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ABSTRACT: A metaheuristic technique for controller design is
explored, and its performance is assessed for a real-world case. An
evolutionary algorithm for self-tuning systems is proposed to tune the
optimal control settings in order to achieve the best overall
performance to control accurately the volume of natural gasoline in
a storage tank. For high-level optimization, a flexible iterative
technique based on Genetic Algorithms is presented. The algorithm
is stable, and its architecture is simple, thus becoming easy to
implement. Not only heuristics that produce superior solutions are
taken into account, but also the computational speed is contemplated
as a key factor. The experimental evaluation yields satisfactory fitness
values, and relatively little computational effort is required.

1. INTRODUCTION

A wide variety of adaptive techniques are frequently used in
controller design with a robust performance. Nevertheless, the
systems with a fixed controller invariant in time turn out to be
more insensitive to disturbances.1 Therefore, some efforts have
lately been made on the formulation of PI (Proportional−
Integral) or PID (Proportional−Integral−Derivative) controller
tuning rules. For a wide range of processes, Shamsuzzoha has
derived simple correlations to yield PI/PID controller settings
with acceptable performance and robustness.2 In particular,
Cho et al. have proposed PID controller tuning rules for
unstable processes.3 Also, Li et al. have implemented a self-
tuning figure that automatically tunes the settings for local
adjustment of water quality.4

The implementation of self-tuning control systems is still a
big challenge for practical control engineers, and the subject
remains open for research. Moreover, it is worthwhile making
efforts in close connection with Evolutionary Computation
(EC) dedicated to this problem because EC is an established
field for optimization whenever it is necessary to perform an
exhaustive search in relatively short computing times. Evolu-
tionary algorithms (EAs) are suitable to manage a wide range of
computationally intractable problems since they constitute a
simple, flexible approach. Though they do not always guarantee
that the exact optimal solution will be found in a single run,
they can often obtain satisfactory solutions within acceptable
computational times.5 If the entire domain of definition of the
objective function is to be explored, there are several
metaheuristics that can be employed in practice to obtain a
solution, including genetic algorithms (GAs), evolution
strategies, differential evolution, particle swarm optimization,
and others.6

As to self-tuning systems, some metaheuristics have already
been used. Oh et al. proposed a genetic-based self-tuning speed
controller for the high-performance drives of induction
motors.7 In contrast, Liu and Hsu designed a self-tuning PI
controller by means of Particle Swarm Optimization.8,9

Only regarding controller design with metaheuristic tools,
Viswanathan et al.10 successfully addressed the closed-loop
identification problem of two-input two-output processes
employing a GA to locate reliably the global minimum of the
least-squares problem.
Almost simultaneously, Deb et al.11 introduced the concepts

of Non-Dominated Sorting GA-II (NSGA-II), which has
proved to be a successful approach to solve multiobjective
problems. This algorithm has been employed in various
chemical processes, which are listed in Behroozsarand and
Shafiei.12 In particular, these authors tuned PID controllers in
the optimal control of an amine plant by minimizing two
objective functions related to the overshoot and the Integral
Absolute Error through the (NSGA-II). They have stated that
good control profiles could be achieved, resulting in an
acceptable compromise between conflicting objectives. Re-
cently, Ayala and dos Santos Coelho13 presented the design and
the tuning of two PID controllers in a robotic manipulator of
two degrees of freedom, also using the NSGA-II approach.
Besides, there are other innovative efforts to specifically
improve GA tactics for PID tuning. Chang14 proposed a
modified crossover formula in GAs and used this method to
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determine PID controller gains for multivariable processes.
Moreover, Meng and Song15 presented a fast GA, exhibiting
improvements about population, selection, crossover, and
mutation in comparison with simple GAs. On the other
hand, Chan et al. proposed a gene manipulation, which is a
multiobjective GA to optimize the placement of active devices
and sensors in frame structures to reduce active control cost
and increase the structural control strategy’s effectiveness.16 In
turn, Neath et al. proposed a GA to tune the settings of a PID
controller for a bidirectional inductive power transfer system,
taking various objectives functions (fitness) into consideration,
to achieve a controller with optimal performance.17 Recently,
Tochampa et al. presented a model-based optimization
involving a GA for the optimal control of the feeding profile
in fed-batch production of xylitol, being the chromosomes
defined with feed rate elements.18

In this paper, we have addressed the inventory control of
natural gasoline extracted directly from the gas fields and
transported by pipeline networks to a storage tank. It is
assumed that the natural gasoline should next be sent with a
steady flow to a processing plant. The system under adaptive
control is the storage tank, where liquid hydrocarbons are
collected by means of pipelines coming from various sources
with their own inherent dynamics, which is specially
contemplated in our design.
It is interesting to note that enterprise-wide optimization is

progressively moving from a conventional steady-state tactics
toward a dynamic real-time approach.19 In view of both this
trend and the recent advances concerning EC, one of our main
purposes is to extend the nature-inspired framework to solve
the following challenging self-tuning problem: the permanent
regulation of nonlinear disturbances originated in the gas fields.
Section 2 enhances the present-day importance of natural

gasoline by giving some general information about its uses and
the reserves, while Section 3 describes the real-world problem
under study. Next, Section 4 outlines the optimization
methodology in general terms. The control strategy is
presented in Section 5, followed by the analysis and discussion
of the results in Section 6. Finally, some conclusions are
presented in Section 7.

