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Abstract  

Phosphate ions were evaluated as corrosion inhibitors in solutions that simulate the 

composition of the pores in concrete contaminated with chloride ions. Cyclic 

voltammograms and potentiodynamic polarization tests were complemented with 

micro-Raman spectroscopy and impedance spectroscopy to follow the performance of 

this inhibitor. Long term performance involved weight loss evaluation. Chloride 

contamination increases the accumulation of corrosion products on the metallic surface 

and promotes pitting corrosion. In contrast, pitting is inhibited when phosphate ions are 

incorporated in a 1:1 phosphate to chloride molar ratio, even after a 90 days exposure. 

Micro Raman spectra clearly show the incorporation of phosphates to the passive film. 

Impedance spectroscopy results can be interpreted assuming a duplex surface film 

formed in the presence of phosphates. In the conditions of this investigation, phosphate 

ions behave as mixed-type corrosion inhibitors, protecting steel against corrosion in 

chloride-contaminated environments.

Key words: phosphate; inhibitors; chloride; steel; concrete
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1. Introduction 

Reinforced concrete is one of the most widely used building materials. However, 

aggressive service environments and contaminated aggregates can contribute to its early 

deterioration and failure. Steel corrosion is one of the main factors that negatively 

influences the overall performance of reinforced concrete.

The durability of reinforced concrete structures is partially explained by the high 

alkalinity of concrete (pH can easily attain values close to 12 – 13), which results in the 

formation of a passive layer on the steel rebar. This is the reference situation simulated 

by our experiments in the pore simulating solution (PSS). As long as the integrity of this 

passive film is guaranteed, the corrosion rate will be minimal [1]. 

The composition, structure and morphology of the surface film controls rebar corrosion 

rates. Even though the behavior of carbon steel corrosion has been studied 

comprehensively [2-4], uncertainties related to film formation and deterioration 

mechanisms still persist. As the literature shows, surface film formation and degradation 

vary considerably with the composition of the electrolyte (pH, additives, oxygen 

content, aggressive anions and others), temperature and surface pretreatments. So, given 

the wide variety of service conditions that can be expected, it is difficult to determine 

how the corrosion process will evolve.

The two most common causes of rebar corrosion are (i) localized breakdown of the 

passive film on the steel due to penetration of chloride ions [5, 6] and (ii) generalized 

corrosion by acidification of the concrete after reaction with atmospheric carbon dioxide 

[7-9].  Even worse is the combination of these two factors. When a structure is located 

in a marine environment, chloride ions can penetrate the porous structure of concrete 

and reach the steel. On top of this, in many coastal cities in Argentina, the use of 
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seasand and chloride-contaminated coarse aggregates and water constitutes a recurrent 

malpractice [10].

To minimize the effect of rebar corrosion, various techniques are frequently employed, 

such as cathodic protection, inhibitors dosage or the application of coatings to the 

external concrete surface or to the reinforcing steel bars. The use of corrosion inhibitors 

is considered as one of the most cost-effective solutions. Damage can be prevented by 

adding the corrosion inhibitor to the concrete mixture or by treating the rebars prior to 

building the structure. Chromate, phosphate, nitrite, tungstate and molybdate ions have 

been investigated in terms of their ability to inhibit the pitting corrosion of steel [9, 11-

13].

Compared to alternative inhibiting agents, phosphates present some advantages such as

low cost and low toxicity. Some authors consider that phosphates are anodic inhibitors, 

being effective only in the presence of oxygen [14-16]. Other authors suggest that they 

act as cathodic inhibitors for [PO4
-3]/[Cl-] ratios lower than 0.6 while they behave as 

mixed inhibitors for [PO4
-3]/[Cl-] ratios higher than 0.6 [17, 18]. Few articles have 

reported evaluations of the inhibitor performance of phosphate ions in simulated 

concrete solutions [13, 14, 19, 20]. The action mechanism of this agent in highly 

alkaline solutions needs to be clarified to later evaluate its effectiveness in mortars. In 

this work, the effectiveness of sodium phosphate (0.3 mol dm-3) as corrosion inhibitor 

has been tested in a synthetic medium (pH 13) that simulates the interstitial solution of 

concrete contaminated with chlorides. The composition of the passive films in the 

presence of the contaminant and the inhibitor are investigated, so that a protection 

mechanism can be proposed. 
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2. Materials and methods

2.1. Electrodes preparation

The electrodes were constructed from steel reinforcement bars (Mn 0.635 wt%, C 0.299 

wt%, Si 0.258 wt%, Cu 0.227 wt% and others impurities 0.245 wt%). Disc samples of 

steel were included in fast curing epoxy resin on appropriated polyvinyl chloride (PVC) 

holders. The geometrical area exposed was 0.503 cm2. An electrical contact was 

prepared at the back of each sample. The electrodes were abraded down to grade 1000 

with emery paper. The electrodes were then rinsed gently with distilled water.

