Z BB EL XL LS EYKN). YR EY
Boyeng "on
,B+i{:(3 ey

DD B aEL Y P mEY K, ST L) FPEY
B, yewg "y
,B+y:(9 Y

Z Z b(ﬁ)b(*/) IU(E(ﬁ) Y:/(/jn ()’LB)H(EJ(J)KY,S—I(YB({fr;lY)))Ly

vy T

By=a
Z Z b(Y) b(fx)TI(KY’ LY)(Z U(E(B) K/(/an)’)n(Ei\:)’S—I(Yﬁ({frz{)))LY
B, yeng x.x, m
B+Y/ a v
= D, D XS
B, yeNg m
By=a
> B LST W) = s(r) = 0
B, yeNg§ m

Byv=a
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where we use (3.8) and the grading of u4. The second equation of (3.12) is obtained in a similar
way. O

Lemma 3.5. The following identities hold:

(deA)C) = Y. ciVe 1o 1sLY), (3.14)
B+y=a

Agid)(C) = > il K e11). (3.15)
B+y=a

Proof. We show (3.14). Given X € “;Y and X, € 11:;/3, we compute

(id ® 75, @15,)(id ® A)XCo) = Y Byin(XaX:, Fy )EL

X, Y

=XXi = Y B8 Y (e FE (X, FSHES EY

y'x"" y'x
"ot
XLYTXLYy

. . N 1,3) ~(1,2
= (id @ 75, ® 75 )(C5 ey ),
where we use (3.7) twice. Since

(d@A)C) e Y up, ®ug By LY,
B+y=a
we prove that (3.14) holds. Similarly, we obtain (3.15). O

B. R-matrix for finite dimensional ug-modules

Fix Vi, V5, V3 three finite dimensional 1-modules, with associated k-algebra homomorphisms
Px i ug — Endi(Vy), x € {1,2,3}, such that there exist an element v, € V, and a k-algebra homo-
morphism A : ug — k for each x € {1,2,3} satisfying

X - v = Ax(X)vy forall X € uf, V= 1ig - 0y
E;-v,=0foralll <i<a@.

If ¥=Y.F'®F" €End(Vy®V,) = Endp(Vy) ® Endi(V,)), 1 <x<y <3, we set F&¥e
Endk(Vl RV, ® V3) = Endk(Vl) ® Endk(Vz) ® Endk(V3) as

T(x,y)zz]?;/@?;/'@idv} ifx=1y=2,
z
FeO= > Foid,@F," ifx=1y=3
z
T(X’y)zidw@Zﬁ/@ﬁ” if x=2,y=3.
z

Now define f,, € GLk(V, ® V,)) by
Fry(Xvy ®Yv,) = x(B,@)A(KP)A, (L") Xv, ® Y,

ap Set also

fora,,BeNgandXeu;_a,Yeu

ny = Z (px ® py)(cﬁ)’ ny = nyf;;~
/SeNg

Lemma 3.6. Foreach1 <i<80and X € Vi®V,

Fry(E; @ DX) = (E; ® L7 fry(X), (3.16)
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(1 ® ENX) = (K; ® E;) fry(X),
fxy((Fz ® I)X) = (Fi ® Li)fxy(}v()’
fey(1 @ F)X) = (K" ® Fy) fry(X).

Proof. We show (3.16). For each X € ua_ﬁ, Y e ua_y,

Fry(E: ® DXv, ®Yvy) = fry(EiXvy ® Yvy)
= x(v, B — @) A(K A, (LP*)E:Xv. ® Yv,
=(E;® L") f1,(Xv, ® Y0,).

Thus, we have (3.16). Similarly, we obtain (3.17), (3.18), and (3.19).

Now we are ready to obtain the R-matrix for the modules V,, 1 < x < 3.
Theorem 3.7. (i) Cy, € GLi(V, ® V) and

-l Z (px ® p, N(KP ® 1)(S ®id)(Cp).
,BeNg

(ii) For every X € 1,

Rey(px ® p )(AX)IR, = (px ® p,)((7 0 A)(X)).

(iii) The following identities hold:

D (p18 p2® pa)((A ®idi)(Cp)) = C3 () eV iy,
[)’ENH

D (1@ p2® p)((idiy ® AYCp) = Ciy Ay C Ay Y.
BENG

(iv) The elements R, satisfy

R(l 2)R(1 3)R(2 3) _ R(2 3)R(1 3)R(1 2

Proof. (i) This immediately follows from (3.12).