2. USES AND RESERVES OF NATURAL GASOLINE

At atmospheric temperatures and pressures, natural gasoline is
a liquid, which is a byproduct of natural gas, and consists
predominantly of pentane and upper hydrocarbons. Therefore,
it can be transported and stored without pressurized contain-
ment. Natural gasoline can be obtained by primary separation,

which usually takes place at the reservoirs of natural gas in
basins around the world.20 Then, natural gasoline well
productivity is directly related to natural gas production and
reserves. The map in Figure 1 illustrates the countries where
there are natural gas proven reserves.21 This distribution shows
how promising it might be to exploit natural gasoline in some
reservoirs. In particular, the production of natural gasoline has
increased meaningfully in the United States since 2007, while
exports of this hydrocarbon to Canada have surged.22

Moreover, according to the U.S. Energy Information
Administration, the latest surveys revealed that crude oil and
lease condensate reserves have sustainably increased in the
United States.23 More precisely, at the end of 2015, these
reserves totalized 2 billion bbl more than the amount reported a
year before.24

Being more specific particularly about the Southern hemi-
sphere, Argentina looks like a favorable location, with an annual
production of 1739934 tones of natural gasoline in 2013.25

According to the Secretariá de Energiá, during 2014, the
Province of Santa Cruz (Argentina) yielded 9% gas production
in the country.26 Its main basins are located in Cuenca Austral
and Cuenca Golfo San Jorge. In 2014, most of the natural
gasoline production came from the latter. Table 1 summarizes
the amounts of the secondary production of natural gasoline
provided by the main wells located in the Province of Santa
Cruz.

Nowadays, the natural gasoline remains unexploited in
Argentina. Instead, it is mixed and transported with the crude
or else accumulated in the fields. As a petrochemical raw
material, natural gasoline can be employed to obtain ethylene-
propylene via thermal cracking. Moreover, natural gasoline is a

Figure 1. Salient distribution of natural gas proven reserves in 2014.

Table 1. Production of Natural Gasoline During 2014
(Cuenca Golfo San Jorge, Argentina)

fields production [m3]

Cañadoń Yatel 16,224
El Huemul 14,300
Sur Piedra Clavada 8482
Cañadoń Leoń 7739
Cañadoń Seco 7104
Estancia la Mariposa 4382
El Cońdor 3432
Pico Trucado 1978
Bayo 954
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convenient substitute for ethylene production in Argentina, as
shown in Cañete et al.27

A petrochemical project can be considered economically
attractive provided large scale plants are installed. For the
transport of natural gasoline, the distance between the
reservoirs and the petrochemical plants is significant. Pipeline
networks, which are generally convenient for long distances,
consist of three main parts: pipelines, pump stations, and
storage tanks. In view of this scenario, transport should be
optimized, and therefore, it is convenient to take into account
the dynamics of the fields in the control system to have enough
feedstock always available.
In contrast with other means of transport for the delivery of

oil derivatives to distant destinations, pipeline transportation is
the one that yields lower variable costs, although building costs
of a pipeline network are high. Besides, once it is operative, it
can function all the time, and the network only employs energy
in order to move the product itself but not the containers.28

3. PROBLEM STATEMENT
The case under study (Figure 2) belongs to Cuenca Golfo San
Jorge and comprises a concentrating node (the storage tank),

its inputs coming from the gas fields known as Cañadoń Yatel
(F0), El Huemul (F1), and Sur Piedra Clavada (F2), and its
output going to a processing plant.
In conventional reservoirs, where oil and gas can flow freely,

economic risk is mainly driven by the uncertainties about the
size and presence of hydrocarbon accumulations. Though this
geological risk prevails early in a field’s exploration and
evaluation, it ameliorates as initial wells are drilled for the
predictions about production can be made with certitude.29

In particular, the case illustrated in Figure 2 is located in
Argentina, where natural gasoline is extracted from natural gas
fields. Therefore, facing this problem is nowadays of wide
interest taking into account that the natural gas world
production is expected to reach its peak level around 2030.30

Moreover, Maggio and Cacciola31 have estimated that the peak
for natural gas worldwide will occur between 2024 and 2046.
The field’s production profile PF(t) can be expressed
mathematically as a function of time t (eq 1), where YF is the

year when the field commences, and the field takes tF years to
reach the maximum production plateau FP. At tr, the remaining
recoverable resources in the field reach the value Qr, and after
this time, the production begins to decline exponentially.32
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As to investments in infrastructure, companies are sometimes
hindered by the uncertain behavior of fields. A proper control
strategy for managing these resources is proposed in this paper.
Several control structures were analyzed, and the choice
determines how well the system can be controlled to guarantee
a stable output to satisfy external demands. The choice of an
adaptive online control policy determines the best possible
performance to be achieved thanks to well-tuned controllers.
The fine-tuning procedure by means of GA can be repeated at
regular time intervals so that the gasoline inventory and its
outlet flow are effectively managed. By means of this approach,
satisfactory tracking performance in a closed loop can be
achieved.

