
Ultrasonics 65 (2016) 315–328
Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/locate /ul t ras
Layered material characterization using ultrasonic transmission. An
inverse estimation methodology
http://dx.doi.org/10.1016/j.ultras.2015.09.010
0041-624X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Mathematics, Engineering School,
National University of Mar del Plata, Mar del Plata, Argentina.

E-mail addresses: gmessineo@fi.mdp.edu.ar (M.G. Messineo), grus@ugr.es
(G. Rus), elicabe@fi.mdp.edu.ar (G.E. Eliçabe), gfrontin@fi.mdp.edu.ar (G.L. Frontini).
María G. Messineo a, Guillermo Rus b, Guillermo E. Eliçabe c, Gloria L. Frontini a,c,⇑
aDepartment of Mathematics, Engineering School, National University of Mar del Plata, Mar del Plata, Argentina
bDepartment of Structural Mechanics, University of Granada, Spain
c INTEMA-CONICET Material Science and Technology Research Institute, Mar del Plata, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 May 2015
Accepted 16 September 2015
Available online 28 September 2015

Keywords:
Ultrasound
Layered materials
Inverse problem
Parameter estimation
Mechanical properties
This paper presents an inverse methodology with the aim to characterize a layered material through the
identification of acoustical and mechanical properties of its layers. The framework to accomplish this
objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detec-
tion and localization of discontinuities, as well as to the identification of physical properties, in order to
predict the material behaviour.
In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal

is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer.
These parameters are directly related to relevant material properties, such as the speed of sound, density,
elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost
functional formulated as the least squares error between the waveform calculated using an equivalent
model, and the measured waveform obtained from ultrasonic transmission tests.
The applied methodology allowed the accurate estimation of the desired parameters in materials com-

posed of up to three layers. As a second contribution, a power law frequency dependence of the wave
attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission
experiments.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

This paper presents a methodology to characterize layered
materials solving an Inverse Problem (IP), based on an idealized
model of the physical problem and using data obtained from ultra-
sonic wave transmission measurements.

Layered materials are a particular sort of composites, where the
layers can be made of homogeneous materials, like polymers, met-
als or ceramics, or can be composed of fibber or particle reinforced
materials [1,2]. In the course of time, more and more applications
require the use of composites, which combine different materials
properties in order to fulfil specific characteristics. Therefore, the
study of composite materials is of great importance for the evalu-
ation of their performance and for monitoring their properties.

Structures that can be studied like layered materials can be also
found in nature. Rocks, dental pieces, bones, or other biological
tissues (skin, fat, muscle) [3,4] are examples of these structures.
In particular, in the case of biological tissues the detection and
localization of the mechanical changes that suffer the structure
when affected by pathology are the basis of many diagnosis tools.

Some methods widely used to identify material properties usu-
ally involve destructive testing, such as film indentation [5] or ten-
sile tests [6], from which the values of the elastic constants can be
inferred, based on the fitting to experimental curves. However,
quantitative non-destructive evaluation (NDE) techniques are nec-
essary to perform remote tests or whenever we need to assure the
integrity of the analyzed piece, i.e., when the studied sample is on
its service period or when it is a living tissue.

NDE techniques include, along with the selection of the mea-
surement techniques, the experimental setup, the validation of
physical models and the reliability of the computational methodol-
ogy. The measurement technique chosen to carry out the tests in
this work is ultrasound, high frequency acoustic waves capable
to inspect both, solids or liquids. Ultrasound is used typically in
the detection of defects, cracks, pores, or any lack of continuity
in the sample. However, a more advanced use of this technique,
since it involves a more sophisticated analysis of data, is the
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identification of acoustical and mechanical properties of the mate-
rial, the interest of this work.

Amongst the works that are based on ultrasonic NDE
techniques, the determination of the acoustic impedance profile
reported in [7] is one of especial interest. The data is the reflection
impulse response of the ultrasonic wave, considering that the
transducer response and the medium attenuation are known.
The proposed application is the detection of plaque formation in
the arteries using layered phantoms of liquid layers separated by
thin polymeric membranes as test objects.

Ultrasound is frequently used to evaluate biological materials
considered as layered structures. Leite et al. [8] perform a theoret-
ical and computational study of ultrasonic wave propagation
through three layers: fat, muscle and bone. This structure is of
particular interest in therapeutic applications, especially at the
interface muscle–bone, where excessive heating can occur during
ultrasound therapy in soft tissues.

The complex nature of ultrasonic waves has led in recent dec-
ades to devote large amount of resources to study the theoretical
and numerical aspects of the physical problem of wave propaga-
tion [9,10]. Methods to analyze and simulate the generation,
propagation and interactions of a wave in a medium have been
developed [11–13]. The Finite Element Method (FEM) or the
Boundary Element Method (BEM), are proved and robust tech-
niques that can be used to predict and visualize the wave propaga-
tion in structures with diverse geometry and complexity [14]. The
limitation of these methods lies in the time required to process the
code, related to the high resolution both, spatial and temporal,
necessary to accurately represent the propagation of an ultrasonic
wave.

Considering certain assumptions, the test to carry out the
intended characterization can be well represented by equivalent
models. In this paper, a model formulated in the frequency domain
based on a transmission line (T-line) is used [15]. The model allows
the determination of mechanical stresses at the interfaces of the
samples, which using the electrical–mechanical analogies corre-
spond to the electric tensions in a transmission line cascade. The
same model was used in [16] to represent the propagation of an
ultrasonic wave through a dental piece, composed by successive
layers: enamel, dentin, pulp. The use of an equivalent model may
be appropriate when it comes to optimize the computational
resources. In this particular case, the transmission line model gives
the possibility to represent the wave propagation through a lay-
ered material without numerically solving any differential equa-
tion. This feature provides an excellent computational efficiency.
The disadvantage of these models is that they usually have restric-
tions that the real physical problems not always fulfil; therefore
the obtained results may have errors.