(3.17)
(3.18)
(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(ii) As we have algebra maps on both sides of the identity, it is enough to prove it for the

generators of 114, and it follows by using Lemmata 3.3, 3.6. For example, for each XeV,®

(3.16), (3.17), (3.9), we have

(RyyA (E;) = (1 0 ANE)Ry )X = (Cuy fr)AE:) — (T 0 AYEN)Cuy fr,)X

= > (CofipE;®1+Ki®E)— (18 E; + E; ® K)Cpf )X

ﬁeNg

- Z (Co(E;® Li+ 1@ E;) - (1 ® E; + E; ® K))Cp) f, X
ﬁeNg

= 3 (11 ® Ei.Cpuar] - [1 ® E0CaD f X
ﬁeNg

=- > [eEGlfX=

BENS, B-a;¢NG

V. by
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(iii) It can be proved by using Lemmata 3.5, 3.6. In fact, we compute for each X € V, ® V,,,
1,3), +(1,30\=1,~(2,3) £(1,3) 3 1,3); 2(1,3N=1;~(2,3) £(1,3), 3
cu e Y= Y eI e A )
a, yeNg
> e ek e 1@ DX
@, yENg

D (01®p2® p)((A®idi)(Cp)X,
BeNg

(iv) In this case, the proof follows by Lemma 3.3 and the previous claims

(1,2) p(1,3) p(2,3) _ p(1,2) ~(1,3) £(1,3)\~1~(2,3) £(2,3)\~1
Ry R;TR:T = Ry 7C(fi37) Gy (f37)

= > RSP (018 p2® pa)((A®idi JCN(f3 ) (155!
BeNd

= > (P18 p2® p3)((T 0 A) @ idy NCp)RYV(f13 ) (57!
BeNg

_ »(23) 2231 ~(1,3) £(2,3) p(1,2) 0 ~(1L,3N=1, £(2,3~1
=Gy (fzs ) Cis 5 Ry (fl3 ) (fzs )

— p(23)p(1,3) £(1,3) £(2,3) p(1,2) ¢ £(1,3)\~1, £(2,3)y-1
= Ry TRy Ry T (fi3T) (5

_ R p(1L3) p(1.2)
_R23 R13 RIZ '

IV. R-MATRICES OF QUANTUM DOUBLES OF NICHOLS ALGEBRAS WITH FINITE
ROOT SYSTEMS

For this section, we fix q such that M = |AY| < co. First, we recall a series of results from
Ref. 12, Sec. 4, which will be useful to compute explicitly the universal R-matrix. Then, we relate
them with the chains of coideal subalgebras of Ref. 10 and compute the desired R-matrices of quan-
tum doubles of Nichols algebras with finite root systems. Finally, we show some applications of the
previous results to relate different PBW basis (or a Lusztig-type Poincaré-Birkhoff-Witt basis).

A. PBW bases and Lusztig automorphisms

Set an element w = s?lsiz - -+ 8;,, of maximal length of W;. Denote

ﬁk = Sil s Sikil(a’ik), 1< k < M, (41)

so B # Brif k # 1, and Al = {Bi|]1 < k < M}. Set g := x(Bx. Br), and Ny the order of g;, which
is possibly infinite. As in Ref. 12, Sec. 4, set

Eﬁk = Tl e Y}k,l(Eik) € (u(‘;)ﬁ]\niﬁk = Tl_] e ’T[;;I(Eik) € (u;)ﬁk’
Fﬁk = Til o 'nk—l(F}k) € (u;)ﬁk’Fﬁk = Tz_l T Ti;_l(Fl‘k) € (u(;)ﬁk’
forl <k <M.
Theorem 4.1 (Ref. 12, Theorems 4.5, 4.8, 4.9). The sets
{ESMEEM-T, --E;I‘ 0 <ap <N, 1<k< My},

Bm  Bm-1
PPy P
{EpnEgn - Eg 10 <ax < Ni, 1 <k < M}
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are bases of the vector space g, and the sets

