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Abstract Themelamine (M)/cyanuric acid (CA) supramolec-
ular system is perhaps one of the most exploited in the field of
self-assembly because of the high complementarity of the
components. However, it is necessary to investigate further
the factors involved in the assembly process. In this study,
we analyzed a set of 13 Mn/CAm clusters (with n , m = 1, 2,
3), taken from crystallographic data, to characterize the nature
of the hydrogen bonds involved in the self-assembly of these
components as well as to provide greater understanding of the
phenomenon. The calculations were performed at the B3LYP/
6-311++G(d,p) andω-B97XD (single point) levels of theory,
and the interactions were analyzed within the framework of
the quantum theory of atoms in molecules and by means of
molecular electrostatic potential maps. Our results show that
the stablest structure is the rosette-type motif and the aggre-
gation mechanism is governed by a combination of coopera-
tive and anticooperative effects. Our topological results

explain the polymorphism in the self-assembly of coadsorbed
monolayers of M and CA.
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Introduction

Molecular self-assembly is one of the fundamental concepts of
supramolecular chemistry. It can be defined as the spontane-
ous noncovalent association of two or more molecules from
equilibrium conditions to stable aggregates with well-defined
composition and structure [1, 2]. This spontaneity implies
information that involves the organization of functional struc-
tures [3] arranged by multiple binding with positive or nega-
tive cooperativity [4]. The current research activity is focused
on controlling self-organization at the molecular level [5] and
thus producing a new generation ofmaterials [6, 7]. One of the
systems that have monopolized the major interest in this field,
and one of the most exploited ones, is the melamine (M)/
cyanuric acid (CA) mixture. Many investigations have taken
advantage of these compounds to obtain structures such as
polymeric rods [8], molecular boxes [1, 9], supramolecular
membranes [10, 11], and photoresponsive materials [12].
This system has opened up a great stream of experimental
and theoretical research and applications, and remains the
subject of intense scientific activity.

The first crystal structure of M/CAwas reported by Wang
et al. [13] in 1990, although the structure was obtained from
HCl solution (i.e., CA·M·3HCl), and revealed a one-
dimensional linear tape structure. Later, Ranganathan et al.
[14] reported the crystal structure of M/CA adducts obtained
by hydrothermal synthesis. This latter structure confirmed the
expected rosette-type structures, which form a hexagonal
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network arranged through hydrogen bonds (HBs). The molec-
ular structure has also revealed that two additional aggregates
can occur: infinite linear tapes and infinite crinkled tapes.
However, the M/CA crystal structure was recently more accu-
rately redetermined by Prior et al. [15], who gave precise
information on the intermolecular distances and stacking
interactions.

Several investigations have been attempted with the pur-
pose of understanding the fundamental process of self-
assembly between M and CA. Whitesides and coworkers
[16–19] have extensively studied covalently modified, M/
CA structures, obtaining polymeric structures of high molec-
ular weight and with small capsules. Bielejewska et al. [20]
have recently developed a thermodynamic model that de-
scribes the relative stabilities of various hydrogen-bonded spe-
cies. They have also performed gas-phase calculations on co-
valently modified trimolecular complexes, which have shown
a relationship between the size of the substituents and the
coplanarity of the complexes. The M/CA mixture was also
studied on a Au(111) surface by Xu et al. [21], in which they
found a novel network based on the M3/CA1 cluster, besides
the well-known lattice. Furthermore, Ma and Bong [22] have
studied anM/CAwater mixture, and also a trivalent derivative
system in water [11, 22] with the aim of examining recogni-
tion and assembly processes in aqueous media, research that is
still rare.

With the aim of characterizing the noncovalent interactions
in M/CA clusters and thus shedding more light on the molec-
ular factors that govern the processes of self-assembly and
crystal packing, we hereby report electronic structure calcula-
tions on a set of 13 hydrogen-bonded complexes of MnCAm

(with n, m = 1, 2, 3) taken from crystallographic data as
starting points.