4. RELATED BACKGROUND
Multiobjective optimization refers to the process of finding
feasible solutions to a problem by trading off the equally
optimal values of several functions subjected to a set of
constraints. A multiobjective optimization problem can formally
be defined as is given in eq 2.
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where D is the decision space, x is the real N-vector whose
elements are the N decision variables, F(x) is the real-valued
multiobjective optimization function, and f1(x),...,fM(x) are the
M-associated objective functions.
Here, F(x) can be established as the weighed sum of the

objective functions (eq 3), where the weight wi for the objective
function f i can be established.

∑=
=

F x xwf( ) ( )
i

M

i i
1 (3)

Finally, c1(x),...,cC(x) ≤ 0 and d1(x),...,dD(x) = 0 express the
constraints imposed on the values of x.
The GA shown in Figure 3 is the EA that is adopted to carry

out the minimization. Therefore, the function F(x) can be
named the fitness function. In particular, this algorithm is called
a Multiobjective Evolutionary Algorithm (MOEA)33 because a
multiobjective function is employed for step 8. The execution

Figure 2. Simplified scheme of the transport network.
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of the GA terminates at the moment when any of the following
conditions takes place:
Condition 1: The predefined maximum number of

generations Nmax has been reached.
Condition 2: The method keeps yielding a feasible solution

that is unlikely to be improved. This is detected when the best
values of the multiobjective optimization function F̂g do not
change significantly as generations go by. The convergence test
checks for a sufficient relative decrease in F̂g between one
iteration/generation and the next by tracking the evolution of
the relative error ϵg

F (eq 4) as generations move past. If ϵg
F ≤

TOL, the iterations stop.

ϵ =
| − |

| |

̂ ̂

̂
−

−

F F

F

( )
g
F g g

g

1

1 (4)

A GA can be classified as a population-based evolutionary
optimization method whose search policy was inspired in

Darwin’s principle of biological evolution.34 Since GA is a
search technique, it has to be limited to exploring a reasonable
region of variable space. If the initial search region is unknown,
enough diversity in the initial population should be guaranteed
in order to explore a reasonably sized variable space before
concentrating on the most promising regions.35

The term population refers to a set of candidate solutions. A
single candidate solution is called an individual/chromosome x,
which is a vector whose size depends on the number of
variables to be optimized.36

The iterative process of evolution (Figure 3) is initialized
with a population of randomly generated individuals. The
population size Npop is fixed in the design and does not depend
on the size of the individuals. Once the initial population of
Npop chromosomes has been defined, each individual is
evaluated in accordance with its associated fitness value,
which is a measurement of its quality. A group of individuals
has a higher probability to reproduce when their fitness, i.e.,
their ability to flourish in their environment, is high. The
population is evolved to find possible solutions (i.e., the fittest
individuals) by applying GA operators, which are typically
crossover and mutation.
Selection operates as survival and choice of mates between

parents. When the GA proceeds, recombination of genes gives
way to new offsprings. The Npop individuals in a given
generation are listed in a ranking, where all new offspring are
included. Only the top Npop individuals are kept for mating and
the rest are discarded to make room for the new offspring.
The first attempt to solve multiobjective optimization

problems made use of a population that was divided in
subpopulations of the same size. Each of them was responsible
for only one objective in particular. This approach generally
tended to give poor results, which were improved by the
introduction of the concept of nondominated solutions or
Pareto optimality.37

The main idea is to arrange the individuals, ranking them as a
function of their degree of domination in the population. As to

Figure 3. GA pseudocode.

Figure 4. Design strategy.
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the generation of the Pareto front, which is the line formed by
the optimal solutions,35,38 an algorithm was reported to
maintain an archive of Pareto solutions. They proposed an
evolutionary dynamic-weighted aggregation method, explaining
how to change the weight dynamically during optimization.
Moreover, stated various Pareto concepts showed that an EA
statistically converges to a Pareto front.39