Due to the complexity of the physical models that represent the
studied situation it becomes necessary a direct comparison of the
experimental data with the theoretical results, given by the solu-
tion of the so call forward problem. The IP provide a resolution
framework for this sort of situations. Previous works have followed
this approach. For instance, in [17] a method is presented to eval-
uate damage in Carbon Fibbers Reinforced Polymers (CFRP), which
are widely used in industry, especially in aeronautics and automo-
tive industries, due to its excellent relation weight-resistance. The
evaluation is accomplished solving an IP to identify mechanical
properties that allows monitoring the structural health of a piece
for damage assessment or quality control. The datum is the wave-
form recorded at the end of the material in a transmission test
[18,19], and the model used to represent the physical problem is
an equivalent model based on the Transfer Matrix Formalism [20].

Hägglund et al. [21] carry out an integrity evaluation of
an adhesive layer between two Pyrex dishes. They use an
ultrasonic pulse-echo test, and the information contained in the
measurements allowed obtaining a set of parameters from a max-
imum likelihood estimator.

Another application of ultrasound in biological tissues is found
in [14], where Rus and García-Martínez dealt with the adhesion of
nanostructured TiO2 orthopaedic implants. An IP is solved to char-
acterize the elastic modulus of each layer using FEM for the phys-
ical problem.

As addressed, the transmission line model is used in this work
to represent the forward problem; the following two sections con-
tain its description. Parameter estimation IP, formulated as the
minimization of the least squares error between the experimental
data and the theoretical functions obtained from the transmission
line model, is introduced in Section 4. Also in this section, the pro-
posed numerical resolution methodology based on one previously
developed [22], is summarized.

In order to take into account the effect of wave attenuation, a
thorough analysis performed based on the solution of the IP
obtained using simulated measurements is reported in Section 5.
In this section, the robustness of the methodology under modelling
errors was also considered.

Finally, in Section 6 the inverse methodology was validated
using experimental measurements. As a result, a set of parameters
related to acoustic and mechanical properties of the layers of sev-
eral materials could be identified.
2. The physical problem and the equivalent model

Ultrasound testing consists, generally, in recording the response
generated by the propagation of an ultrasonic wave through a
medium, either to detect discontinuities or to accomplish material
characterization. Waves can take different modes, according to the
particle oscillation direction and the wavefront geometry. A plane
wave is one in which all the material particles oscillating in phase
are on the same plane, and the oscillations can be longitudinal
(P-wave) or transversal (S-wave) to the propagation direction.

P-wave propagation in an elastic, homogeneous, isotropic and
non attenuating medium can be studied in one direction, and it
is represented by the one-dimensional wave equation:

@2uðx; tÞ
@x2

¼ 1
c2

@2uðx; tÞ
@t2

; ð1Þ

where u(x, t) is the particle displacement and c is the speed of sound
in the medium.

The proposed methodology to carry out the material character-
ization in this paper is based on an equivalent model which repre-
sents the propagation of P-waves, and allows obtaining the exact
solution of the wave equation (Eq. (1)) in two points of a homoge-
neous material [15]. This model is derived from the electrical–
mechanical analogies between voltage, V, and mechanical stress,
r, and between electric current, i, and particle velocity, v.

The equivalent model implies a significant idealization of the
physical problem, since rarely waves present in the material are
only P-waves. For instance, discontinuities or changes in consis-
tency can affect the wave causing phenomena such as scattering,
reflection, diffraction or mode conversion. Nevertheless, a variety
of real situations can be well represented by this model, as we ana-
lyzed in a previous work [22]. We simulated the ultrasonic P-wave
transmitted through a layered material using both, the equivalent
model and FEM and evaluated the accuracy with which the equiv-
alent model reproduces the physical problem. Furthermore, this
comparison allowed verifying the improvement in the computa-
tional efficiency introduced.

A material composed by N homogeneous layers, of thickness di
and density qi, can be represented by a cascade connexion of N
transmission lines (T-lines) as shown in Fig. 1, where



Fig. 1. N-layers material and its equivalent representation.
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Z1i ¼ jZi � tanðxsi=2Þ
Z2i ¼ �jZi= sinðxsiÞ

: ð2Þ

Zi = qici is the acoustic impedance of the i-th layer, si = di/ci is the
corresponding wave transit time, and ZL represents the acoustic
impedance of the medium in contact with the end of the analyzed
sample.

Mathematically, the model is represented by a matrix product
relating the mechanical stress, r⁄(x), and the particle velocity,
v⁄(x), at one end of the material in terms of the same quantities
at the other end. These functions are obtained as the Fourier trans-
form of the temporal stresses and velocities, thus they are both in
the frequency domain:

r�
Nþ1ðxÞ

v�
Nþ1ðxÞ

� �
¼

Y1
i¼N

cosðkidiÞ �jZi sinðkidiÞ
�j sinðkidiÞ=Zi cosðkidiÞ

� � r�
1ðxÞ

v�
1ðxÞ

� �
: ð3Þ

In Eq. (3) the arguments of the trigonometric functions fulfil the
relation kidi =xdici =xsi, where ki =x/ci is the wave number of the
material corresponding to the i-th layer and x = 2pf is the angular
frequency of the transmitted wave, with f in MHz.

The model parameters, Zi y si, drive to the calculation of the
P-wave modulus,M, of each layer through the well known relation:

Mi ¼ c2i qi ¼ c2i
Zi

ci
¼ di

si
Zi: ð4Þ

This modulus is defined as the ratio of the stress in the wave
propagation direction, rxx, and the strain in the same direction,
exx, considering plane strain:

M ¼ rxx

exx
; ð5Þ

and it is related to the Lamé parameters, k y l, as M = k + 2l.
Usually, in order to characterize the elastic mechanical proper-

ties of a material, the tensile or Young modulus, E, is used, but this
modulus is related to the P-wave modulus by Eq. (6),

M ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ m : Poisson relation: ð6Þ

E is calculated measuring the speed of sound in rods or thin bars,
where the material spreads out at right angles to the wave [23].
When the material has a breadth at least comparable to the wave
length, it cannot move sideway and the propagation is faster than
in a rod. This is the reason why the P-wave modulus is always larger
than de Young modulus.