Computational details

We explored two well-known motifs of M and CA, the cyclic
and the linear hydrogen-bonded assemblies. By following the
aggregation scheme shown in Fig. 1, we took geometries of
Mn/CAm clusters (from I toXIII; with n,m = 1, 2, 3) from the
crystallographic structure data obtained by Prior et al. [15]. All
geometries were fully optimized without any constraint at the
B3LYP/6-311++G(d,p) level of theory with use of the
Gaussian 03 suite of programs [23]. This functional has shown
excellent performance in the calculation of structures [24, 25]
and topological properties of hydrogen-bonded complexes
[25–28], especially in structures with highly directional inter-
actions [29, 30]. The minimum energy nature of the optimized
structures was verified by vibrational frequency analysis. The
binding energies (BEs) were obtained at the same level of
theory with the supermolecular approach, and were calculated
as the difference between the total energy of the complex and

the sum of the total energies of the isolated molecules. BEs
were also corrected (BEcorr) for the basis set superposition
error with the approach of Boys and Bernardi [31]. To assess
the importance of long-range interactions, ω-B97XD [32]
single-point energy calculations with the 6-311++G(d,p) basis
set were also performed with the B3LYP geometries, since
this functional predicts very well the geometrical parameters
of the experimental structure. Interactions were quantitatively
evaluated by a topological analysis of the electron charge den-
sity in the framework of the quantum theory of atoms in mol-
ecules [33] (QTAIM). We performed this analysis with
AIMAll [34], using wave functions generated from the
B3LYP/6-311++G(d,p) calculations.

We generated electrostatic potential surfaces by mapping
the electrostatic potential V(r) at the B3LYP/6–311++G(d,p)
level of theory. We considered an electron density isosurface
of ρ(r) = 0.001 au. This contour of the molecular electronic
density was suggested by Bader et al. [35] and represents the
effective molecular volume.

Results and discussion

Geometries

The optimized geometries of the isolated compounds are
shown in Fig. 2, and the selected optimized geometrical pa-
rameters of the isolated molecules are given in Table 1. As can

Fig. 1 Different aggregation states: melamine (M)/cyanuric acid (CA) I;
M2/CA II; M/CA2 III; M3/CA starlike structure S-IV; M/CA3 starlike
structure S-V; M2/CA2VI; M2/CA2 linear typeL-VII; M3/CA2VIII; M2/
CA3 IX; M3/CA2 linear type L-X; M2/CA3 linear type L-XI; M3/CA3

XII; M3/CA3 linear type L-XIII
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be seen in Fig. 2a and b, the isolated geometry of M is quasi
planar because of the nitrogen inversion. This result is in ac-
cordance with the findings of previous experimental and the-
oretical studies [36–38] that have shown thatM has a structure
close in symmetry to D3h. Besides, CA is completely planar
(Fig. 2c). With regard to geometrical parameters, one can see
that the calculated values are in significant agreement with the
values obtained from X-ray diffraction, with differences of
less than 1 %.

All complexes are bound through a set of three HBs, as
shown in Fig. 3a; that is, a central interaction, N–H⋯N, in
which CA acts as a proton donor, and two side interactions,
N–H⋯O, in whichM acts as a double proton donor. In Fig. 3b
it can be seen that the two amino groups of M are coplanar
with the ring, whereas the amino group that does not interact
with CA and keeps its quasi-pyramidal form. Nevertheless, on
addition of more CA units, all amino groups become planar,
suggesting that conformational changes occur on HB forma-
tion. Table 2 reports the values of the main parameters that
describe the geometry of the M/CA complex (I). These

parameters are the H⋯A intermolecular distance (where A
is N, O), the N–H bond length, and the N–H⋯A equilibrium
angle α.ΔdVdW(H⋯A) represents the difference between the
sum of the van der Waals radii of A and H atoms [39] and the
H⋯A intermolecular distances, and Δd(D–X) represents the
variation in the bond donor distance on complexation; that is,
the difference between the distance d(D–X) in the complexes
and in the isolated monomers. It is important to note that the
calculated values in Tables 1 and 2 are in good agreement with
the values obtained from X-ray diffraction; the relative differ-
ence between these quantities is less than 2 %. This confirms
that the B3LYP/6–311++G(d,p) level of approximation is suit-
able for the compounds studied here and reflects the environ-
ment of the crystal structure.