5. CONTROL STRATEGY
Figure 4 summarizes the design strategy followed in this work.
First, two instances (with or without PID control) were
explored with a view to selecting the most suitable arrangement
in order to control the storage tank adequately. Second, for the
adopted control policy (i.e., configuration 1, which includes a
PID for feedback control), the controller settings were
optimized with GAs.
As a fine-tuning improvement, the controllers were afterward

tuned online to accommodate anomalies. First of all, starting
from the settings obtained for configuration 1, unit step
disturbances were introduced in order to assess the algorithmic
performance when the GA output triggers changes in the
controller settings. The responses without (keeping tuning A)
and with (changing the settings from tuning A to tuning B)
algorithmic intervention were evaluated. These tests showed
that online adjustments are useful because the controllers
behaved more satisfactorily when their settings were changed
with tuning B.
Then, the starting point was polished to take into account

realistic working conditions. In industrial practice, the
controllers are conventionally set by means of traditional
methods, like Ziegler−Nichols or Foxboro rules. Therefore,
those values were adopted as a starting point (tuning C), and
the GA speed was analyzed, trying to satisfy industrial
requirements for online updating. To include realistic
disturbances in the analysis, testing was carried out by
considering uncertainties in the supply, taking the information
from recent tunings 1M and 2M. More details of the results are
given in Section 6.
5.1. Layout of the Control System. As shown in Figure 5,

the system requiring control is the storage tank that is subjected

to three inputs. Two control variables associated with the tank
are available: liquid level (h) and outflow (F3). Unlike most of
the typical multivariable control designs, it is proposed that this
tank can be controlled unconventionally by means of a MIMO
(Multiple-Input−Multiple-Output) system with two outputs
and three inputs, instead of merely two. This is preferable when
the production of natural gasoline declines. In the controller
design, it was taken into account that the production profiles of

a field tend to decline exponentially for several years before
they can be considered depleted. This behavior arises from the
mathematical expression (eq 1), which was developed by Mohr
for the projection of oil and gas production.32

The purpose of the storage tank is to maintain sufficient
inventory to feed the processing plants. The output flow should
be as constant as possible, avoiding sudden changes. It should
be taken into account that a tank input may be interrupted due
to upstream conditions. Therefore, the control system should
accommodate any normal input discrepancies.
Process control can be improved through multiple loops.

The inclusion of a feedback signal actually adapts the forward
loop to unmeasured changes in the process. For optimum
performance, a feedback/feedforward system for liquid level
and outflow, being both the controlled variables, ought to be
supplied with updated information regarding well dynamics.
Therefore, an adaptive control system is proposed. It has the
ability to adjust controller settings in accordance with the
changing character of the input flow rates. Controller settings
are adapted online by using GAs.
The control-loop diagram of the entire system is illustrated in

Figure 6, where G(s) is the transfer function of the given plant,
CPI(s)is the transfer function of a PI controller, CPID(s) is the
transfer function of a PID controller, CFF

j (s), j = 1,2 are the
transfer functions of both feedforward controllers. Their
Laplace transforms are reported in Table 2, where KP

PID, τI
PID,

and τD
PID are, respectively, the proportional, integral, and

derivative settings of the PID controller, KP
PI and τI

PI are,
respectively, the proportional and integral settings of the PI
controller, and KFF

j , τ1
j , and τ2

j are, respectively, the gain,
manipulated, and load time constants of the jth feedforward
controller. All these settings must be tuned to meet the
prescribed performance criteria.
In Figure 6, the GA procedure is represented in dashed lines

as a rectangular block. The errors are communicated to GA,
which internally executes the optimization iteratively, making
use of the input. When the process finishes, it returns the new
controller settings.

5.2. MOEA Settings. The GA’s driving force is the
selection of individuals based on their fitness, which is a
quality measure theoretically defined from operational require-
ments. The problem was modeled as a biobjective optimization
problem (M = 2) by means of a Conventional Weighted
Aggregation approach. The weighed sum of the objective
functions (eq 3) was built by including the control objectives in
the fitness of individuals as linear aggregated functions33 (eq 5).
The fitness function F(x) was formulated (eq 5) aiming at a
minimization of the system error. Since the errors of both
controllers have different orders of magnitude, the natural
choice was to specify the weights with a priori knowledge of the
set points of the controlled variables.
For each objective, the fitness values were normalized by

accounting for the deviations from the corresponding set
points, with 0 being the best fitness. In eq 5, the errors are the
difference between the measured values and the set points. For
the PID controller, the error εPID is the departure of the
measured level hm from the required one hSP (eq 6). Likewise,
the error of the PI controller εPI is calculated (eq 7) by
subtracting the measured flow from the tank outlet Fm, and the
set-point outflow FSP is required to be constantly sent to the
processing plant.

Figure 5. Layout of the system under control.
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For the GA termination criteria, both conditions stated in
Section 4 were tested. For condition 1, NImax = 150 was
adopted. As to condition 2, the best fitness value F̂g for the gth
generation was monitored with a relative error tolerance TOL
= 10 e−6. In Figure 7, it is evident how the best fitness value
decreases as the generations proceed.
As to the constraints in eq 2, D = 0, while C depends on the

amount of controllers that are incorporated. For each element
in x, there are always two inequalities associated with its

bounds. Since N is the number of decision variables, the total
number of constraints C can be calculated as C = 2N. The
constraints c1(x),...,cC(x) ≤ 0 are given by the upper and lower
values of the individual settings of each PI and PID controller.
In general, these bounds can be defined with the help of the
controller settings derived from experimental observations40

based on conventional well-known tuning methods, like
Ziegler−Nichols41 and Cohen−Coon42 for PI and PID
controllers and Foxboro tuning43 for feedforward controllers.
These settings are useful because they may not only serve as
references to establish ranges to build an adequate search space
but also as initialization values for the chromosomes in the
initial population. The ith constraint ci is associated (eq 10) to
the upper bound xi

maxthat is allowed for the ith element in x,
while the N + ith constraint cN+i is associated (eq 11) to the
lower bound xi

min that is allowed for the ith element in x.