The main advantage of the equivalent model is that it offers the
possibility of representing layered materials by doing a simple
matrix product instead of numerically solve differential equations.
The way in which the model is formulated makes unnecessary to
discretize the sample and, consequently, it is more efficient than
traditional numerical methods used to solve differential equations.
Due to the fact that the model is based on the one-dimensional
wave equation (Eq. (1)), it has the limitation of representing only
P-wave propagation problems. Modelling errors are introduced
when this assumption is not fulfilled.

3. The extended model

Natural materials produce the weakening of the wave intensity
as it propagates through the medium. This is a result of two causes:
scattering and absorption, which can be combined in the concept
of attenuation [24].

Scattering is the result of the inhomogeneity of the material,
produced by grains, pores or other discontinuities where the
acoustic impedance changes abruptly and therefore reflections at
different angles are produced. This causes the dissipation of part
of the energy and accordingly the transmitted amplitude of the
wave looks attenuated. Absorption, on the other hand, is directly
related to the losses of kinetic energy as the wave travels through
the material. Amongst the processes that produce this effect it can
be mentioned the viscous losses and the conversion of mechanical
to caloric energy.

Under certain conditions, for some materials it may be reason-
able to assume attenuation as a constant. However, in most of the
media, included some liquids, biological tissues, rocks, as well as
solid polymers, the ultrasonic wave attenuation shows a power
law frequency dependence [25,26], an empiric law expressed as:

aðxÞ ¼ a0xg: ð7Þ
In Eq. (7), a0 and g are two parameters that can be obtained by

fitting experimental curves. The parameter g takes any value in the
range [0:2].

In order to include the effect of attenuation in the model equa-

tions, a complex wave number, bk, has been considered:

bk ¼ x
c
� iaðxÞ; ð8Þ

where x is the wave frequency, c is the speed of sound, and a(x) is
the attenuation law.

When inserting the complex number bk in Eq. (3), the trigono-
metric functions arguments become:

bkidi ¼ x
ci

� jai

� �
di ¼ xsi � jaidi; ð9Þ

and it can be easily proved that the model representation is given
now as:

r�
Nþ1ðxÞ

v�
Nþ1ðxÞ

24 35¼
Y1
i¼N

cosðxsi� jaidiÞ �jZi
x x� jai disi
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jx

Zi x�j
ai di
si
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26664
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1ðxÞ

v�
1ðxÞ

" #
;

ð10Þ

where the impedances of the i-th equivalent transmission line, Z1i y
Z2i, are:

Z1i ¼ jZi
x ðx� jaiciÞ tan ðx�jaiciÞsi

2

� �
Z2i ¼ � jZi

x
ðx�jaiciÞ

sinððx�jaiciÞsiÞ

; ð11Þ

and ai = a0ixgi according to Eq. (7).

4. The inverse problem

4.1. Formulation

The aim of this article, as stated, is the estimation of a set of
parameters to characterize layered materials. Specifically, the



Fig. 2. Measurement scheme.
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parameters we intend to find are acoustic impedance, transit time,
and attenuation of each layer. This estimation will be the result of
the solution of an Inverse Problem (IP) posed as the minimization
of a functional expressed as the least squares error between exper-
imental data and the waveforms predicted by the equivalent
model (Eq. (10)). As the model is formulated in the frequency
domain, the data are the Fourier transform of the measurements,
which are the dynamic stresses registered at the end of the sample
during a transmission test, denoted as r⁄

m.
Considering discrete data for K different frequencies, the cost

functional is:

JðpÞ ¼ 1
K

XxK

xi¼x1

r�
Nþ1ðp;xiÞ � r�

mðxiÞ
� 	2

; ð12Þ

where r*
N+1(p, xi) is the stress obtained from the equivalent model

for each parameters vector and for each frequency. The parameters
vector contains the acoustic impedance, the transit time and the
attenuation of each layer, i.e., p = [Z1 Z2 . . . ZN s1 s2 . . . sN a01 a02 . . .
a0N g1 g2 . . . gN].

The minimization is carried out applying the Levenberg–Mar-
quardt algorithm, suitable for non linear least squares problems
[27].

4.2. Implementation issues

From de observation of Eqs. (3) and (10) it is clear the non-
linear relation between the unknown parameters and r⁄

N+1(x).
Therefore, it is not possible to directly evaluate the existence and
uniqueness of the least squares problem solution. We analyzed
these features in a previous work [22] and developed an inverse
methodology which allows determining the sought parameters in
materials composed by non-attenuating layers. As a previous stage
to the IP resolution, a detailed study of its characteristics was car-
ried out, analyzing the uniqueness and stability of the solution.

Although in that work the optimal solution was determined to
be unique, we detected the presence of many local minima. We
concluded that, in order to accomplish the convergence of the min-
imization algorithm to the global minimum, it is necessary to prop-
erly initialize the transit time values. This is achieved by doing a
previous estimation from the observation of the echoes in the mea-
surements. The identification of this parameter is more feasible
when we work with short-duration signals, i.e., wide bandwidth
signals.

Contrarily, the complete ignorance of the values of the charac-
teristic acoustic impedances does not implies an increase in the
difficulty of solving the inverse problem; actually, from arbitrary
initial values, the right solution was found.

As addressed, the acoustic transmission line model considers
the relation between stresses and particle velocities at both ends
of the sample. In order to solve the problem it is necessary to set
the boundary conditions. At the end where the emitting transducer
is placed, the boundary condition is the applied stress, r1. At the
final end, the boundary condition is represented by ZL, the acoustic
impedance of the medium in contact with the sample. For real
experiments, it is necessary to either be able of estimate the ZL,
or to measure it.

5. Simulated results

5.1. IP solution

In this section we analyze the IP solution for three samples,
each one composed by three attenuating layers. The measurements
were obtained simulating transmission tests (Fig. 2). The simula-
tions were carried out based on the equivalent model and
disturbing the so computed stress with additive gaussian noise
having standard deviation stde = 1% and stde = 5% of the temporal
simulated waveforms. The physical properties and the parameter
values of the considered materials are shown in Table 1.

As a first step we assumed constant attenuation (g = 0). The
excitation stress applied at the one end of the sample is shown
in Fig. 3. The real and estimated values of the parameters are dis-
played in Table 2, where the subscripts indicate the order of the
respective layer.

