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2 División Colisiones Atómicas, Centro Atómico Bariloche and Instituto Balseiro, 8400 S.C. Bariloche, Argentina

Received 19 April 2017
Published online 19 September 2017 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2017

Abstract. A comparative study of the angular dispersion of slow muons in an electron gas is performed
using three dielectric models which represent the case of metals (Lindhard model for a free electron gas)
and the cases of semiconductors and insulators (Levine and Louie model and Brandt and Reinheimer model
for systems with a band gap) and a non-linear model for both cases at very low velocities. The contribution
of collective electronic excitations according to the dielectric model are found to be negligible. The results
from the calculation using Lindhard expressions for the angular half width are coincident with the result
of a multiple scattering model. In particular, the effects produced by the band gap of the material are
analyzed in detail. Finally, as the recoil effect is negligible, there is an almost exact scaling, for a given
velocity, between the proton and the muon results.

1 Introduction

Several studies of stopping powers, ranges and nuclear
multiple scattering of MeV muons in solids have already
been made, starting with the pioneering work of Lagerlund
et al. [1] or the 4.1 MeV channeling experiments of Flik
et al. [2]. However, low energy studies are more recent,
such as the work of Valdés et al. [3] or the MUSCLE
project [4,5]. With the advent of low energy muon beams
capable of stopping in thin layers of crystalline mate-
rial [6–9] it becomes important to know the depth dis-
tribution of these muons in order to properly interpret
muon spin rotation experiments. These experiments are
performed to learn more about the surrounding dipole
contributions and the nature of local magnetic field dis-
tribution of a crystalline sample. Recent computational
simulations [4,5] conclude that channeling conditions may
increment the penetration depth, but these simulations do
not take into account the importance of the multiple scat-
tering of the projectile with the electrons of the channel.
To our knowledge, no systematic analysis of angular dis-
tributions as a consequence of the multiple scattering of
muons with electrons of the target, using different models
appropriate for band-gap materials, have been made. The
cases of interest include in particular different types of in-
sulators or compounds with large band gaps, which are
some of the basic materials of current interest for many of
the experimental methods mentioned before.

In previous works [10,11] we developed a formalism
based on the theory of multiple scattering and the cal-
culus of the elastic scattering cross section for a dielec-
tric model. A similar approach was formulated years later
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by another researchers [12]. Recently [13,14] we have also
performed a comparative study of threshold effects in the
energy loss moments of several projectiles using dielec-
tric models for band gap materials. Combining both ap-
proaches, we aim now to describe the behaviour of the
width of the angular dispersion of muons with a material
characterized in terms of different dielectric approaches
which represent the cases of metals (Lindhard free elec-
tron gas model [15,16]), semiconductors and insulators
(Levine and Louie model [17] and Brandt and Reinheimer
model [18,19] for systems with an energy band gap Eg).
However, at low velocities non-linear effects become im-
portant. So we have incorporated the results using the
non-linear approach [10], which applies also in the cases
of very strong screening and large scattering amplitudes,
and reduces to the linear treatment when the magnitude
of the perturbation is small. The non-linear approach is
based on transport cross section calculations according to
quantum scattering theory. Finally, with the aid of these
linear and non-linear models, we pay special attention to
the appearance and the characteristics of threshold effects
in the width of the multiple scattering angular distribu-
tion, since this band gap effect can play an important role
at very low velocities to attenuate dechanneling.

The present work is organized as follows: in Section 2
we describe the dielectric approaches used in this study
including the expressions for the multiple scattering func-
tion that can be applied to muons and protons. We also
briefly describe the non-linear method. In Section 3 we an-
alyze the results from all the methods, and compare with
the results for protons. The conclusions are summarized
in Section 4. The isotopic effects in Lindhard’s expression
are calculated for the first time in Appendix A. All the
expressions have been written in atomic units.
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2 Theoretical method

2.1 Multiple scattering formulation

The differential scattering probability for a projectile
traversing an electron gas with velocity v and transferring
a momentum q is given in the form [11]

d4P

d3qdω
=

e2

π2q2
Im

[ −1
ε(q · ω)

]
δ

(
�ω − �

−→q · −→v +
�

2q2

2M

)

(1)
where M is the mass of the incident particle and the last
term in the delta function represents the recoil effect.