2.2. Electrolyte composition

The experiments were carried out using a pore simulating solution (PSS). The 

composition was KOH 0.08 mol dm-3, NaOH 0.02 mol dm-3 and Ca(OH)2 0.001 mol 

dm-3 with a resulting pH value of 13. When chloride ions were incorporated, the Cl-

dosage used was 0.3 mol dm-3 corresponding to [Cl-]/[OH-]=3. These solutions are 

labelled as PSS + Cl-. To evaluate the inhibitor effect, the dosage of Na3PO4 tested was 

0.3 mol dm-3, corresponding to [PO4
3-]/[Cl-]=1. These solutions will be referred to as 

PSS + Cl- + PO4
3-. All the experiments were carried out at room temperature (20  2 

ºC).

2.3. Electrochemical techniques 

All the electrochemical experiments were performed in a three-electrode cell. A 

Voltalab PGZ 100 potentiostat was used. A Hg/HgO electrode with 1 mol dm-3 KOH 

solution (labeled as MOE, E = 0.123 V vs. SHE) was used as reference. All the 
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potentials are indicated against this electrode. The counter electrode was a platinum 

wire of large area. 

The corrosion potential (Ecorr) was measured during 24 h in the different conditions 

investigated. Average values of at least five individual experiments were registered. 

Potentiodynamic polarization tests were also executed after having kept the electrodes 

for 24 h at Ecorr.

Cyclic voltammograms were recorded after having deaerated the electrolyte by bubbling 

N2 during 15 min prior to each measurement. The electrodes were pre-reduced in PSS at 

–1.1 VMOE. Finally the scan was started at −1.1 VMOE and reversed at convenient values. 

The sweep rate used was 10 mV s−1. 

Film growth was investigated carrying out polarization tests in deareated PSS applying 

a potentiodynamic scan of 1 mV s-1. The starting point was the positive potential where 

the oxide had been grown. The potential was scanned in the negative direction up to –

1.15 VMOE. 

For the anodic polarization curves, the potentiodynamic scan started at the Ecorr, with a 

sweep rate of 0.1 mV s-1.  The scan direction was reversed when reaching 100 µA cm-2. 

This value was chosen to induce a convenient degree of attack. The overall procedure 

followed the recommendations of ASTM [21]. 

Electrochemical impedance spectroscopy (EIS) tests were performed at open circuit 

potential, after having kept the electrodes for 24 h at Ecorr in the testing solutions, 

without stirring or deaereating. The amplitude of the AC applied potential signal was 

0.01 Vrms while the frequency varied between 20 kHz and 1 mHz. The results were 

analyzed using two different equivalent circuits presented in Figure 1. The circuit a is 

typical of oxide-coated metals [9, 12, 22, 23]. The circuit b presents an additional 
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Warburg element that could be attributed to a diffusion process [24, 25]. The 

experimental data were fitted to the proposed equivalent circuit using ZView [26].

2.4. Ex-situ Raman spectra

The Raman measurements were carried out using an Invia Reflex confocal Raman 

microprobe with Ar+ laser of 514 nm in backscattering mode, with a laser spot of 10 

µm. An exposure time of 50 s and 3 accumulations were used, with 50 X objective. The 

laser power was 25 mW.  Raman spectra were collected on least five representative 

spots after having subjected the electrodes to anodic polarization curves. The spectra

were observed to be reproducible.

2.5. Weight loss determinations

The weight loss method was applied following the guidelines in ASTM D 2688 

Standard Test Methods for Corrosivity of Water in the Absence of Heat Transfer. 