In all cases the H⋯A intermolecular distances are substan-
tially shorter than the sum of the van der Waals radii of the H
and A atoms. Positive values of ΔdVdW(H⋯A) can be taken
as the distance of penetration of electronic densities of atoms
H and A. From analysis of the N⋯N and N⋯O distances
versus the number of molecular units for all complexes (see
Fig. S1, Table S1), it can be clearly seen that all N⋯N

Fig. 2 Optimized geometries of M (a top view; b side view) and CA (c)
at the B3LYP/6-311++G(d,p) level of theory

Table 1 Selected geometric
parameters of melamine (M) and
cyanuric acid (CA) compounds
calculated at the B3LYP/6-311++
G(d,p) level of theory, together
with X-ray parameters

M CA

Atoms B3LYP X-raya Atoms B3LYP X-raya

Distances (Å)

C2–N7 1.3399 1.3244 C2–O7 1.2254 1.2320

C4–N8 1.3399 1.3300 C4–O8 1.2253 1.2354

C6–N9 1.3399 C6–O9 1.2254

N5–C6 1.3511 1.3562 N1–C2 1.3771 1.3746

N3–C2 1.3511 1.3600 N3–C4 1.3770 1.3708

N5–C4 1.3511 1.3575 C4–N5 1.3771 1.3746

Angles (°)

N5–C6–N1 124.51 124.82 N1–C2–N3 115.82 115.92

C6–N1–C2 115.50 115.35 C4–N5–C6 124.19 123.58

C2–N3–C4 115.51 115.69 N5–C6–N1 115.81 116.26

N3–C4–N5 124.50 124.35 C6–N1–C2 124.19 123.97

a Experimental values obtained by Prior et al. [15]

Fig. 3 Optimized geometry of the M/CA complex at the B3LYP/6 −
311++G(d,p) level of theory; a top view and b side view
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distances are increased from 2.856 Å in complex I to a max-
imum mean length of 2.89 Å on our going from complex I to
either the rosette motif (XII) or the linear motif (L-XIII).
Therefore, these results show typical geometrical characteris-
tics of noncooperative effects [40, 41]. All the distances are
longer than those observed in the crystal except for the N⋯N
distance of complex I. With regard to N–H⋯O interactions, it
is evidenced that some N⋯O distances decrease and others
increase (i.e., both cooperative and noncooperative effects
could be operating at the same time). However, in the set of
tetramolecular complexes only structures S-IVand S-V do not
show reduction of N⋯O distances.

On the other hand, all Δd(N–H) changes are positive; that
is, the N–H bond stretched as a result of complexation.
However, on our going from complex I to L-XIII, the mag-
nitude of the N–H bond elongations decreases slightly, again
in contrast to the geometrical features of HB cooperativity.

Finally, equilibrium angles reflect the collinearity among
all the molecules within each complex. The N–H⋯N angles
range from 180° (value for complex I) to a mean value of
179°; hence, there is a minor decrease in coplanarity on ag-
gregation. The lowest value is observed in complex L-XIII,
the linear analogue of the rosette-type complex. The plane
where the molecules are placed is curved, as is shown in
Fig. 4. With regard to side interactions, being less collinear
than the central interaction, the N–H⋯O angles range from
175° to 178°.