In Fig. 4, as an example, the cost functional evolution is shown
for Material 2, for a given initial condition and for two different
noise realisations. As can be seen, solutions converge.

The following step was the application of the inverse methodol-
ogy for lossy materials, assuming that the attenuation follows a
power law (Eq. (7)). Homogeneous as well as layered materials
with 2, 3 and 4 layers were simulated. Some of the materials
employed in these simulations are those used later in the experi-
mental verifications. Their properties and parameter are shown
in Table 3.

The stress displayed in Fig. 5 was used to excite the sample.
Note that it has a central frequency near 5 MHz. The measure-
ments were obtained, as in the previous cases, adding gaussian
noise with different levels of standard deviation to the temporal
computed stress.

The four parameters corresponding to each layer were esti-
mated. It was found that the estimation errors increase with the
number of layers. However, each layer parameters were estimated
from arbitrary initial values of Zi, a0i and gi with errors according to
the noise level.

Fig. 6 illustrates, as an example, the estimated values of Alu-3
parameters vs. noise standard deviation using simulated measure-
ments considering the homogeneous material, and when the Alu-3
sample is a layer of composites. It can be seen that for the homo-
geneous material, even with a high level of noise, the estimation
of the parameters is good, while most significant errors are
observed in the cases of 3 and 4 layers. In the same figure, the black
line indicates the true value of the parameters.

5.2. Influence of modelling errors

As stated before, the equivalent model represents exactly the
stresses at the interfaces of a sample because of the propagation
of P-waves. When working with experimental data, the P-wave
restriction is hardly fulfilled, since there are several causes that
can provoke wave diffraction, scattering, mode conversion or a
combination of these effects. As a consequence the wave front be
no longer plane or the particles oscillations be no longer longitudi-
nal, which implies that the model used in the proposed methodol-
ogy does not represent exactly the equivalent data, introducing
what is called modelling errors. As an example, in this work we
studied cases where the interfaces are not perfectly parallel.



Table 1
Lossy materials for the simulated measurements.

Material 1 Material 2 Material 3

Enamel Dentin Pulp Acrylic Aluminium Steel Aluminium HDPE LDPE

q (kg/m3) 3000 2000 1000 1190 2795 7870 2700 950 920
c (m/s) 6250 3800 1570 2654 6419 5960 6419 1124 1950
d (mm) 1.88 2.36 3.76 12.14 6.05 6.05 10 1 6
Zv (MRayl) 18.75 7.6 1.57 3.16 17.94 46.90 17.33 1.07 1.79
sv (ls) 0.30 0.62 2.39 4.57 0.94 1.01 1.56 0.89 3.07
av (Np/m) 34.52 50.42 57.55 73.66 13.82 11.50 13.81 46.00 57.55

Fig. 3. Excitation stress 1 and its amplitude spectrum.

Table 2
Estimated and true parameters values in lossy material.

Z1 (MRayls) Z2 (MRayls) Z3 (MRayls) s1 (ls) s2 (ls) s3 (ls) a1 (Np/m) a2 (Np/m) a3 (Np/m)

Material 1 True 18.75 7.60 1.57 0.30 0.62 2.39 34.52 50.42 57.55
Stde = 1% 18.57 7.56 1.57 0.3007 0.6213 2.3949 33.83 50.76 60.08
Stde = 5% 14.77 6.14 1.61 0.3010 0.6209 2.3940 31.38 27.58 127.66

Material 2 True 3.16 17.94 46.90 4.57 0.94 1.01 73.66 13.82 11.50
Stde = 1% 3.13 17.85 46.85 4.5744 0.9427 1.0149 73.85 13.80 11.60
Stde = 5% 3.01 17.49 46.59 4.5750 0.9433 1.0140 74.55 13.73 11.93

Material 3 True 17.33 1.07 1.79 1.56 0.89 3.07 13.81 46.00 57.55
Stde = 1% 17.32 1.07 1.79 1.5579 0.8897 3.0768 13.81 48.10 57.22
Stde = 5% 17.27 1.07 1.79 1.5579 0.8898 3.0764 13.79 56.80 55.87

Fig. 4. Functional evolution with different levels of noise in Material 2.

Table 3
True values of the parameters of the simulated attenuating materials.

Aluminium
(Alu-3)

Acrylic
(Acr-3)

Aluminium
(Alu-10)

Acrylic
(Acr-10)

Zv (MRayl) 17.87 3.05 17.01 3.19
sv (ls) 0.64 1.15 1.57 3.73
a0v 1.56e�4 1.22e�2 8.10e�3 8.18e�4

gv 0.78 0.54 0.49 0.67
a (Np/m) (f = fc) 109.9 136.4 38.2 86.3
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The proposed methodology was based on the assumption that
the layers are in perfect contact. However, this can be not true
due to the lack of adhesion or to the presence of cracks on the wave
path. These imperfections cause a reduction on the amplitude of
the transmitted wave dependent on the thickness of the disconti-
nuity and on the wave frequency [23]. Even when the gap filled
with air or liquid is a few microns wide, it introduces significant
errors in the estimates. We analyzed the effect of this kind of
modelling error using simulated experiments.
5.2.1. Non-parallel interfaces
The transmission line model is suitable to represent without

errors materials with perfectly plane and parallel interfaces. When
this requirement is not fulfilled, the usage of the model to predict
the transmitted waveform entails modelling errors.

The effects caused by these errors, are illustrated making use of
some particular cases where the interfaces are plane but not paral-
lel, and consequently the wave suffers diffraction and mode con-
version. The considered geometries are shown schematically in
Fig. 7 for three different cases (A: b = 1.14�; B: b = 2.52�; C:
b = 1.14�).

The layers of the simulated samples are assumed to be the same
as those in Material 1 and the excitation stress is that displayed in



Fig. 5. Excitation stress 2 and its amplitude spectrum.

Fig. 6. Estimated values for Alu-3 as a homogeneous material and as part of a composite of 2, 3 and 4 layers.

Fig. 7. Material with non-parallel interfaces.