Coupons, in the shape of disks having 5.67 cm2 as geometrical area, were cut and 

abraded down to grade 120 with emery paper. Previously weighted coupons were 

suspended and immersed in the following test solutions: PSS, PSS + Cl- and PSS + Cl-

+ PO4
3-. Each container held three coupons. The containers were kept at room 

temperature in aerated conditions. The coupons were withdrawn after 90 days. For 

surface characterization, one coupon of each condition was conveniently dried to 

perform ex-situ Raman spectra. Then the corrosion products were stripped by 

immersion in HCl 1 mol dm-3. Later the coupons were neutralized and rinsed, first with 

a saturated Na2CO3 solution and then with distilled water, to be finally dried and 

reweighted.
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3. Results and discussion

Figure 2 shows the first cycle of voltammograms carried out in PSS, PSS + Cl- and PSS 

+ Cl- + PO4
3-. In PSS, four peaks can be seen in the positive scan, in agreement with the 

results obtained by other authors [27-30]. The first anodic peak at -0.92 VMOE (Ia) has 

been attributed before to the oxidation of atomic hydrogen absorbed into the metal 

during the cathodic pre-reduction process. Then, peak IIa at -0.74 VMOE can be 

attributed to the formation of hydrated Fe(II) and Fe(III) species and eventually Fe3O4. 

At pH 13, the solubility of Fe(II) species is minimal and that of Fe(III) is maximal [28]. 

Peak IIIa at -0.6 VMOE could be attributed to the formation of Fe(OH)3 and/or - or -

FeOOH by oxidation of Fe(II) compounds formed at IIa, such as Fe3O4. This process 

takes place at the film solution interface, leading to the generation of cation vacancies 

[28]. The formation of -FeOOH at pH = 14 has been demonstrated before using Raman 

spectroscopy [27]. Peak IVa at -0.30 VMOE has been suggested to comprise the 

conversion of Fe(OH)2 to an Fe(III) hydroxide or oxyhydroxide different from those 

formed at IIIa, such as Fe(OH)3 or -FeOOH [28]. In PSS, at potentials positive to that 

of peak IVa, the positive end of the potential sweep may be extended up to 0.6 VMOE 

without any further current increment. After reversing the scan, two cathodic peaks can 

be seen in PSS. Peak Ic at -0.69 VMOE can be attributed to the reduction of Fe(III) 

species and peak IIc at -0.89 VMOE to that of Fe(II) species. As can be seen, the total 

cathodic charge is lower than the anodic charge. This has been attributed before to the 

fact that once a magnetite-like phase forms, further Fe(OH)2 dissolution will be limited 

since magnetite is quite insoluble and known to inhibit iron dissolution [28]. The 

presence of magnetite at highly cathodic potential has been verified experimentally 
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before, using in situ Raman spectroscopy [30]. This work also shows that the surface 

film presents a layered structure in which the inner part is Fe3O4 within most of the 

potential range examined, while the outer part is oxidized or reduced depending on the 

applied potential.

When chloride ions are added, the scan needs to be reverted at more negative potentials 

to avoid localized attack. In PSS + Cl- , the same four oxidation peaks can be seen in 

Figure 2. As iron is readily oxidized when in contact with chloride ions, the intensity of 

peaks IIa and IIIa increases markedly. In this chloride-rich electrolyte, only one 

reduction peak is clearly seen. This can be due to the smaller potential window and also 

to the higher solubility of the iron oxides or hydroxides in the presence of chloride ions. 

This is in agreement with XPS results [31], which showed that the addition of chloride 

to the solution decreased the thickness of the oxide film and also changed the 

stoichiometry of surface film, such that near the film/metal interface the Fe3+/Fe2+ ratio 

increased.

After incorporating phosphate ions to the electrolyte, the positive limit can again attain 

more positive values, as was the case for PSS. In PSS + Cl- + PO4
3-, the same oxidation 

peaks are found except for the one at -0.6 VMOE (IIIa).  Only one broad cathodic band 

from -0.6 to -1.0 VMOE can be seen. There is insufficient information in the literature on 

the behavior of steel when chloride and phosphate ions are simultaneously present [13, 

31-34], with almost no reference to the composition of the surface film. Even if the 

strong interaction between iron oxides and phosphate ions is clearly demonstrated, the 

actual role played by phosphate is still controversial. Both, the incorporation of iron 

phosphates to the surface film and the simple adsorption of phosphates on the surface 

have been given as plausible interpretations. The results from EIS and micro Raman 

spectroscopy, to be discussed below, will demonstrate that in the present case the 
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composition of the surface layer does change and that of phosphate ions incorporate to 

the passive film.