Energetic analysis

BEs of all the clusters are given in Table 3. We also calculated
the BE per molecular unit added (BEPU) using Eqs. 1 and 2:

∀ m≥n; BEPU ¼ EMn=Cm
−EMn−1=CAm

−EM ð1Þ

∀ n≥m; BEPU ¼ EMn=Cm
−EMn=CAm−1−ECA ð2Þ

where n and m are the numbers of molecular entities.
As can be seen from Table 3, the corrected energy

differences separating the group of complexes (bimolec-
ular, trimolecular, tetramolecular, and pentamolecular
complexes) are very small. Therefore, it is hazardous to
draw conclusions about relative stabilities and establish
the most energetically favored agreggation path.
Nevertheless, the BEs increase in the following order
for both functionals: II < III, S-IV < S-V < L-
VII < VI, L-XI < IX < L-X < VIII, L-XIII
<XII. A clear separation of BEs occurs between com-
plexes XII and L-XIII, with a difference of 14 kcal/mol
for the B3LYP functional and almost 19 kcal/mol for the
ω-B97XD functional. This is because completion of the
ring in complexes VIII and IX generates three additional
HBs in comparison with the linear hexamer.

Despite some HBs seeming to be cooperative, as was seen
in BGeometries,^ it is worth stressing that the results obtained
by Eqs. 1 and 2 show that the mean effect is a negative
cooperativity in all complexes. That is, in all cases the total
interaction energy is less than the sum of the BE of complex I
(e.g., BEII < BEI × 2 and BEIII < BEI × 2). In other
words, the whole is not greater than the sum of the parts.

Table 2 Selected geometric
parameters of complex I
calculated at the B3LYP/6–311++
G(d,p) level of theory

Interaction d(N⋯A) d(H⋯A) ΔdVdW(H⋯A)a d(N–H) Δd(N–H) α(N–H⋯N)

N–H⋯N 2.856

(2.861)b

(2.850–2.880)c

1.798

(1.93)b
0.952 1.059

(0.930)b
0.048 179.99

(180.00)b

N–H⋯O 2.984

(2.938)b

(2.940–2.980)c

1.970

(2.07)b
0.750 1.013

(0.880)b
0.008 174.86

(177.70)b

N–H⋯O 2.984

(2.947)b
1.970

(2.08)b
0.750 1.013

(0.870)b
0.008 174.85

(174.80)b

Distances are in angstroms and angles are in degrees. Values in parentheses correspond to the structures obtained
by X-ray diffraction.
aΔdVdW(H⋯A) is the difference between the equilibrium intermolecular distances and the sum of the van der
Waals radii of H and A atoms (van der Waals radii from [39]: H, 1.20 Å; N, 1.55 Å; and O, 1.50 Å)
b Experimental values obtained by Prior et al. [15]
c Experimental values obtained by Ranganatham et al. [14]

Fig. 4 Optimized geometry of complex L-XIII at the B3LYP/6-311++
G(d,p) level of theory: a top view and b side view. The dashed line serves
as a reference
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Topology of the electron density

We addressed the nature of the HBs by analyzing the electron
density distribution within the QTAIM [33]. Different bond
properties were used to analyze the nature of the interactions
that occur in the different complexes: the electron charge den-
sity ρ(rc), which measures the accumulation of charge be-
tween the bonded nuclei and reflects the bond strength [42,
43]; the Laplacian of the electron density ∇2ρ(rc), which pro-
vides information on the local charge concentration
(∇2ρ(rc) < 0) or depletion (∇2ρ(rc) > 0); the kinetic energy
densities G(rc), the potential energy densities V(rc); and the
total electronic energy density H(rc) = V(rc) + G(rc).

The molecular graphs of all the complexes are displayed in
Fig. 5, and the local properties calculated at bond critical
points (BCPs) are given in Table S2. The topological proper-
ties at each BCP fall within the proposed range used to char-
acterize HB formation [44]. The charge density values lie in
the range from 0.02 to 0.05 au. The Laplacian values in all
complexes are positive and lie in the range from 0.08 to 0.1 au.