= − ≤ =c x x i N0 1, ...i i i
max

(10)

= − ≤ =+c x x i N0 1, ...N i i i
min

(11)

The decision variables in ∈ x N are the N settings of all the
controllers, given in Table 2. It is more convenient to insert
them as the elements of an individual in GA. In this work,
special attention is given to the feedback loop. Two different
configurations are tested in order to obtain the optimum

Figure 6. Structure of the adaptive system.

Table 2. Standard Transfer Functions

For the PID feedback controller:
τ τ= + +C K(s) sPID P

PID
I
PID 1

s D
PID

CFF
j = Transfer function of the jth
feedforward controller, for j = 1, 2

CPI = Transfer function of the PI
Controller

CPID = Transfer function of the PID
Controller

For the PI feedback controller:
τ= +C K(s)PI P

PI
I
PI 1

s

KFF
j = Gain for the jth feedforward
controller

KP
PI = Integral gain of the PI controller

KP
PID = Integral gain of the PID
controller

For both feedforward controllers:

= =τ

τ

+

+
C K j(s) 1, 2j j

FF FF
s 1

s 1

j

j
1

2

τ1
j , τ2

j = Time constants for the jth
feedforward controller

τI
PID, τD

PID, τI
PI = Time constants for the

feedback controllers

Figure 7. Evolution of the multiobjective optimization function.
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performance by identifying the more effective control system.
Each of the configurations represents a different control policy
with a distinct representation of individuals. In both cases, there
is a feedforward controller, being the only difference in the
feedback control strategy. For configuration 1, the chromosome
representation is given by Figure 8, its size being N = 11. The
first five elements are the settings of both a PI and a PID
controller, and the next six elements are the settings of the
feedforward controllers. In contrast, configuration 2 employs
only one PI controller for the feedback loop. The structure of
its chromosome is given in Figure 9, its size being N = 8.

Selecting GA parameters like Npop is very difficult due to the
many possible variations in the algorithm and cost function.
Since a GA relies on random number generators for creating
the population, mating, and mutation, the task of comparing all
the different options for a wide range of fitness functions is
really hard. Moreover, the results may strongly depend on the
fitness function analyzed. In particular, De Jong studied GA
parameters intensively and concluded that a small population
size improved initial performance, while large population size
improved long-term performance.44 Then, 50 ≤ Npop ≤ 100.
This conclusion was drawn from tests on a suite of five fitness
functions and testing problems with individuals of sizes 10 and
30. Later, Schaffer et al. added five more fitness functions to De
Jong’s test function suite.45 They tested discrete sets of
parameter values including Npop = 10, 20, 30, 50, 100, and 200.
These authors found the best online performance resulted for
these settings: 20 ≤ Npop ≤ 30. For problems with moderately

long chromosomes (lengths ranging from 30 to 60), Goldberg
and Holland derived an expression for optimal population size
(eq 12),46 where N is the length of the chromosome, but
Schaffer et al. suggested that this criterion is too conservative
since it leads to extremely large populations.45

=N 1.652 N
pop

0.2
(12)

6. RESULTS

6.1. Choice of Control Policy. Figure 5 shows only one
possible control policy (configuration 1). Perhaps, the addi-
tional overhead introduced by a PID controller may not justify
the resulting solutions’ quality. Therefore, a single-objective
optimization was tested by removing the PID device
(configuration 2). As a result of a comparison between both
systems, which is explained below, configuration 1 was finally
adopted.
For the feedback/feedforward loops, the settings of the

controllers were simultaneously optimized by means of a GA.
In this work, two optimization stages were performed and
tested. Figures 8 and 9 show the meaning assigned to each
element of x for configurations 1 and 2, respectively. Since it is
desired to find the best controller settings, gains and time
constants naturally constitute the vector components.
In this application, 150 generations and scattered crossover

were employed for all runs. Fixed combinations (Npop, cf)
ranging from (100, 0.8) to (50, 0.4) were adopted for the tests.
The elite solutions, which were the best children found so far,
were destined to propagate unchanged, i.e., without being
subjected to random mutations. This elitism is widespread in
GAs because it is important to keep good answers during the
evolution. The crossover fraction cf is the fraction of each
population that is made up of crossover children, excluding elite
children.47 The population was kept below 100 chromosomes
since the individuals are always relatively short in this problem
(N = 11 forconfiguration 1; N = 8 for configuration 2). In both
cases, the goal was to solve an optimization problem where we
searched for an optimal (minimum) solution in terms of the
variables of the problem (the controller parameters to be
optimized). The general program was built to generate the
individuals relatively quickly. Therefore, the population size

Figure 8. Representation of a GA individual/chromosome (configuration 1).