{FEZF/?A”ZT“‘FZE 0 < ap < N, 1 <k <M},

{FymFgu™ - Fgll0 < ap < Ni, 1 < k < M}

are bases of the vector space ug. Moreover, for each pair 1 < k <l < M,

Ep Ep, = x(Br: B)Ep, Ep, = Z Cagitsens al—lE/L;,’:: e E,Z’Ilj € u:lr’
Eﬁkiﬁl - Xﬁl(ﬁk’ﬁl)fﬁziﬁk = Zgakw---,uz-lE;z:: T E;;:: € u;,
FBkFﬁz - X(ﬁk’ﬁl)FﬁzFﬁk = Z dak+1 ----- atle/?,f:ll T F/;l,l:ll € 11;,
Fﬁkﬁﬁl - X_I(Bk,,Bl)Fﬁlfﬁk = Zaakﬂ’---’aqugfﬁ ... Fg{z_—ll c u;,

forsomecay,, ...a;_Capiy,..ap_ @ d L€k O

L N L had <) TS PR

Note that EﬁkE.Bl - X(ﬁk’ﬁl)EﬁlEﬁk = [Eﬁk’EBl]c‘
Now we want to describe the coproduct of the elements of these PBW generators. First, we
introduce the following subspaces of 114:

Bi = <{E;’Ea’_l . E;ll |0 < ar < Ni}) € u:;,

1B

Ci= ({EGMEM1- - EZNAj > | st a; #0}) Cug,
D= ({EGMEM-1. . EgU[Aj < st a; # 0}) Cug,
BLi= ({FplFpl™l - FRl10 < ax < Ni}) € uig,

cl= LEGMFGM - Fgl 3] > 1 st a; # 0}) C ug,
D! = (EgMFGM - FglAj <1 st a; #0}) Cug,

1 <1 < M;(S) denotes the subspace spanned by a subset S of 1.

Proposition 4.2. B. (respectively, B') is a right (respectively, left) coideal subalgebra of ug
(respectively, ug).

Proof. Foreach 1 <1 < M, setw; = s?ls,-2- -+ 8;;, and the corresponding right coideal subalge-
bra u:{ [wy] of ua' (for the braided coproduct A) as in Theorem 2.6; then its Hilbert series is

]
7-{11:{[1111] = ]—[ qu(XBl)-
j=1

By the definition of ug[w;] in Ref. 10 (which involves the 7}’s), it follows that Eg, € ug[w] for
each 1 < j < k. Therefore, B, C ug[w], because ug[wy] is a subalgebra. But both Ng-graded vector

subspaces of uy have the same Hilbert series by Theorem 4.1, so B! = ug[wy] is a right coideal
subalgebra.
The statement about B is analogous because 1y = B;?p. i

Corollary4.3. Foreach1 <1 < M,
A(Eg,)e Eg,® 1+ 1® Eg, + B ' @ C,
A(Fp)€ Fg,®1+1® Fg, +CL® B\
Proof. By the previous Proposition and the fact that u:{ is a graded connected Hopf algebra,

aj_ a
AEp) = Eg ® 1+ 1@ Eg + > Egl - Ef @ Xa, _ay
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for some X, ..., € u; . Write these elements in terms of the PBW basis

,,,,, b b b
:ZCZH “IEMEMI.EI.
m

ar-1

Bm “Bm B1

Suppose that ¢3! # 0. Then f; = p, 20 biBi + Y20 4;B;» since 1y is Nf-graded. As j runs
between 1 and l -1, Theorem 2.3 implies that there exists i > / such that b; # 0 The proof for Fg,
is analogous. O

More generally, we can describe the coproduct of each PBW generator. In this case, we can
only describe the left hand side of the tensor product.

Proposition 4.4. Foreach1 <1 <M,1 <a; < N,

aj
é(EgllE;ll:ll...Egll) EZ (“l) E” ® EXTPEY-1 .. EH

Bi Bi-1 B1

+Egl - Egl® 1 + (DN B}) ®ug,

4 pal-1 FAP pai-1 aj P
A(F F,Bll )EZ( ) .31 F.Bll Fﬁ1®Fﬁl

ap , .- I 1
+1®Fﬁz g +uy ® (DN B).

Proof. We prove the statement for the Eg,’s by induction on /; the proof for the Fg,’s is
analogous. The case [ = 1is trivial, because Eg, = E;, is primitive, so

aj ai 12 aj—p
A(E; )_Z(p) Eb ® Eg'".
p=0 q1

Assume that it holds for £ < [. Now we use induction on g;. If a; = 1,
AEp By )+ Egy) = MEs)MEg ")+ Eg).

Therefore, we use inductive hypothesis, Corollary 4.3, and the fact that B;_; is a subalgebra to

conclude the proof. The inductive step on a; is completely analogous and close to the proof of

results involving the coproduct of hyperletters in Ref. 14. O

B. Explicit computation of the universal R-matrix

We will obtain now an explicit formula for the universal R- matrix when the Nichols algebra
is finite-dimensional. By (2.1), it is enough to compute bases of uZO and uSO which are dual for 7.
Such bases will be those of Theorem 4.1.