Figure 3a shows the tenth cycle of cyclic voltammograms in PSS, PSS + Cl- and PSS + 

Cl- + PO4
3-. In every condition, the sweep was reverted at the same potential to allow an 

easier comparison of the anodic and cathodic charges. The presence of just one negative 

and one positive peak as the number of cycles in the voltammogram increases has been 

reported before [28, 29]. In PSS and PSS + Cl- the charge related to both peaks 

increases steadily with each new cycle. This behavior, presented in Figure 3b for PSS  + 

Cl-, has also been observed previously by many authors [27, 28, 35]. This increment has 

been attributed to the accumulation of corrosion products on the steel surface 

(particularly the accumulation of a sublayer of magnetite which is never completely 

reduced), ultimately leading to a continuous thickening of the surface layer as more 

cycles are recorded. This is not the case when PO4
3- ions are present: after ten cycles the 

anodic and cathodic charges are very similar to those in the first cycle. This behavior

could be related to the absence of peak IIIa in Figure 2. If Fe(III) compounds are not 

being formed, they cannot be reduced and then formed again, on further cycle [27]. It 

has been argued that chloride ions induce dissolution and phosphate ions promote 

ferrous phosphate precipitation, given the higher solubility of ferric phosphate (pKsp = 

32 for ferrous phosphate compared to pKsp = 26 for ferric phosphate) [36].

Figure 4 shows the potentiodynamic polarization curves on electrodes that had been 

kept for 24 h at the Ecorr in PSS + Cl- and PSS + Cl- + PO4
3-. Ecorr values can be seen in 

Table 1. In order to improve the definition of the peaks, the scan rate of the 

potentiodynamic curves is 10 times lower than that of the cyclic voltammograms. Two 

peaks appear in the alkaline chloride-contaminated solution, one at -0.97 VMOE and 

another at -0.82 VMOE, in agreement with a film composed by Fe(II) and Fe(III) 
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oxohydroxydes [31, 37]. A quite different behavior was found when phosphates are 

present. There are no peaks, and the current increases steadily but with values always 

lower in magnitude than those in PSS + Cl-, indicating the development of a thinner 

passive layer or one which is more difficult to reduce. 

The impedance spectra recorded using electrodes aged during 24 hours in PSS + Cl-

with and without inhibitor, together with the fit results are shown in Figures 5a, b and c 

in the form of Nyquist and Bode plots. The fitting parameters are presented in Table 2.

Corroding electrodes may show various types of non-homogeneities, which can be 

represented using constant phase elements (CPE) instead of capacitors in the equivalent 

circuit. Surface roughness, deficient polishing, grain boundaries and surface impurities 

had been mentioned before among the main reasons that justify the use of CPEs in 

equivalent circuits that model corroding electrodes [38]. The impedance of this type of 

element is frequency-dependent, and can be defined using two parameters, Q and n as:

ZCPE = [Q(j)n]-1 (1)

where Q is a constant with dimensions of  cm2 s-(1-n) and n a constant power, with -

1<n<1. By plotting the imaginary component of the impedance as a function of 

frequency in a logarithmic scale has been used before to quantify the CPE behavior 

[39]. As shown in Figure 5d, a slope of -0.93 was obtained, in agreement with the no

values presented in Table 2.

Warburg impedances and CPEs with a n value around 0.5 (the last known as “infinite 

diffusion”) are used to model surface layers with increasing ionic conductivity due to 

corrosion processes occurring inside the pores, and the consequent diffusion process 
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along them. If the surface layer is thin, low frequencies will penetrate the entire 

thickness creating a finite length Warburg element (Eq. 2):

nR
iT

iT

W
Zw

n
) tanh(

)(



                   (2)

where WR is a parameter associated with solid phase diffusion and T is related to the 

effective diffusion coefficient (D) and the effective diffusion thickness (L) by T = L2/D. 

Only if the layer is thick enough so that the lowest frequencies are unable to penetrate 

the entire width, can its behavior be interpreted as infinite diffusion [26]. 

The experimental data fit reasonably to the equivalent circuits proposed in Figure 1. Rs 

represents the solution resistance, Qo the pseudo-capacitance of the surface film, Ro the 

film resistance, Qt the metal pseudo-capacitance, Rt the charge-transfer resistance for 

metal dissolution, and W represents a Warburg element associated to finite length 

diffusion through in the film.