Figure 9. Representation of a GA individual/chromosome (config-
uration 2).

Table 3. Mean Best Fitness Values and Optimal Settings for Controllers in Configurations 1 and 2

CPID CPI C1
FF C2

FF

configuration MBF KP
PID τI

PID τD
PID KP

PI τI
PI KFF

1 τ1
1 τ2

1 KFF
2 τ1

2 τ2
2

1 2.23 27.75 30.99 1.55 3.61 22.62 5.25 10.37 11.63 16.01 0.02 0.79
2 2.19 − − 4.52 3.41 0.21 0.03 2.69 18.12 0.03 1.37 4.52
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needed to be small so that the individuals could develop and
evolve quickly.
It is important to average the results over multiple runs

because the GA has many random components.35 Besides,
Cantu-́Paz and Goldberg stated that multiple runs are more
beneficial at very small population sizes.48 Therefore, 30
executions were adopted for each search.
The executions were performed on an AMD 8120 Eight-

Core Processor with 3.10 GHz and 8 GB of RAM. GA
optimizations were run in a MATLAB environment, and the
fitness values were obtained after having simulated by means of
Simulink.49,50 Mean Best Fitness Values (MBF) are reported in
Table 3, together with the optimal individuals. For config-
uration 1, where the fitness formulation includes the PID
objective, MBF is slightly higher than the value for
configuration 2, where all errors are only due to the PI
controller. Hence, more effective compensation is possible by
leaving both controllers (PI and PID) at work.
The shape of the Pareto front was determined to evaluate the

stability of the runs for the EAs.38 The feedback control
illustrated in Figure 4 was tested by applying a unit step in F2.
For this two-objective problem, Figure 10 shows the Pareto

front obtained in the conventional way, where the objective
function f 2 (eq 7) is usually plotted versus f1 (eq 6). Since the
corresponding Pareto Front is convex, each weight combination
corresponds to a stable minimum on this front.
6.2. Online GA Parametric Adjustment. At this point,

advanced process control was incorporated to face some
operational challenges. The high degree of well-to-well
variability makes it difficult to reliably assess the amounts that
will be ready to store. Figure 6 illustrates an online, real-time
solution that can compensate these transient imbalances. The
proposed strategy consists in tailoring the controller settings by
means of GAs. In this way, the tank feed can be maintained at
optimal levels on the bases of actual well conditions.
There is large variability in the initial production rates of

wells, and it is economically important to analyze early life well
behavior and, hence, predict the future oil production.32 Since
there is additional uncertainty in the production decline rate for
each field, it is proposed that the controllers are tuned online to
accommodate anomalies. The procedure consists in starting
with the controller settings for configuration 1 given by Table
3, and later, they are being updated on the basis of recent field-
history records. To eliminate the effect of the measured field
disturbances in F2, the controllers are tuned again with the best
results yielded by GA optimization, which is always running as
an internal procedure. Then, remedial action can be taken on

the basis of actual conditions, rather than predetermined
settings for the controller settings.
Some experiments were carried out to assess the impact of

this advanced control. Unit step disturbances were introduced
as F2 inputs at different time points in order to test how each
tuning responds. For example, Figure 11 compares the

responses of the most relevant outputs, i.e., tank level and
output flow, without (tuning A) and with (tuning B) changes in
the controller settings. Table 4 shows gains and time constants
for both tunings. The settings were updated at tB for tuning B.
The policy of keeping tuning A after tB is not advisable because
it becomes less and less effective, exhibiting more severe
overshoots. In contrast, tuning B contributes to responsiveness
tolerating the changes. It can be concluded that the algorithmic
adjustment can adapt the controllers satisfactorily at operational
level.

6.3. About the Self-Tuning Adaptive Approach. With
the aim of adapting the controllers (Figure 6) to the real
environment, the system was tested as a whole by considering
uncertain supplies at the operational level. To simulate these
disturbances in a realistic way, they were predicted by applying
an algorithm-based approach, which allows forecasting the
dynamics of natural gasoline resources.32 The model (eq 1)
includes a number of settings that were fitted to historical
production data, specifically comprising information from
Argentina. Sur Piedra Clavada [(lat., long.) = (−46.65,
−68.69)] is a particularly promising gas field in Argentina.51

We have inferred its empirical behavior from the data collected
from governmental reports.26

Figure 12 shows the predicted dynamic behavior for the field
Sur Piedra Clavada (F2), which was born in 2007. At about
2027, its exploitation may begin because this is the time when
this field is expected to have reached maximum production.
Effective disturbance rejection was achieved under control by

using the self-tuning adaptive approach. When the field’s

Figure 10. Convex Pareto front.