To solve equation (1) we first integrate over frequen-
cies ω, and then separate the momentum transfer into par-
allel q‖ and perpendicular q⊥ components relative to the
initial beam direction, d3q = d2q⊥dq‖. Integrating over q‖
we get the differential probability of scattering for a muon
of mass M traversing with velocity v an electron gas with
an energy gap Eg and transferring a perpendicular mo-
mentum q⊥ [11]:

dP

dq⊥
(q⊥, v, M) =

2q⊥Z2

π

∫ qmax

qmin

dq‖
q2

Im
[ −1
ε(q, ω)

]
. (2)

Two differences exist between this expression and that
considered in reference [11] for the case of protons in a
free electron gas. First, we must verify if it is possible to
neglect the quadratic term in the maximum transferred
energy �max = qv − �q2

2m (recoil effect) by a muon with
incident energy T = Mv2/2. The maximum transferred
momentum to the electron taking into account the recoil
effect is

qmax = 2(v + vF )
(

M + 1
M

)
. (3)

This expression reduces to qmax = 2(v+vF ) when M � 1.
Second, we must take into account the effect of the energy-
gap. The lower limit of the integral is obtained from the
frequency cut in the imaginary part of the dielectric func-
tion, i.e. (q‖v− q2

2M )2−E2
g > 0. When Eg = 0 and M � 1

the lower limit of the integral reduces to 0 as in the case
analyzed in reference [11].

2.2 Dielectric formalism

For all the linear cases considered in this work, the di-
electric function of the material is expressed in terms of
reduced variables in the following way (see Ref. [13] for
further details):

ε(q, ω) = 1 + g(z, Eg)[f1(z, u, Eg) + if2(z, u, Eg)] (4)

where q and ω represent the momentum and energy trans-
fers to the medium, and u and z are the corresponding
reduced variables defined by the relations: z = q/2qF ,
u = ω/qvF . Eg is the energy gap of the material (Eg = 0
for Lindhard dielectric function), and vF and EF are the
Fermi velocity and corresponding energy. Other important

quantities to characterize the system are the electron den-
sity n, the plasma frequency ωp = (4πn/m)1/2 and the
electronic Wigner-Seitz radius rs = 1.919/vF . The proba-
bility of equation (1) can be separated into two contribu-
tions: dP

dq⊥
= ( dP

dq⊥
)eh +( dP

dq⊥
)pl, corresponding to the exci-

tation of single individual electrons, or electron-hole pairs
( dP

dq⊥
)eh, and collective or plasmon excitations ( dP

dq⊥
)pl, as

explained in reference [13]. The calculation of the eh term
is made by integrating equation (1) over the region of the
q−ω plane where the imaginary part of ε(q, ω) is different
from zero, while the calculation of the plasmon component
requires a different procedure; in this case the integral can
be transformed into a line integral along the resonance
line corresponding to the plasmon dispersion curve defined
by ε(q, ω) = 0. This procedure is described in detail in
references [11,14].

2.3 Non-linear model

To introduce the nonlinear approach in the present treat-
ment we follow the procedure described in reference [10]
with the following approximation for the imaginary part
of the dielectric function at low velocities:

ε(q, ω0) =
{

2
q3 ω, q ≤ 2kF

0, q ≥ 2kF
(5)

with ω =
√

(q‖v − q2

2M )2 − E2
g to include the band gap

effect [17].
Replacing this expression in equation (2) we obtain:

dP

dq⊥
=

2q⊥Z2

π

∫
dq‖
q

⎡
⎣

√
(q‖v − q2

2M )2 − E2
g

q4|ε(q, Eg)|2

⎤
⎦ . (6)

For the passage from dielectric formalism to non-linear
formalism we use Nagy’s replacement [20]:

1
q4|ε(q, Eg)|2 =

|f(θ)|2
4

(7)

where f(θ) is the non-linear quantum scattering ampli-
tude, given by the partial wave expansion, as a function
of the scattering angle θ. Using that dq = (q‖/q)dq‖ we
insert equation (7) into equation (6) to obtain the differ-
ential scattering probability in the non-linear formalism:

dP

dq⊥
(q⊥, v, M) =

2q⊥Z2

π

∫ qmax

qmin

dq

×
⎡
⎣

√
(q2 − q2

⊥)1/2v − q2

2M )2 − E2
g√

q2 − q2
⊥

|f(θ)|2
⎤
⎦ (8)

where qmin is obtained from the condition of the fre-
quency cut, i.e. the numerator of the integrand must
be real, together with the condition that the minimum
transferred energy in the laboratory system is given by
Eg = vvr(1 − cos θ) being vr the relative muon-electron
velocity [21].
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2.4 Calculation of the angular distributions

Following the formulation of references [10,11] the elec-
tronic multiple-scattering function in the small-angle ap-
proximation for a projectile of mass M travelling a dis-
tance x with velocity v is:

fms(α, x, v, M) =
∫ ∞

0

κdκJ0(κα) exp [−xμ0(κ, v, M)] .

(9)
The function μ0(κ, v, M) is determined from the previ-
ously defined scattering differential probability dP

dq⊥
for the

present case of an electron gas, by

μ0(κ, v, M) =
∫ qmax

0

[
1 − J0

(
κ

q⊥
Mv

)] dP

dq⊥
(q⊥, v, M)

dq⊥
v

(10)
where qmax is given by equation (3).

In the following we present a set of calculations of
the angular width, considering a material described by
rs = 1.5, and energy gap values Eg = 0 and Eg = 14 eV.
Similar properties may be expected for other values. Other
cases of interest include semiconductors, such as Si and
Ge, with rs values close to 2 but much smaller energy
gaps, so that threshold effects will be strongly reduced
(see Ref. [13]). An alternative way to calculate the an-
gular width of the MS distribution is by using a formula
provided by [15]. However, the original Lindhard’s formula
does not include the recoil effect. Here we derived an ex-
tension of that formula which includes the recoil effect.
This derivation is included in Appendix A of this paper.

3 Results

In Figure 1 we show some illustrative results for the an-
gular width calculated using the three dielectric mod-
els considered here (Lindhard, Levine-Louie and Brandt-
Reinheimer) in the case of muons traversing an electron
gas characterized by rs = 1.5. For low velocities we added
the non-linear results. The difference between linear and
non-linear results is significant. For dielectric models, we
observe similarities between the behaviour of the angu-
lar width and the behaviour of the stopping calculated in
reference [13]. In both magnitudes, in the presence of the
band-gap, there is a velocity threshold v � 0.21 a.u. In
both magnitudes the B-R model gives lower results than
the L-L model. For the angular width we observe that the
energy band-gap effect becomes important for velocities
less than 1 a.u. (2.8 eV). The calculations with the exten-
sion of Lindhard’s formula derived in Appendix A are in
full agreement with those obtained by the formulation of
equations (8) and (9) in all the cases (i.e., for the three
dielectric models), so they are represented by the same
line in each case. The angular width scales as the square
root of the distance x traversed by the projectile. Thus,
to obtain the angular width in degrees from the figure it
is necessary to multiply by the square root of the distance
taking into account that the distance considered for our

Fig. 1. Angular half width versus the projectile velocity for a
muon impinging on a medium represented by an electron gas
with rs = 1.5 a.u. Comparisons between the three dielectric
models: full-line, Lindhard model (energy gap = 0 eV), dashed-
line, Levine-Louie model (energy gap = 14 eV), dashed-dotted
line, Brandt-Reinheimer model (energy gap = 14 eV). Non-
linear model: black squares, Eg = 0, empty squares, Eg =
14 eV. The angle is given in degrees while the depth is given
in Angstroms.

calculus must be lower than the penetration depth for ve-
locities around the threshold. Notice that the electronic
stopping cannot be neglected when the traveled distance
is near the penetration depth, but it can be assumed a con-
stant velocity to obtain a lower quote for the estimation
of the angular dispersion. For a more accurate estimation,
the slowing down of the muons in the foil must be consid-
ered, taking into account the velocity dependence of the
angular dispersion shown in Figure 1.