In the absence of inhibitor, a depressed loop with two time constants in the Bode plot 

indicates the development of a surface layer, which in this case is the passive layer [9, 

12, 40]. The spectra were fitted using the equivalent circuit in Figure 1 a. On the other 

hand, in the presence of inhibitor, two loops in the Nyquist plot can be observed, one at 

high frequencies, and the other at low frequencies. The loop at low frequencies presents 

two time constants, so that a total of three times constants can be observed in the Bode 

plot in phosphate-containing electrolytes. In this condition, the results were fitted using 

the equivalent circuit in Figure 1 b. 

When the inhibitor is incorporated, Qo and no do not present significant changes when 

compared to a phosphate-free electrolyte, as shown in Table 2. The similar values of Qo 

together with no values higher than 0.9 can be related to a capacitive response associated 
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to the presence of a protective passive layer [12, 28, 40]. However, Ro decreases 

markedly when the inhibitor is incorporated. This decrease could be associated to two 

factors: to an increment in the porosity of the surface film [25] or to changes in the 

composition of the surface film. In a more porous film an increment of Qo should be 

observed as a result of water filling the pores, with a consequent decrease of no [41, 42]. 

However, this behavior is not observed. Therefore the decrease of Ro is probably related 

to changes in the composition which impact the electronic properties [28], instead of 

being associated to an increment in the porosity of the passive film. The Qt value 

calculated for the low frequency loop is too high to be associated with a double layer 

capacitance. This Qt value is therefore associated with diffusion impedance combined 

with a charge transfer process [17]. Moreover, the low frequency loop exhibits an angle 

θ with respect to the real axis that approaches 45○ as the frequency increases, which is 

in agreement with a diffusion process [43]. In the present case, the diffusion impedance 

could represent the hindered diffusion of oxygen through a non-conducting layer, where 

oxygen reduction only occurs after O2 reaches the metal/film interfase. On the other 

hand, the diffusion impedance could be associated to a more difficult movement of 

cation vacancies. These vacancies are generated by chloride ions adsorption and diffuse 

from the film/solution interface across the film, towards the film/metal interface. If 

diffusion is slowed down, the vacancies condensate cannot reach the critical size at the 

film/metal interface, preventing pitting [44-46]. Along the same line, the slight 

increment in the Rt values in the presence of phosphate ions could be explained as the 

result of changes in composition which influence the electronic properties of the surface 

layers and could, in turn, affect the mass transfer of oxygen and/or cation vacancies.

The sequence of anodic polarization curves shown in Figure 6 was carried out in PSS, 

PSS + Cl- and PSS + Cl- + PO4
3-. Steel remained passive in PSS. However, in the 
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presence of chloride ions, pitting occurred at potentials around 0.02 VMOE and 

repassivation was not possible. The influence of Cl- ions on the passivity breakdown of 

steel can be interpreted as a balance between two processes competing on the metal 

surface: stabilization of the passive film by OH- adsorption and disruption of the film by 

Cl- adsorption. When the activity of chlorides overcomes that of hydroxyls, pitting 

occurs [12]. When both phosphates and chloride ions are present in solution, pitting is 

clearly inhibited. Some relevant electrochemical parameters such as passivity currents 

(ipas), corrosion potential (Ecorr) and pitting potentials (Epit) were calculated from at least 

six anodic polarization curves. These average results are presented in Table 1. As it can 

be seen, the beneficial effect of phosphates is clear: ipas measured for PSS + Cl- is nearly 

twice the ipas measured in presence of the inhibitor. The role of phosphate ions as 

inhibiting agents has been explained before in terms of their strong interaction with iron 

oxo-hydroxides present in the passive film. By adsorbing on the surface, they can 

promote precipitation of dissolved iron species leading to iron phosphates, since these 

compounds are known to have very low solubility values [34]. It should be noticed that 

Ecorr moved towards more negative values when Cl- + PO4
3- were present in the solution. 

This tendency has been observed previously by other authors [17, 18]. At high [PO4
3-

]/[Cl-] ratios such as 1, phosphate acts as an mixed inhibitor, whereas at smaller ratios, 

phosphate becomes a cathodic inhibitor [17]. Micrographies of the steel surface were 

taken after anodic polarization experiments and are presented in Figure 7. The images 

confirm the absence of attack when phosphate ions are present. 