Figure 11. Comparison of system responses to unit step disturbances
in input flow rate F2.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.6b01934
Ind. Eng. Chem. Res. 2016, 55, 13062−13073

13069

http://dx.doi.org/10.1021/acs.iecr.6b01934


dynamic behavior is given by Figure 12, the responses in a
closed loop are satisfactory. The outputs react as shown in
Figure 13, being the corresponding adjustments reported on

Table 5. Tuning A, which corresponds to the peak production,
has the initial settings for the controllers that start working at
tC. When the field starts to decline, its data are collected, and

they are provided to the GA, whose runtimes to find a group of
more accurate values are reported in Table 5.
When starting from the Ziegler−Nichols tuning for PID and

PI settings and Foxboro tuning for the feedforward controllers,
which were reported on the first row (init.) of Table 5, the
computational time required to reach tuning C is 186 s. This
computational time is valid only at the beginning of the
adjustment procedure because it is taken by the MOEA to
generate the complete population set. The MOEAs are useful
to guide the search for online control, whenever their
performance is fast enough. The internal procedures, which is
the GA algorithm for the implementation proposed in this
paper, have to be integrated in a relatively short period of time
to ensure the online feasibility of control and optimization
procedures.52 From the viewpoint of online responsiveness in
industrial practice, computational times ranging between 20
and 50 s are considered acceptable.53 Besides, subsequent
tunings will naturally start from previous settings, which implies
that the GA population set is at that point rather close to the
optimal values, thus requiring shorter times to calculate tuning
readjustments. The time Δt = 122 s was taken to reach tuning
1M starting from the settings of tuning C, while the runtime
that corresponds to the path from tuning 1M to tuning 2M was
Δt = 102 s. Since the computational times are still higher than
the values commonly accepted industrially, the GA algorithm
should still be improved.
There is a compromise dilemma between the computational

efforts and the prediction capacity. It should be considered that
the runtimes reported in this paper were empirically taken by
using the MATLAB environment,47 which is a high-level
interpreted programming language. Then, if it is desired to
achieve lower computational times, the code should be
improved in a certain way. In this sense, the code could either
be reprogrammed by using compiled languages or else a parallel
GA implementation could be designed because parallel
programming enables fast convergence by reducing the number
of iterations and execution times.54 Nevertheless, before taking
these extreme measures, it is advisible to make an effort to
improve GA performance by handling GA settings. The
regulation can be made taking into account experimental
tests. The elementary genetic plans designed by De Jong44

suggest that larger populations respond more slowly but yield
better long-term performance. It is suggested that increasing
the population size or the mutation rate may degrade online
performance. Moreover, reducing the crossover fraction

Table 4. Mean Best Fitness Values and Optimal Settings for Both Tunings

CPID CPI C1
FF C2

FF

tuning MBF KP
PID τI

PID τD
PID KP

PI KP
PID τI

PID τD
PID KP

PI KP
PID τI

PID τD
PID

A 2.25 27.75 30.99 1.55 3.61 22.62 5.25 10.37 11.63 16.01 0.02 0.79
B 2.35 5.22 53.05 0.76 21.10 15.37 0.80 8.11 7.95 0.17 20.35 23.47

Figure 12. Field profile predicted for Sur Piedra Clavada.

Figure 13. Simulation results using GA parametric adjustment.

Table 5. GA Performance Indicators

CPID CPI C1
FF C2

FF

tuning Δt [s] MFB KP
PID τI

PID τD
PID KP

PI τI
PI KFF

1 τ1
1 τ2

1 KFF
2 τ1

2 τ2
2

init. 0 6.117 5.22 26.08 0.26 4.73 5.35 1.31 15.70 1.15 15.73 0.07 0.71
C 186 2.153 21.13 41.51 1.43 14.9 5.81 0.78 8.47 8.11 16.93 0.02 0.834
1M 122 2.169 21.13 41.50 1.43 15.39 5.81 0.76 9.91 0.31 17.21 0.02 0.933
2M 102 2.184 21.28 41.58 1.23 15.43 5.81 0.18 1.37 6.32 2.22 0.02 0.32

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.6b01934
Ind. Eng. Chem. Res. 2016, 55, 13062−13073

13070

http://dx.doi.org/10.1021/acs.iecr.6b01934


improves the initial performance because the sampling rate
might be too high.
By making changes in the GA settings, which were originally

set with a crossover fraction equal to 0.8 and a population size
of 100 individuals, runtimes could be reduced to computational
times closer to acceptable values, as reported on Table 6.
According to the policy suggested by De Jong,44 satisfactory
runtimes were achieved when the crossover fraction was
decreased up to 0.4 and the population size was reduced to 50
individuals. The speed improvements were due to the adequate
changes in the settings that rule the genetic evolution.
According to Table 6, the tests yield that updating the
controller settings every 50 s is the minimum updating
frequency that can be adopted with this implementation.
Larger updating times should be avoided because violent
control actions may also be introduced, and the GA will
generally take a long time to find the best individual. On the
other hand, if more speed is required, a more efficient
implementation in a compiled language is advisable.
As to the control behavior, Figure 13, where the controllers

were updated at times t1M and t2M, shows that the tracking
performance proved to be effective. Moreover, the tank output
flow rate was significantly improved by means of well-tuned
controllers.