320 M.G. Messineo et al. / Ultrasonics 65 (2016) 315–328
Fig. 3. The transmission experiment was simulated using the true
values of all the parameters with the exact model represented by
the Eq. (1) solved using FEM. The obtained stress function is differ-
ent from the one calculated using the idealized model as could be
expected and both amplitude spectra are illustrated in Fig. 8.

The IP was solved based on the equivalent model using as data
the simulated experiments. Table 4 shows the estimated parame-
ters values. Even when it can be seen that errors are more signifi-
cant than when there is no modelling error, the obtained values are
good approximations and give useful information about the acous-
tic impedances of each layer.

5.2.2. Fluid trapped at the interfaces
Another cause of modelling error is the fact that eventual and

uncertain presence of fluid (water, air, coupling gel) in the sample
interfaces was not taken into account in the model used to solve
the IP. A very thin gap, even a micrometric one, diminishes the
wave transmitivity between layers, which could lead to wrong



Fig. 8. Comparison of amplitude spectra with modelling error (black) and without
modelling error (grey).

Table 4
Estimated parameters in materials with non-parallel interfaces.

Case A Case B Case C

Material 1 Z1 (MRayl) 19.1760 20.5590 18.9920
Z2 (MRayl) 6.6468 7.2173 6.9716
Z3 (MRayl) 1.4750 1.4750 1.3979
s1 (ls) 0.3206 0.3271 0.3103
s2 (ls) 0.6343 0.6105 0.6300
s3 (ls) 2.4449 2.3712 2.5140

Fig. 9. Simulated scheme with water at the interfaces.

Table 5
Physical properties of water.

c (m/s) q (kg/m3) d (lm) a0 g

1650 1002 10 5.4967e�15 2

Table 6
Parameter values.

True

Acr-10 Z1 (MRayls) 3.195
s1 (ls) 3.724
a01 8.18e�4

g1 0.6660

Alu-10 Z2 (MRayls) 17.009
s2 (ls) 1.566
a02 8.10e�3

g2 0.4863

Acr-3 Z3 (MRayls) 3.052
s3 (ls) 1.148
a03 1.22e�2

g3 0.5387
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parameter estimation. To study this effect, the situation illustrated
in Fig. 9 was simulated, where the sample is composed by Acr-10,
Alu-10 and Acr-3 (Table 3), and layers of water with a thickness of
10 lmwere intercalated at the interfaces. The considered values of
water properties are in Table 5. Then, the IP was solved assuming
the material layers in perfect contact.

The estimated parameters values are shown, along with the
true ones and the values estimated without modelling errors in
Table 6. We observe that attenuation parameters are much more
sensitive to this kind of modelling errors than acoustic impedances
and transit times.

The curves representing the power law a(x) = a0xg for the esti-
mated and the true values of the parameters are depicted in Fig. 10.
It can be seen that, since the error in the estimation of the layers
parameters is larger as the corresponding layer is farthest from
the excitation stress, then the adjustment of the curves is worst
for the farthest layer. In order to verify the generality of this asser-
tion, the same case was simulated in opposite sense, i.e., from Acr-
3 to Acr-10. The curves obtained with the estimated parameters
are shown in Fig. 11.

6. Experimental results

6.1. Materials and experimental setup

The inverse methodology discussed previously was applied to
the material characterization of real samples using data obtained
from ultrasound tests. The transmission tests were performed on
samples composed by various materials. The analyzed samples
are formed by disks of metals and acrylic, which have been care-
fully mechanized in order to avoid surface roughness and get as
perfect as possible parallel interfaces. The measurements were first
taken on the isolated disks, and then on arrays composed by
stacked disks.

Two experimental configurations were used for recording data.
The first one, named as Configuration I, is displayed in Fig. 12 and it
involves the testing of a stack of disks joined by simple contact
with transducers coupled with oil. The electrical excitation signal
applied to the transducers is a 100 V pulse of nominal frequency
7.5 MHz, although the measured central frequency is near 5 MHz.

The oil layer necessary for coupling transducers to material can
usually cause problems in this sort of experiments, since it is not
possible to control its thickness and homogeneity. An alternative
to avoid this obstacle is provided by immersion measurements in
a water tank. In Fig. 13 we show this kind of experimental setting,
which we call Configuration II. The sample is immersed in a water
tank with an unfocused piezoelectric transducer acting as emitter.
As receptor, a hydrophone was used separated 124 mm from the
Estimated

With modelling errors Without modelling errors

3.192 3.153
3.736 3.724
9.6e�4 1.02e�3

0.6568 0.6532

17.383 16.849
1.563 1.566
1.53e�2 6.7e�3

0.4474 0.4972

3.026 3.075
1.159 1.148
4.76e�4 1.13e�2

0.7341 0.5446



Fig. 10. True and estimated attenuation curve with modelling error, transmitting from Acr-10 to Acr-3.

Fig. 11. True and estimated attenuation curve with modelling error, transmitting from Acr-3 to Acr-10.

Fig. 12. Configuration I with transducers in contact with the sample. Fig. 13. Configuration II in immersion tank.
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transmitter, and the sample was located at the middle point. The
disks were held together by linear clamps, applied the nearest pos-
sible to the site of measurement in order to avoid the water to
remain trapped in the interfaces, which can greatly influence the
data. In this case, the electrical signal is a cycle of a sine, 8 Vpp,
amplified 40 dB with central frequencies 5.5 and 6 MHz, and the
received signal is amplified 37.5 dB. The sample was explored on
a 2 square millimetres plane, parallel to the face of the material
and in 3 steps of 1 mm on each direction, permitting to obtain 9
measurements per sample. This allows averaging the signals or
the estimations obtained at working with each measurement.
The latter configuration avoids some errors caused by the cou-
pling layer when transducers are in contact with the sample, and
also allows focusing the ultrasound wave. However, this setting
is possible only in a laboratory test, while Configuration I can be
applied to pieces in service.

As a first step, we performed a direct characterization of the
homogeneous disks. The description of these materials is given
by the mechanical, acoustical and physical properties measured
on each disk and the true parameter values: acoustic impedance
and transit time. The samples are 40 mm diameter, cylindrical,
and they were weighted and measured in order to determine its



Table 7
Materials evaluated using Configuration I.