The proof is similar to the one of Ref. 4, Proposition 4.2, see also Ref. 22.

Remark 4.5. Setforeach @ = (ay,. . .,ay) € Z°
o a a 0 . ra a -0
K".—Kllu-Kg"eu;, LY = L' Ly’ eug.
Foreach E € qu"—homogeneous, let |E| € Z? be its degree. Therefore,
AE) = EnK'Fol @ E ). (4.2)

Analogously, for each homogeneous F € ug,
A(F) = Fiy® Fp L0, (4.3)
Proposition 4.6. Let 0 < a;,b; < N;, foreach 1 <i < M. Then,
M
a a a b b b a;
n (EguEg - ELER L 0) = [ ] 0usn @y, " (@)

where n; = n(Eg,, F,) is not zero for all i.
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Proof. We will prove (4.4) by induction on } a;, Y, b;; therefore, n; # O for all i because 7 is a
non-degenerate pairing. It is clear if >} a; = 0. If ) a; = 1, then the PBW generator is just Eg; for

some j. For this case, we apply decreasing induction on j. Note that n (E,gj, Fg 1’\‘; F ;; 1’\‘44:1‘ e Fgl‘) =0
when B; # 3 b B;, by Proposition 2.4. If 8; = 3}, b;5; and ; is a simple root, the unique possi-
bility is b; = 1 and b; = 0 for [ # j. If B; is not a simple root, then either b; = 1 and b; = O for [ # j
or there exists k > j such that b > 0 because the order is strongly convex. In the last case,

b pbr-1 | b1 _ I(Eg )
1 (B Pt il Fg)) = (Eg K ™7, B, )

by—1 bye_ b
n ((Eﬁj)(z)’FB/f Fﬁ:—ll o Fﬁll) =0,
asn ((E,;J.)(l)K 1Ep e Fﬁk) = 0 by Corollary 4.3 and inductive hypothesis.
Assume that )’ a;, Y, b; > 0, and we have proved the formula for sums smaller than these
two. Set k = max{i : a; # 0}, [ = max{j : b; # 0}, and suppose that k < [ (otherwise the proof is
analogous). By Proposition 4.4,

ag pag-1 . pal pbrpbi- | pbi

d (EﬁkEﬂk—l Eﬁl’Fﬁl Fﬁl—l Fﬁl)
g pak-l a1
=1 ((EﬁiEﬁiif e EghK o i Eﬁl)‘”',Fﬁz) :
ayapm-1 || Ak bi=1pbi_y b

n ((EﬁlEBM—l Eﬁk)(z)’Fﬁl Fﬁl—l Fﬁl)
:(b) S (Eak_lEak—lluEal Fbl’lFbl—l”_Fbl)

DaMOLN \Eg, Epy B’ Br T Bi- B/’

so the proof follows by inductive hypothesis. O
>0 , <0

Now we obtain a formula for the scalars ;. The algebras ug”, ug™ are canonically No-graded;
we denote by d(X), d(Y) the degree of the homogeneous elements X € u;o, Ye u(fo. In fact, if

X € (6. Y € (u50)_p, B = X7 nier; € N§, then d(X) = d(Y) = X7_, n;.
Lemma4.7. ni = (=) 80 forall 1 < k < M.

Proof. By induction on k, it is easy to prove that

Ep, Fp, = Fp Ep, = KP* — LPx. (4.5)
On the other hand, by (3.2), we have that
Eg, Fg, =1 ((Eg)1,(Fp)1) 1 ((Eg 3. S((Fg,)3)) (Fp)2(Eg, ). (4.6)

Using (4.2) and the fact that u§0 is Ng-graded, we deduce that the unique term in A(z)(Eﬁk) where
appears KPk in the middle is KPk ® KP* ® Eg, . To compute the coefficient of this term in (4.6), it
is enough to look for the term 1 ® 1 ® Fg, in A(z)(FBk), because the components of different degrees
are orthogonal for ;. Using the antipode axiom and that u(fo is graded, we have that S(Fg,) is

written as (—1)4% ﬁk)F'BkL_ﬂk plus terms of lower degree. Then the coefficient of KPk in the right

hand side of Eq. (4.6) is (- ey, using again the orthogonality of the components of different
degrees. O

We recall a generalization of Proposition 2.4. The main objective is to consider bosonizations
of Nichols algebras by abelian groups, not only free abelian groups but also their quantum doubles.
Similar generalizations can be found in Refs. 1 and 20 and also in Ref. 5 for finite groups. R

Set q as above and two abelian groups I', A. Assume that there exists elements g; € I', y; € T’
such that y;(g;) = gij, and elements /; € A, A; € A such that Mj(h;) = gj;. Assume that there exists a
bicharacter 4 : I' X A — K*, such that x(g;, h;) = g;;. For example, T’ = A = Z°.