Raman spectroscopy provides direct information on the bonding, composition and 

stoichiometry of both crystalline and amorphous surface compounds on metals, at 

atmospheric pressures. Ex-situ Raman spectra were registered in order to characterize 

the passive films and the corrosion products after inducing the pitting process by anodic 
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polarization. The results should be interpreted with caution because this technique may 

demand a relatively high laser power, given that the most common iron oxides and 

oxyhydroxides are poor light scatters [47]. In Figure 7, the arrows point to the regions 

where Raman spectra were collected (zone A in PSS + Cl- + PO4
3- and; zones B and C 

in PSS + Cl- without and with corrosion products). The corresponding Raman spectra 

are presented in Figure 8. It has to be taken into account that laser irradiation may 

produce local heating effects which have been shown before to broaden the bands and 

induce shifts to lower wavenumbers [47]. Raman spectrum B corresponds to a region 

with no pitting attack, where there are no corrosion products present. In this condition, 

there is no evidence of defined peaks. This lack of characteristic signals may be due to 

the presence of a very thin passive film on the steel surface. Also, iron oxides or 

oxohydroxides could be forming an amorphous or disordered structure, obstructing a 

clear identification [32].  Raman spectrum C corresponds to a corroded region. The 

bands at 220 cm-1, 280 cm-1, 395 cm-1 and 595 cm-1 are typical of α-FeOOH [27, 32, 

40]. Raman spectrum A shows a peak at 245 cm-1 that can be attributed to -FeOOH 

[32]. Also, Fe3O4 is present in the passive film showing its characteristic peak at 680 

cm-1 [27, 32]. Phosphate ions have been reported to have four active Raman bands: an 

intense one at 935 cm-1 due to P-O symmetric stretch and three weak ones at 1007 cm-1 

(P-O antisymmetric) and 550 and 412 cm-1 (deformation) [48]. Thus, the bands that can 

be seen at 940 and 1005 cm-1 are attributed to the presence of iron phosphates in the 

passive layer [34]. The band at 1081 cm-1 can be attributed to an antisymmetric 

stretching mode of hydrogen phosphate [48].

To evaluate the performance of the inhibitor at longer times, 90 days weight-loss tests  

were carried out by immersing steel coupons in PSS, PSS + Cl-, PSS + Cl- + PO4
3-. 

Figure 9 shows photographs of the coupons after 90 days of immersion in each 
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electrolyte, as indicated. The corrosion current density values (icorr) were calculated 

from weight loss results using Faraday’s law [49]

   
Ateq
mF

icorr                                                                             (3)

where m is the mass lost, F is the Faraday constant, A is the exposed area, t is the 

exposure time and eq is the equivalent weight (Fe eq= 27.92 g/mol). 

The percentage of inhibition was calculated using the following equation

   1001%
inhibitorut corr witho

inhibitorcorr with 
x

i
i





                                              (4)

The results are shown in Table 3. The coupon immersed in PSS can be taken as the 

control specimen. In this condition, corrosion and weight loss are negligible and the 

steel coupons present icorr values typical of steel in passive state [50, 51]. As presented 

in Figure 9, no attack was detected in the case of coupons immersed in PSS + Cl- + 

PO4
3-. Also, the icorr values are typical of the passive state, even when the samples have 

been immersed during 90 days. In contrast, pitting is evident in the case of coupons 

immersed in PSS + Cl-.

The ex-situ Raman spectra of the corrosion products on the coupons are presented in 

Figure 10. The results obtained after 90 days are in agreement with those presented in 

Figure 8 after performing the anodic polarization curves. In the presence of the 

inhibitor, the composition of the passive layer changed and the participation of PO4
3- is 

evident.
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In summary, when carbon steel is exposed to aerated PSS + Cl- at Ecorr, the passive layer 

comprises mainly an inner layer of Fe3O4 with a lower density and more defective outer 

layer mostly composed of FeOOH [27, 28, 52]. After a long period of time at Ecorr, the 

ratio Fe3+/Fe2+ increases from the outer to the inner region creating cation vacancies and 

stress in the surface layer, leading to disruption [28]. This process is fast in the presence 

of chloride ions [31].

When carbon steel is exposed to PSS + Cl- + PO4
-3 the first step in the surface layer 

formation could be related to the precipitation of ferrous phosphate by a dissolution-

precipitation mechanism [36]:

3 Fe + 2 PO4
-3 → (Fe)3(PO4)2 + 6 e-                                 (5)

Underneath this ferrous phosphate layer, a protective passive film of Fe3O4 could be 

formed via solid-state process [28]. This type of duplex passive film has been proposed 

by other authors when PO4
3- ions are present in acidic or neutral media [53], and in 

phosphate buffer at pH = 8.4 [54]. Ferrous phosphate could be oxidized to ferric 

phosphate by reaction with oxygen [54]. After long periods of time at Ecorr , the ferric 

phosphate layer could inhibit Fe3O4 oxidation, avoiding attack by chloride ions. Fe3O4

is a good conductor [30, 43], it is quite insoluble and known to inhibit iron dissolution 

[27-29]. In addition, this phosphate layer could delay oxygen diffusion through the 

duplex interface, hindering the consumption of the electrons produced by the anodic 

reaction taking place at the metal-film interface [43, 54].