Finally, we have verified that the recoil effect and the
plasmon contribution are negligible and that the linear re-
sults are consistent with those obtained with Lindhard’s
formula for the angular width [11] as in the case of protons.
On the other hand, for low energies, it is expected that
in insulators and semiconductors the muons captures an
electron to form muonium. This neutral projectile would
decreases the dispersion in a similar way that the angu-
lar width of the multiple scattering of hydrogen was lower
than for protons [13]. As a consequence of this phenomena,
we expect that in the experiments the effect of dechannel-
ing would be attenuated for these materials.

3.1 Comparative results

In Figure 2 we show the non-linear results for the case ex-
amined in reference [5]. For 500 eV single charged ions, the
critical angle for axial channeling in Fe can be estimated
as 20◦ [22]. This estimation is affected by some uncer-
tainty as it is shown in the work of Bergstrom et al. [23]
for the case of a W target bombarded by protons. A pre-
cise value could only be obtained from experiments. The
lower quote for the angular half-width is α1/2 = 2.8◦
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Fig. 2. Results for the angular half-width of muons traversing
a Fe target of 50 Å represented by a free electron gas with
rs = 2.12 a.u.

for muons with an initial energy of 500 eV. Thus, this is
a non-negligible value when the projectile is in a channel-
ing situation, since the critical angle should be reduced to
guarantee that the projectiles do not suffer dechanneling.
However, for cases with a band-gap, as it happens with
some semiconductors or insulators commonly used in the
muon spin rotation experiments [5,7], at low velocities, the
probability of dechanneling decreases as a consequence of
the decreasing of the angular width near the gap. On the
other hand, for low energies, it is expected that in insula-
tors and semiconductors the muons captures an electron
to form muonium. This neutral projectile would also de-
creases the dispersion in a similar way that the angular
width of the multiple scattering of hydrogen was lower
than for protons [13]. As a consequence of this phenomena,
we expect that in the experiments the effect of dechannel-
ing would be very attenuated for these materials.

In Figure 3 we compare the results of Figure 1 with the
same results for protons for the linear models. In the case
of protons, the angular half-width is very small and do not
affect channeling conditions. Notice that the difference is
one order of magnitude. As the recoil effect is negligible,
there is an almost exact scaling, for a given velocity, be-
tween the proton and the muon results. This difference is
intuitive if we assume that in Lindhard’s formula the an-
gular half-width behaves proportional to the inverse of the
mass of the projectile when the recoil effect is negligible.

4 Conclusions

In channeling experiments, we knew that multiple scat-
tering of protons with the electrons of the target lead to
a negligible angular dispersion. However, in the case of
muons, with a mass an order of magnitude lower than
protons, electronic multiple scattering distributions sig-
nificantly increase the dechanneling fraction of projectiles
traversing a conductor modeled as a free electron gas. On
the other hand, when the system is characterized by a
band gap, the dechanneling decreases near the velocity

Fig. 3. Angular half width versus the projectile velocity for a
projectile impinging on a medium represented by an electron
gas with rs = 1.5 a.u. Comparison between muons and protons.
Full-line, Lindhard model (energy gap = 0 eV), dashed-line,
Levine-Louie model (energy gap = 14 eV), dashed-dotted line,
Brandt-Reinheimer model (energy gap = 14 eV).

threshold because of the reduction of the interaction be-
tween the projectiles and the electrons. Another important
factor which contributes to this reduction is the formation
of muonium at low velocities, whose angular dispersion
must be reduced in a similar way to that of the angular
dispersion of Hydrogen compared with protons, due to the
structural similarities between the projectiles.

As a final consideration, we hope that this comparative
study will be useful for applications in several cases of
interest such as those mentioned at the beginning of this
article.

C.D. Archubi is a research staff member of CONICET, Ar-
gentina. The authors acknowledge support from Universidad
Nacional de Cuyo and ANPCYT, Argentina.
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Appendix A: Extension of Lindhard’s formula

In his original work of 1954 Lindhard included a formula
for the angular spread produced by the multiple scattering
of particles in a free electron gas [15], but the detailed
derivation of this formula was not published. It may be
shown that the Lindhard’s expression applies to the case
of heavy particles, such that M � m, so that recoil effects
produced by the electron scattering are negligible small.
Here we present a derivation of the angular spread which
is an extension of Lindhard’s formula for the general case
of particles with arbitrary mass – i.e. where ratio m/M

http://www.epj.org
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is arbitrary – and which reduces to the Lindhard formula
when m/M → 0.