Material d (mm) q (kg/m3) c (m/s)

Steel (Ace-10) 9.67 7821 5964.24
Acrylic (Acr-14) 14.39 1180 2731.90
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thickness, d, and density, q. Furthermore, from the transit time
observed in the ultrasound measurements the speed of sound in
the material, c, was calculated.

Table 7 shows the obtained results for the disks to be used in
Configuration I.

For Configuration II, different samples were used, whose thick-
ness and mechanical and physical properties are in Table 8.

The samples named Acr-10 and Acr-14 are made out of the
same type of acrylic, while Acr-3 corresponds to a different one.
The discrepancy in the values of q and c for different samples of
the same type of material can be attributed to the fact that the
measurements were made at different times and under different
environmental conditions.

The properties shown in Tables 7 and 8 are related to the
parameters of interest by the following equations:

Z ¼ qc
s ¼ d=c

; ð13Þ

whose values are listed, along with the longitudinal wave modulus,
M = c2q, in Table 9, and they are considered as the true ones in this
paper. In all cases, the cells with two values indicate the corre-
sponding to measurements done with different central frequency
transducers (fc = 5.5 MHz and fc = 6 MHz) in Configuration II.

The identification of acoustic attenuation and its relation with
frequency is important when it comes to characterize a material,
since neglecting its influence, which in many cases is important,
Table 8
Materials evaluated using Configuration II.

Material d (mm) q (kg/m3) c (m/s)

Acrylic 3 (Acr-3) 2.61 1168 2613;2614.4
Acrylic 10 (Acr-10) 9.98 1190 2685;2685.2
Aluminium 3 (Alu-3) 3.79 2876 6213.1;6213.1
Aluminium 10 (Alu-10) 9.90 2663 6387.1;6387.1

Table 9
True value of parameters and elastic modulus.

Material Zv (MRayls) sv (ls) Mv (GPa)

Ace-10 46.65 1.622 278
Acr-14 3.22 5.27 8.80
Acr-3 3.052;3.054 0.999;0.998 7.97;7.98
Acr-10 3.195;3.196 3.717;3.716 8.58;8.58
Alu-3 17.87 0.61 111.02
Alu-10 17.01 1.55 108.64

Table 10
Values of a0 y ZL obtained from solution space, with Zv y sv.

Material g = 0 g = 1

a = a0 (Np/m) a0

Ace-10 12.5 3.5e�7
Acr-14 116.5 3.4e�6
Acr-3 165;176 4.56e�6;4.65e�
Acr-10 87.2;90.8 2.3e�6;2.3e�6
Alu-3 82.3;84.1 2.28e�6;2.26e�
Alu-10 54.5;55.7 1.4e�6;1.38e�6
can increase the errors in the estimation of the rest of the param-
eters. A study of the attenuation was carried out by using the
inverse methodology.

For a great variety of materials, values of attenuation are avail-
able in bibliography, although its dependency with frequency is
not always documented, and the tabulated values are valid for a
small range of frequencies and must be considered just as typical
values.

Furthermore, polymeric materials such as acrylic have proper-
ties which depend on its molecular weight, the additives incorpo-
rated during manufacture and temperature of measurement. Even
in metals, theoretical values of attenuation are approximated, and
they are influenced by the tempering process, which determines
the texture, the grain size, the residual stresses and the hardness.
The ageing and the exposure to certain factors could modify mate-
rials properties and may also cause variations in the attenuation.

Traditional ultrasound methods to measure attenuation involve
the temporal signals propagated through the material. These meth-
ods are based on the comparison of relative amplitudes between
successive reflections, or between emitted and received wave in
measurements made on different thickness samples, and using dif-
ferent frequencies [28]. From these measurements, experimental
attenuation curves as a function of frequency are obtained, and
for a wide range of materials those curves are well fitted by the
power law of Eq. (7). The methodology developed in this paper
uses a single transmission measurement to obtain a0 and g simul-
taneously with Z and s.

On the other hand, we have mentioned that ZL, the acoustic
impedance in contact with the final end of the sample, cannot be
estimated as a model parameter. The determination of the value
of ZL was done simultaneously with the estimation of a0, solving
de IP for every sample, with the true values of Z and s, and a fixed
value for g. Table 10 shows the estimated values of a0 and ZL for
some of the disks, considering two cases, in which the wave is
attenuated according to a constant (g = 0) and a linear (g = 1)
attenuation law, respectively. For each sample, the values of ZL
obtained are the same with both models of attenuation, and in
all cases they are close to 2 MRayls.

The attenuation values in Table 10 are just a first estimation,
and a considering constant attenuation is comparable to the one
estimated for the central frequency, fc, assuming linear
attenuation.

Once the disks were individually characterized, the IP was
solved in order to determine the parameters values of homoge-
neous materials and also of samples composed by two and three
layers, which were measured in both ways of propagation to prove
the repeatability of the results.

When working with experimental measurements, we should
deal with the IP own obstacles, especially the presence of local
minima and the difficulty of determining ZL, and also with mea-
surement errors, which are impossible to quantify. Amongst these
errors we can mention the misalignment of transducers or, in
Configuration I, the effect of the coupling medium between the
ZL (MRayls)

a = a02pfc (Np/m)

12.09 1.9
117.49 2

6 157.58;175.30 1.96
79.48;86.70 2.25

6 78.79;85.20 1.84
48.38;52.02 2.1



Fig. 14. Attenuation as a function of frequency in acrylic.
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transducers and the sample, which is inhomogeneous, of unknown
thickness, and increases the measurement noise. Moreover, the
modelling errors mentioned in Section 6 are present, as the mate-
rial layers are not in perfect contact, and possibly air or water may
be trapped at the interfaces.

6.2. Homogeneous materials

The IP was solved to estimate all the parameters that character-
ize the sample, p = [Z s a0 g]. The data were the measurements of
an ultrasonic wave transmitted through the sample, and they are
compared to the theoretical waveforms obtained from the equiva-
lent model, by solving the functional in Eq. (12).

We obtained the initial values of s from the observation of tem-
poral measurements. This requires the analysis of the waveform to
be made by an operator with rigorous training in ultrasound.
Otherwise, the values of a0, g and Z were initialized arbitrarily.
In all cases the algorithm converged to the global minimum and
the sought parameters were estimated with very low error. The
results displayed in Table 11 were found with ZL as in Table 10.