Set V € {LY D as the vector space with a fixed basis Ej, . . ., Eg such that E; € VI, W € FAY D

to the vector space with a fixed basis Fi,...,Fy such that F; € th . Let B = Bg#kI' and B’ =
(BgH#KA)“P,
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Theorem 4.8. There exists a unique skew-Hopf pairing n : B ® B’ — K such that for all 1 <
i,j<6Oandallg €T, heA,

n(g.h) = u(g.h),  n(E.Fy) ==6ij,  n(Eh) =n(g.F;)=0. 4.7

It satisfies the following condition: for all E € ug, F € ug, g € B, h € B,
n(Eg.Fh) = n(E,F)u(g.h). (4.8)
The restriction 1|g, Byt coincides with the pairing in Proposition 2.4. O

We work with the case A = T, T a finite group, y the evaluation bicharacter, and h; = y;, b = g;
under the canonical identification of the characters of I with I'. In this case, n7 is non-degenerate.
Call ugq to the Hopf algebra corresponding to this skew-Hopf pairing, following Subsection II A,
and denote B = u* B = u*O by analogy with Secs. II-III. Two dual bases for 7|, .o, are {g }ger,
{04 }ger, where 5, = || Zyer v(g~ ") y. Therefore, it has an R-matrix of the form

1
25 ®g= T Z Y@Eg )y e®s. (4.9)
gell yel"
Theorem 4.9. The universal R-matrix of 14 is given by the formula

R = (]_[ exp,, (-D"PFy, @ Eg ) ) Ry, (4.10)

where the product is written in decreasing order.
Proof. By Proposition 4.6 and Theorem 4.8, the sets

{EgA";---EE:g:OS a; < Nj,g €T},
-1

M
(n(ai)qi!nfi) F/?AA;I . 'Fgllég :0< bi < Ni,g el

are bases of 1120 ;0,

R-matrix is g1ven by

respectively, which are dual for r7. As in Subsection II A, a formula for the

1

#e3 3 ([len) rieorsomzy s

g€l 0<a;<N;

(e

gel

which ends the proof. O

C. Further computations on convex PBW bases

We can refine the coproduct expression of each Eg. In consequence, we can obtain a family of
left coideal subalgebras, induced by products of the same PBW generators. Foreach 1 <1 < M, let

L= {EGMEGM™ - Egl0 < ax < Ni}) C g,

l_ = <{FB“AI\;IFEAA;I 11 . 'Fﬁall |0 < ap < N¢}) C u;.
Lemma 4.10. Foreachl <1 < M,
A(Eg)€ Eg,®1+1® Eg, + B @B,

A(Fg) € Fg,®1+1® Fg, + B @ B/
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Proof. Write both sides of A(Eg,) as linear combinations of the elements of the PBW basis and
take a term
aj-1 . pa by by bk
Eﬁz-1 E,31 ® EﬁMEBM—l Eﬁk
appearing with non-zero coefficient ¢, where k is such that b; # 0. Using the orthogonality of the
elements of the PBW basis,

by by 2k
[E2M E EK|
ﬁk,

ar-1, ., g4 Bm ' By- a1, ., g9
0¢CTI(E,3H EB1K M Bm-1 F F

Bi-1 Bi

by bm-1 | Pk pbmpbyv-1 | bk
Mgy Epn B Fpn Py Fg)

_ ai-i . paipbvm pbv-1 | b
= n(Eﬁl’FB,,l F,BlFBM FBM—I Fﬁk)'

Suppose that k < /. Using last part of Theorem 4.1 repeatedly, we see that

-l paipbm by b l
<= Fﬁl—l Fﬁ1FﬁM FﬁM—l Fﬁk €D,

son(Eg,, z) = 0, a contradiction. Then k > [, and we end the proof. O

Proposition 4.11. BL_ (respectively, BL) is a left (respectively, right) coideal subalgebra of uy
(respectively, ug).