We start the derivation from the differential scattering
probability given by equation (1)

d4P

d3qdω
=

e2

π2q2
Im

[ −1
ε(q · ω)

]
δ

(
�ω − �

−→q · −→v +
�

2q2

2M

)

(A.1)
where M is the mass of the incident particle and the last
term in the delta function represents the recoil effect.

By definition this yields a scattering probability per
unit time. Therefore, for an interaction time Δt = Δx/v
(being Δx a pathlength increase) the corresponding prob-
ability is

d4P̃

d3qdω
=

d4P

d3qdω
Δt

=
e2Δx

π2q2v
Im

[ −1
ε(q, ω)

]
δ

(
�ω − �

−→q · −→v +
�

2q2

2M

)
.

(A.2)

The transverse component of the momentum transfer in
such scattering event is �q⊥, and so the scattering angle
is α = �q⊥/Mv.

We can then calculate the mean square value of the
scattering angle after traversing a thickness Δx by

〈
α2

〉
=

�
2
〈
q2
⊥

〉
M2v2

=
�

2

M2v2

∫
q2
⊥

d4P̃

d3qdω
d3qdω (A.3)

This yields

〈
α2

〉
=

�e2Δx

π2M2v3

∫
q2
⊥

q2
Im

[ −1
ε(q, ω)

]

× δ(ω − q‖v + γq2)d2q⊥dq‖dω (A.4)

where q‖ denotes the component of −→q parallel to −→v (be-
ing q2

‖ + q2
⊥ = q2), and we introduce for convenience the

parameter γ = �/2M.
Performing the integration over ω and replacing

d2q⊥ = 2πq⊥dq⊥ we get

〈
α2

〉
=

2�e2Δx

πM2v3

∫
dq⊥

∫
q3
⊥

q2
Im

[ −1
ε(q, ω)

]
dq‖ (A.5)

with the relation ω = q‖v − γq2 = q‖v − γ(q2
‖ + q2

⊥).
Inserting here the relations

q‖ = q cosϕ

q⊥ = q sin ϕ

(with dq‖dq⊥ = qdqdϕ), the integral becomes

〈
α2

〉
=

2�e2Δx

πM2v3

∫
q2dq

∫
Im

[ −1
ε(q, ω)

]
sin3 ϕdϕ (A.6)

where now ω = q‖v − γq2 = qv cosϕ − γq2.

We can use now the variable η = cosϕ, so that
sin3 ϕdϕ = (1 − η2)dη, and then

〈
α2

〉
=

2�e2Δx

πM2v3

∫
q2dq

∫
Im

[ −1
ε(q, ω)

]
(1 − η2)dη (A.7)

where now ω = qvη − γq2.
In principle the variable η = cosϕ could take values

from –1 to +1. However since ω must be positive (energy
transfer to the electron gas), the minimum value of η must
be ηmin = γq/v (when ω = 0), so η ranges from ηmin to 1.

This formula seems quite appealing since η ranges in a
very restricted domain. However the dielectric function is
defined in the q, ω domain, and so it is convenient to make
a final change of variables η → ω = qvη − γq2, replacing
dη = dω/qv and

(
1 − η2

)
= 1 − (ω + γq2)2/q2v2. (A.8)

This finally yields:

〈
α2

〉
=

2�e2Δx

πM2v4

∫ qmax

0

dq

q

∫ ωmax(q)

0

Im
[ −1
ε(q, ω)

]

× [
q2 − (ω + γq2)2/v2

]
dω

and the corresponding mean value α1/2 is given by

α1/2 =
√
〈α2〉 ln 2.

In particular, for γ = 0 we retrieve the Lindhard’s
formula [15].

We notice that the maximum value of q in this integral
is given by the condition ωmax(q) = qv − γq2 � 0, which
yields qmax = v/γ. For very massive particles, γ → 0, and
so qmax → ∞.
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