Regarding attenuation, in many metals its dependence with fre-
quency is linear, at least in a range of the spectrum. In Table 11 it is
shown that the value of g for steel is nearly 1. In the case of alu-
minium, the values estimated for the two samples are quite differ-
ent, and this can be related with the modelling errors in Alu-3 due
to neglecting the shear waves originated in the faces of the samples
which are parallel to the wave propagation. On the other hand, the
curves of attenuation for the samples Acr-14 and Acr-10, both
made using the same type of acrylic, are almost coincident, while
Acr-3 is much more attenuating. The curves displayed in Fig. 14
were obtained solving Eq. (7) with the estimated parameters for
the three acrylic samples.

In Fig. 15 the waveforms recorded using Configuration I (grey)
are plotted, along with the calculated (black) using the estimated
parameters, while Fig. 16 shows the ones corresponding to the
experiments made with Configuration II. For the calculated wave-
forms, the pulse used as the excitation signal for the equivalent
model, is that obtained as the output of a test carried out with
no sample, as reported in a previous work [29].

The waveforms obtained using Configuration I are noisy; never-
theless the error in the estimations is low and the fitting to the
experimental curves is acceptable.

The accurate values of the parameters obtained from the reso-
lution of the IP using the measurements recorded with Configura-
tion II result in a very good fitting to the experimental waveforms,
especially for acrylic (Fig. 16).

In the measurement registered for the Alu-3 sample, additional
reflections are observed. These reflections are caused by the shear
waves originated by mode conversion, which are not considered by
the equivalent model, since it represents only the propagation of
longitudinal waves.

6.3. Two layers materials

For solving the IP in layered materials, only measurements
obtained using Configuration II were used. As the materials are
Table 11
Homogeneous materials estimated parameters.

Material Z (Mrayls) s (ls) a0 g

Ace-10 46.68 1.623 6.93e�7 0.9587
Acr-14 3.10 5.280 4.53e�5 0.8435
Acr-3 3.11 0.988 1.43e�3 0.6623
Acr-10 3.16 3.722 3.85e�5 0.8473
Alu-3 17.37 0.614 7.01e�5 0.8087
Alu-10 17.10 1.540 6.01e�4 0.6295
joined by simple contact, the gap in the interfaces may be filled
with water and, as mentioned before, this could greatly influence
the parameters estimation.

On the other hand, when the samples are composed by metals,
which are less attenuating, also the error caused by mode conver-
sion is present. This effect was already quoted for homogeneous
materials. The shear wave generated at the edges of the sample
propagates to the neighbouring layers, and its successive reflec-
tions arrive to the receptor. This could be considered as another
modelling error, since the equivalent representation of the experi-
mental setup utilized in this paper does not consider shear wave
propagation. Therefore, as the number of layers increases we can
expect errors to increase.

We considered samples composed by two layers, acrylic and
aluminium, and take measurements using the transducer with
central frequency fc = 5.5 MHz. In this case, the solution of the IP
is p = [Z1 Z2 s1 s2 a01 a02 g1 g2]. Tables 12a and 12b show the values
of the parameters that could be estimated (Z and s) and the prop-
erties calculated from them (c, q and M). As can be seen, the esti-
mations are in good agreement with the true values calculated for
the homogeneous materials (Table 9).

We found that the estimates of characteristic acoustic impe-
dances are sensitive to the value of ZL, which as explained before
cannot be precisely determined. Therefore, the uncertain ZL value
is another source of error. However, this value does not affect the
estimations of transmission (T) and reflection (R) coefficients at
the interfaces between the layer i and the layer i + 1, given by:

Ti;iþ1 ¼ 2Ziþ1

Ziþ1 þ Zi
; Ri;iþ1 ¼ Ziþ1 � Zi

Ziþ1 þ Zi
: ð14Þ

Table 13 contains the estimated coefficients, Te and Re, which
are the same for different values of ZL; as can be observed they
are very close to the true ones, Tv and Rv, that were computed tak-
ing the parameter values reported in Table 9.

Regarding the attenuation parameters, a0 and g, well estimated
for homogeneous materials as reported before (Table 10), we must
say that we were not able to identify them for layered materials. A
possible justification of this fact is the possible trapped fluid at the
interfaces analyzed in Section 5. However, the values of a0 y g
obtained from the IP solution are to be considered as adjustment
a (Np/m) f = fc c (m/s) q (kg/m3) M (GPa)

11.69 5958.5 7834.2 278.14
95.48 2725.4 1137.5 8.45

140.64 2640.1 1178.0 8.21
93.94 2681.0 1178.5 8.47
87.52 6172.6 2814.0 107.22
33.45 6426.9 2661.4 109.93



Fig. 15. Experimental measurements (grey) and waveforms calculated with the model (black) with parameters values estimated using Configuration I.

Fig. 16. Experimental measurements (grey) and waveforms calculated with the model (black) with parameters values estimated using Configuration II.

Table 12a
Estimated parameters for acrylic in 2 layers materials.

Acr-3 True Estimated Acr-10 True Estimated

Acr-3/Alu-10 Alu-10/Acr-3 Acr-10/Alu-10 Alu-10/Acr-10

Z (MRayls) 3.11 3.16 2.96 Z (MRayls) 3.16 3.18 2.91
s (ls) 0.99 0.99 0.99 s (ls) 3.72 3.73 3.73
c (m/s) 2640.10 2643.30 2635.80 c (m/s) 2681.00 2655.40 2673.00
q (kg/m3) 1178.00 1196.50 1121.50 q (kg/m3) 1178.50 1197.90 1089.20
M (GPa) 8.21 8.36 7.79 M (GPa) 8.47 8.45 7.78

Table 12b
Estimated parameters for aluminium in 2 layers materials.