7. CONCLUSIONS
In this work, an MOEA for the self-tuning control of a storage
tank fed from various natural gasoline sources is proposed. The
optimization method is a Bi-Objective Evolutionary Algorithm
based on a Genetic Algorithm, which was applied as a
controller-tuning technique to ensure optimal control perform-
ance. Selecting the best combination of controller settings to
exploit the dynamics of the problem proved to be advantageous
because smoother and more effective control actions could be
achieved.
The self-tuning procedure is a stable algorithm with a simple

architecture. It is easy to implement and efficient to be used in
real-world applications. The analysis of the behavior of the
internal GA procedure showed that it is advisable to choose
adequately the algorithmic settings to ensure fast adjustments.
The experimental tests revealed that it is convenient to choose
a small population size (about 50 individuals) and a low
crossover fraction (about 0.4).
Testing was carried out by predicting the production profile

of the main source from real data. The regulation method
proved to be successful to avoid or reduce the impact of the
dynamics of the fields. By suitable adjustments in settings and
modifications to the basic genetic plan, a considerable
improvement in performance was achieved. Less than 50 s
were necessary to find an updated set of controller settings,
even though the implementation can still be improved if higher
computational speeds are required. As part of our future work,
it would be interesting to reduce the computational efforts by
implementing this MOEA with parallel programming techni-
ques.
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■ NOMENCLATURE
ci(x) = ith inequality constraint, for i = 1, C
C = Number of inequality constraints
cf = Crossover fraction
CFF
j = Transfer function of the jth feedforward controller, for

j = 1, 2
CPI = Transfer function of the PI controller
CPID = Transfer function of the PID controller
di(x) = ith equality constraint, for i = 1, D
D = Number of equality constraints
Δt = Increment of runtimes (s)
D = Decision space
ϵg
F = The relative error of the best values of the
multiobjective optimization function between two successive
generations
εPI = Error of the PI controller
εPID = Error of the PID controller
F(x) = Multiobjective optimization function. In particular,
the fitness function for an MOEA with GA
F̂g = Best value of the multiobjective optimization function
for the gth generation
f i = ith objective function of the optimization problem, for i
= 1, M
Fi = Flow rate of the ith stream
Fm = Measured outflow from the tank
FP = Maximum production plateau
Fsp = Set-point of the outflow from the tank
g = Index that corresponds to the generation
g0 = Initial generation
G(s) = Transfer function of the process
h = Liquid level of the tank
hm = Measured level of the tank
hsp = Set-point level of the tank
j = Index that identifies a feedforward controller
KFF
j = Gain for the jth feedforward controller, a tuning

setting
KP
PI = Integral gain, a tuning setting for the PI controller

KP
PID = Integral gain, a tuning setting for the PID controller

Table 6. Runtimes for GA Algorithm

CPID CPI C1
FF C2

FF

tuning Δt [s] MFB KP
PID τI

PID τD
PID KP

PI τI
PI KFF

1 τ1
1 τ2

1 KFF
2 τ1

2 τ2
2

C 186 2.153 21.13 41.51 1.43 14.90 5.81 0.78 8.47 8.11 16.93 0.02 0.834
1M 42 2.173 21.30 41.60 1.23 15.43 5.81 0.18 1.37 6.32 2.22 0.02 0.32
2M 49 2.193 21.60 40.43 1.55 14.43 5.81 3.78 8.23 8.28 15.12 0.02 0.68
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M = Number of objective functions
N = Number of decision variables
NImax = Maximum number of iterations
Npop = Population size
P = Population in the GA procedure
PF(t) = Fieldś production profile, as a function of time t
Qr = Amount of recoverable resources remaining in the field
at tr
s = Laplace transform variable
τ1
j , τ2

j = Time constants for the jth feedforward controller,
two tuning settings for each controller
τI
PID, τD

PID, τI
PI = Time constants for the feedback controllers

tB = Updating time for tuning B (s)
tC = Updating time for tuning C (s)
tF = Total amount of time necessary to reach the maximum
production plateau (year)
tr = Moment when the field production begins to decline
(year)
t1M = Updating time for tuning 1M (s)
t2M = Updating time for tuning 2M (s)
TOL = Lower bound on the change in the best value of the
multiobjective optimization function during a step
ωi = Non-negative weight for the ith objective, for i = 1, M
x = Vector of decision variables
xi
max = Maximum upper value that is allowed for the ith
element in x
xi
min = Minimum lower value that is allowed for the ith
element in x
YF = Time instant when the field commences the production
(year)
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