Finally, it is worth noting that extrapolation to the behavior of steel embedded in mortar 

or concrete requires further investigation, currently in progress.
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4. Conclusions

A synthetic solution that simulates the electrolyte contained in the pores of concrete 

contaminated with chlorides has been used to evaluate the performance of phosphate 

ions as corrosion inhibitors.  The composition of the passive films on construction steel 

changes significantly in the presence of both, the contaminant and the inhibitor, either 

present individually o simultaneously. The addition of 0.3 mol dm-3 of chloride ions to 

the electrolyte promotes the accumulation of corrosion products on the metallic surface, 

changes the composition of the surface film and ultimately leads to pitting corrosion. 

Pits can be induced by anodic polarization or long term exposures. 

When phosphate ions are incorporated ([PO4
3-]/[Cl-]=1) pitting is inhibited even if Ecorr

moves towards slightly more negative values. Even after 90 days at open circuit 

potential weight loss is minimal. The composition of the surface layer changes and 

micro Raman spectra clearly show the incorporation of phosphates to the passive film. 

In this condition (PSS + Cl- + PO4
-3) a duplex film is likely to be formed. This would 

consist of an outer layer of ferrous phosphate progressively oxidized to ferric phosphate, 

and an inner, protective layer of Fe3O4 formed via solid-state process. The outer layer is 

a poor conductor while Fe3O4 is a good conductor. The outer phosphate layer could 

delay oxygen diffusion, hindering further oxidation at the metal-film interface. This 

interpretation is supported by EIS results and ultimately leads to classify phosphate ions 

as a mixed-type inhibitor.
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Figure captions

Figure 1.  Equivalent circuits used to fit EIS results. Circuit a is typical of oxide-coated 

metals; circuit b presents an additional Warburg element, typical of situations where 

diffusion processes are involved.

Figure 2. Cyclic voltammograms for steel in PSS (──), PSS + Cl-(─�─), PSS + Cl- + 

PO4
3- (─○─). Scan rate: 10 mV s-1.

Figure 3. a) Cyclic voltammograms for steel (tenth cycle) in PSS (──), PSS + Cl-

(─�─), PSS + Cl- + PO4
3- (─○─); b) Cyclic voltammograms for steel in PSS + Cl-, 

cycles 1 to 10. Scan rate: 10 mV s-1.

Figure 4.  Potentiodynamic curves on steel electrodes held 24 h at Ecorr in PSS + Cl-

(─�─), PSS + Cl- + PO4
3- (─○─). Scan rate: 1 mV s-1.

Figure 5. Impedance spectra recorded on steel electrodes aged during 24 hours at Ecorr

in SSP + Cl- with and without inhibitor. The symbols represent the data and the lines the 

fitting results. (a) Nyquist representation; (b) and (c) Bode representation; (d) imaginary 

part of impedance as function of frequency, in logarithmic scale. PSS + Cl-(─�─), PSS 

+ Cl- + PO4
3- (─○─); 

Figure 6. Anodic polarization curves of steel after being 24 h at Ecorr in PSS (──), PSS 

+ Cl- (─�─), PSS + Cl- + PO4
3- (─○─). Scan rate: 0.1 mV s-1.

Figure 7. Micrographs of the electrodes after having carried out anodic polarization 

curves. The arrows point the zones where Raman spectra were registered. Zone A in 

PSS + Cl- + PO4
3- and zones B and C in PSS + Cl- without and with corrosion products.

Figure 8. Raman spectra of the steel surface after having carried out anodic polarization 

curves. Zone A (─○─) in PSS + Cl- + PO4
-3 and zones B (──) and C (─�─) in PSS + 

Cl- without and with corrosion products.
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Figure 9. Photographs of the coupons after a 90 days period of immersion in PSS, PSS 

+ Cl-, PSS + Cl- + PO4
3-. Coupons diameter = 1.7 cm.