Alu-10 True Estimated

Acr-3/Alu-10 Alu-10/Acr-3 Acr-10/Alu-10 Alu-10/Acr-10

Z (MRayls) 17.10 16.54 17.33 17.69 16.97
s (ls) 1.54 1.53 1.53 1.55 1.55
c (m/s) 6426.90 6447.40 6447.80 2748.00 6437.90
q (kg/m3) 2661.40 2566.20 2687.70 6440.00 2636.30
M (GPa) 109.93 106.67 111.74 113.97 109.26
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Table 13
Comparison of reflection y transmission coefficients.

Material Tv Te Rv Re

Acr-3 Alu-10 1.69 1.68 0.69 0.68
Alu-10 Acr-3 0.30 0.29 �0.70 �0.71
Acr-10 Alu-10 1.68 1.69 0.68 0.69
Alu-10 Acr-10 0.32 0.29 �0.68 �0.71

Fig. 17. Experimental waveforms (grey) and calculated by the model (

Fig. 18. Experimental waveforms (grey) and calculated by the model (b
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values, permitting an accurate convergence of the rest of the
sought parameters.

The acoustic impedance values and the transit time obtained
solving the IP are near the true ones although, as expected, they
have larger errors than the obtained in homogeneous materials,
but still remain in acceptable values, making clear the robustness
of the methodology.
black) with estimated parameters in samples of Acr-3 and Alu-10.

lack) with estimated parameters in samples of Acr-10 and Alu-10.



Table 14
Parameters estimated in 3 layers materials.

True Estimated

Acr-3/Alu-10/Acr-10 Acr-10/ Alu-10/Acr-3

Acr-3
Z (MRayls) 3.16 3.39 3.54
s (ls) 0.99 1.00 1.02
c (m/s) 2643.30 2599.08 2569.91
q (kg/m3) 1196.50 1305.30 1378.18
M (GPa) 8.36 8.82 9.10

Alu-10
Z (MRayls) 17.10 16.87 18.69
s (ls) 1.54 1.55 1.55
c (m/s) 6426.90 6388.33 6386.27
q (kg/m3) 2661.40 2640.18 2927.36
M (GPa) 109.93 107.75 119.39

Acr-10
Z (MRayls) 3.16 3.07 2.85
s (ls) 3.72 3.72 3.72
c (m/s) 2681.00 2683.59 2685.39
q (kg/m3) 1178.50 1144.66 1060.62
M (GPa) 8.47 8.24 7.64
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The waveforms of the experimental measurements and the cor-
responding amplitude spectra are plotted in Figs. 17 and 18, along
with those recorded using the estimated parameters (Table 12). It
can be seen that the equivalent model represents accurately the
wave propagation through the materials composed by 2 layers.
6.4. Three layers materials

The methodology was tested also in samples composed by three
layers of acrylic and aluminium (Acr-3, Alu-10 and Acr-10), record-
ing the transmission from Acr-3 to Acr-10 and reversely. For both
cases, the estimated values of parameters Z and s are shown in
Fig. 19. Experimental waveforms (grey) and calculated by the model (blac
Table 14, as well as the properties calculated from that estimates,
c, q and M. Again, the subscripts indicate the layers sequence. In
this case the errors are more important than in the estimations
of 2 layers materials, as could be expected. However, the recovered
waveforms show a good fitting to the experimental ones, as shown
in Fig. 19.

7. Conclusions

An inverse methodology has been developed in this paper to
characterize layered materials. The main goal is the identification
of a set of parameters related to acoustical, physical and mechan-
ical properties of the studied sample. Particularly, the speed of
sound, density, elastic P-wave modulus and attenuation of each
layer are obtained.

A parameter estimation IP was solved minimizing a cost func-
tional posed as the least square error between the experimental
data and the waveforms calculated by means of an equivalent
model representing the physical problem. The data came from
ultrasonic transmission tests, carried out using two different
configurations.

An equivalent model suited to represent the wave propagation
throughanelasticmediumtakes the formof anelectric transmission
line, basedonelectrical–mechanical analogies and formulated in the
frequency domain. The forward solution of this problem, represents
exactly the mechanical stresses generated by a P-wave propagation
at the interfaces of the sample. Thus, the numerical solution of the
exact model using finite elements is unnecessary, improving signif-
icantly the computational efficiency. This benefit ismultipliedwhen
facing the IP, since it requires the repeated solution of the forward
problem.

The equivalent model used was presented in the literature by
other authors for non attenuating materials. Since real materials
usually produce intensity losses, the effect of attenuation should
be taken into account. This can be accomplished including in the
k) with estimated parameters in samples of Acr-3, Acr-10 and Alu-10.
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equivalent model equations a complex wave number having an
attenuation law which holds a potential relation with frequency.

The parameters identified solving the IP with simulated data are
the characteristic acoustic impedance, the transit time and the
attenuation corresponding to each layer. Their errors in the estima-
tions stay within an acceptable range.

The methodology proposed and analyzed in this work was val-
idated carrying out ultrasound transmission tests. The experimen-
tal measurements had to be properly processed to be used as data
for the resolution of the IP.

First, we were able to accurately estimate all parameters on
homogeneous materials, obtaining errors below 10% in the values
of acoustic impedances and transit times. As a second contribution
of this work, the parameters corresponding to an attenuation fre-
quency power law were identified.

Layered materials are the main interest of this paper. For these
cases we found that the attenuation parameters cannot be identi-
fied, as a consequence of the modelling error incurred when
neglecting the effect of the fluid trapped at the interfaces. How-
ever, we conclude that the methodology is robust, since it allows
the right identification of the acoustic impedances and the transit
times, and as a consequence, good estimates of P-wave modulus
could be obtained.

It is relevant to mention that best fitting to the experimental
curves is obtained when materials are strongly attenuating, such
as acrylic. In measurements done on metals appear reflections
originated by shear waves due to mode conversion at the edges,
which are not represented by the model. Also, the model provides
a better fitting in cases of thicker layers.

It can be highlighted that a proper choice of the transducers is
determinant to apply successfully the proposed methodology.
Wide bandwidth excitation pulses (short time signals) are suited
to evaluate materials composed by thin layers. Hence, the central
frequency, the power and the quality factor of the transducers
must be carefully selected. With these considerations in mind,
the NDE methodology presented can be utilized to any case where
the wave which propagates through the sample can be considered
as a longitudinal wave.
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