Proof. Ttis a consequence of Lemma 4.10 and last part of Theorem 4.1. O

For the last part of this section, we prove a result generalizing Ref. 22, Theorem 22. It estab-
lishes the uniqueness (up to scalars) of a PBW basis determining a filtration of coideal subalgebras,
and it is useful to compare PBW bases coming from Lusztig isomorphisms as in the previous results
and PBW bases from combinatorics as Ref. 14. Note that the first kind of PBW bases gives right and
left coideal subalgebras, while some examples of the second family give left coideal subalgebras,
see Ref. 4, Sec. 3.3.

Theorem 4.12. Let (Eg) pead be non-zero elements of g, such that Eg € (uq)p, and there exists

an order By > ... > B on the roots such that, for each 1 < k < M, the elements EZ?"; .- EZ’;
0 < aj < Ng,, determine a basis of a subspace Y, which is a left coideal subalgebra of vg. Then
the order on the roots is convex.

Moreover, if (Ep) peat denote PBW generators for the corresponding expression of the element

of maximal length of ‘W, then there exist non-zero scalars cg such that Eg = cg Ep.

Proof. The convexity on the order follows from the fact that the chain of coideal subalge-
bras Yy C -+ € Y| = B4 coincides with BY ¢ --- ¢ Bl = B,. The proof of this fact is exactly as
in Ref. 4, Theorem 3.16. That is, Y, = B’j forall1 < k < M.

For the second statement, write Eg, = Y, c(ay,- - -,aM)EgAI‘: e ESI‘ If c(ay,---,ap) # 0, then
Bk =2;a;Bj, s0 ap =1, aj =0 for all j # k, or there exists j < k such that a; # 0. The second

case is not possible because Eg, € Y = BX. Therefore, Eg, = cg, Eg, for some cg, € k*. a

Example 4.13. Let { be a root of unity of order 5. Let q = (¢;;)1<;,j<> be a matrix such that

2
g =1, g0 =—1, qago = ¢ soits generalized Dynkin diagram is o ¢ o1, see Ref. 8. The
element of maximal length on its Weyl groupoid has a reduced expression wg = id%9s,52515251525152.
Then,

a1 <3a;+ ar <21 +ar < S5a;+3az
<3a;+2a; <4a1+3ar < a;+az < ay

is the corresponding order on the roots. We obtain a PBW basis with generators Eg, § € Al
using the Lusztig isomorphisms. Let I be a finite abelian group, g1,g2 € I, y1,¥2 € I such that
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vi(8i) = qij, s0 By can be viewed as a braided Hopf algebra on the category of Yetter-Drinfeld
modules of KI'. We define R; as in (4.9). By Theorem 4.9,

-1
R= Z (k_)§!F1 ® E} (1 ® 1= Fiata, ® E3“l+“2)

9
Z -1

(k) (3' F2a/1+02 ® E2(1/1+(22 (1 ® l + F5(l/1+302 ® E5(11+3az)
k=0 6"

4
Z (k) 'F3(11+2(12 ® E3Q’1+20’2 (1 ® 1 - F4(1/1+3a’2 ® E4Cll+3(l/2>
=0

9
-1
Z WFGI“YZ ® Ealﬂrz (1 ®1- F2 ® EZ) Rl-
We can obtain also a PBW basis of hyperletters Eg = [(4]., B € A}, associated to Lyndon

words £z as in Ref. 14. We compute easily the corresponding Lyndon words using Ref. 4, Corollary
3.17,

_ _ .3 _ .2
loy = X1, U304y = X1X2, Caa 430y = X]X2X1X2X2X (X2,
_ _ .2 _ 2 2
Loy = X2, Cra 4y = X1X2, Csq 430y = X]X2X|X2X X2,
2
Coyray = X1X2, C30 420y = X]X2X 1 X0.

We compute using the Shirshov decomposition, see Refs. 4 and 14 and the references there in,
Eal = X1, E31y1+az = (adcxl)sxb
Ea/z = X2, E3(l/1+2(12 = [E2(11+(xzs E(1/1+(12]C7
E(11+(l2 (ad xl)x2a E4(11+302 = [E3CY|+2CL/29 Eal+(lz]c’
E2(11+02 (ad -xl) X2, E501+3¢12 = [E20|+a2, E3(11+2(12]c~

By the previous theorem, there exists ¢g € k™ such that Eg = ¢g Eg. It can be computed as the
inverse of the coeflicient of £z in Eg, because £z appears with coefficient 1 in Eg.
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