Figure 10. Ex-situ Raman spectra from the coupons presented in Figure 9. PSS (──), 

PSS + Cl-(─�─), PSS + Cl- + PO4
3- (─○─).
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Table 1. Electrochemical parameters obtained from at least six anodic polarization 

curves for steel in the conditions evaluated.

PSS PSS + Cl-
PSS + Cl- + 

PO4
3-

[PO4
3-] /mol  dm-3 ------ ------ 0.3

[Cl-] /mol  dm-3 ------ 0.3 0.3

Ecorr /mVMOE -208 ± 22 -237 ± 30 -263 ± 34

Epit /mVMOE ----- 6 ± 64 ------

Epit-Ecorr /mV ------ 182 ± 81 ------

jpas /μA cm-2 0.7 ± 0.1 5.4 ± 2.6 0.9 ± 0.7
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Table 2. Optimized parameters fitting data in Figs. 5 a, b and c to the equivalent circuits

proposed in Fig.1.

[Cl-]/[OH-]=3

PSS + Cl- PSS + Cl- + PO4
3-

[PO4
3-] /mol  dm-3 ------ 0.3

[Cl-] /mol  dm-3 0.3 0.3

Rs/Ω cm2 6.20 4.27

Qo/μΩ-1 cm-2sn 45.01 34.37

no 0.95 0.95

Ro/kΩ cm2 55.06 0.18

WR/ kΩ cm2 ------ 0.57

T/s ------ 1.81

nW ------ 0.32

Qt/μΩ-1 cm-2 sn 57.60 2141

nt 0.61 0.67

Rt/kΩ cm2 66.74 101.06
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Table 3. Weight loss result after 90 days of immersion at Ecorr in the different solutions 

tested.

SSP
SSP +

0.3 mol dm-3 Cl-

SSP 

+ 0.3 mol dm-3 Cl-

+ 0.3 mol dm-3 PO4
3-

Weight loss/mg 0.1 221.2 0.3

Observation Spotless surface Pitting Spotless surface

icorr/μA cm-2 0.006 14.0 0.02

%  ----- ----- 99.8
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Figure 1

http://ees.elsevier.com/electacta/download.aspx?id=802338&guid=e1ce55ae-a6f9-4cde-837b-c61d1419e21c&scheme=1
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Figure 2

http://ees.elsevier.com/electacta/download.aspx?id=802326&guid=9a6233dd-ef85-499a-ad48-17743308b8ef&scheme=1


Page 32 of 43

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 3a

http://ees.elsevier.com/electacta/download.aspx?id=802331&guid=29bb3ea4-c27f-4fdc-8001-e3978d95616c&scheme=1
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Figure 3b

http://ees.elsevier.com/electacta/download.aspx?id=802332&guid=0ba1e3a7-8ceb-4048-a95e-090f7999f1c3&scheme=1
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Figure 4

http://ees.elsevier.com/electacta/download.aspx?id=802333&guid=1b7aad09-7d33-4c63-9fbd-84ac07dfc4d4&scheme=1
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Figure 5a

http://ees.elsevier.com/electacta/download.aspx?id=802339&guid=6b05604e-d5ed-4992-9027-7b4a9c1fb2d5&scheme=1
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Figure 5b

http://ees.elsevier.com/electacta/download.aspx?id=802334&guid=d5ce0563-a585-48b7-b4e1-a18f6b91ac40&scheme=1
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Figure 5c

http://ees.elsevier.com/electacta/download.aspx?id=802335&guid=64731d90-2ae2-43db-a659-e705e181f16a&scheme=1
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Figure 5d

http://ees.elsevier.com/electacta/download.aspx?id=802345&guid=8a4d3b36-df7d-45a5-b5d7-8ee405a238dc&scheme=1
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Figure 6

http://ees.elsevier.com/electacta/download.aspx?id=802329&guid=3c97c430-bbd6-48ad-a021-101ea8cd4251&scheme=1
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Figure 7

http://ees.elsevier.com/electacta/download.aspx?id=802340&guid=7eb7a03b-6a99-4fdd-ab66-ede34f0c371d&scheme=1
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Figure 8

http://ees.elsevier.com/electacta/download.aspx?id=802330&guid=8e03251e-2766-49d8-b485-3cb339392e96&scheme=1
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Figure 9

http://ees.elsevier.com/electacta/download.aspx?id=802336&guid=a77e7e71-81ce-4e5b-87ef-d7c2abe0dd3f&scheme=1
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Figure 10
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