It has been shown that ρ(rc) is a good indicator of the
bond order and the bond strength [43]. Thus, the increase
or decrease of this property can be related to the
cooperativity or negative cooperativity of HBs respective-
ly [45, 46]. In complex I (Fig. 5), the N–H⋯N interaction
is nearly two times stronger than the N–H⋯O interaction,
as the values of ρ(rc) show. Figure 5 also indicates the
increase (green arrows) or decrease (red arrows) of ρ(rc)
at BCPs with respect to complex I. In complexes II and
III, two N–H⋯O interactions undergo an increase in the
charge density, by 0.95 % in complex II and by 2.39 % in
complex III. However, complex III experiences a greater
decrease of density in the remaining interactions (red

arrows in Fig. 5) with respect to complex II, which ex-
plains the greater BE in the latter.

In tetramolecular complexes, starlike topologies show dif-
ferent behaviors.With regard to complex S-IV, surprisingly all
N–H⋯O interactions show an increase of charge density, in
contrast to the geometrical results in BGeometries,^ which
indicate typical characteristics of noncooperative effects. In
contrast, complex S-V exhibits a decrease of charge density
at all BCPs. That complex S-IV is energetically and topolog-
ically favored over complex S-V supports previous research
by Xu et al. [21]. They reported a novel phase of M/CA
adsorbed on a Au(111) surface with an M-to-CA ratio of
3:1, which is the equivalent of complex S-IV, instead of the
well-known 1:1 ratio found in the co-crystal. Complex VI
shows an increase of charge density in N–H⋯O interactions
of the outer edge (see Fig. 5), whereas the remaining interac-
tions show a decrease of this property. The linear analogue,
complex L-VII, shows an increase of ρ(rc) on one side of the
complex (see Fig. 5). A comparison between complexes VI
and L-VII reveals that major decreases of ρ(rc) occurs in the
linear complex, in accordance with a greater BE in complex
VI.

Pentamolecular complexes require special attention, as inter-
esting topological characteristics arise. With respect to cyclic
assemblies, an increase of the charge density in N–H⋯O inter-
actions of the outer edge is observed. Furthermore, in complex
VIII a so-called dihydrogen bond, H⋯H, occurs. This interac-
tion was characterized for the first time, within the QTAIM, by
Popelier [47], who has verified the eight criteria used to de-
scribe HBs [44]. Our results show deviations from these
criteria, since ρ(rc) at the BCP (0.000106 au) does not fall
within the proposed range of 0.002 − 0.035 au [44].
Therefore, this interaction can be classified as a van der

Table 3 Corrected binding
energies (kcal/mol) calculated at
the B3LYP/6 − 311++G(d,p)b and
ω-B97XD/6-311++G**//
B3LYP/6-311++G** levels of
theory

Complex B3LYP BE BEPU ω-B97XD BE

m ≥ n m ≤ n

I M/CA −15.26 – – −19.33
II M2/CA −30.04 −15.61 – −38.25
III M/CA2 −29.83 – −15.36 −37.98
S-IV M3/CA −44.34 −15.16 – −56.92
S-V M/CA3 −43.55 – −14.55 −55.87
VI M2/CA2 −44.82 −15.60 −15.85 −57.14
L-VII M2/CA2 −44.59 −15.60 −15.35 −56.93
VIII M3/CA2 −59.40 −15.45 – −76.07
IX M2/CA3 −59.24 – −15.24 −75.72
L-X L-M3/CA2 −59.39 −15.64 – −75.85
L-XI L-M2/CA3 −59.18 – −15.39 −75.51
XII M3/CA3 −88.37 −30.95 −30.74 −113.33
L-XIII L-M3/CA3 −73.94 −15.49 −15.29 −94.57

BE binding energy, BEPU binding energy per molecular unit added
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Waals type since the QTAIM parameters fulfill the criteria of
closed-shell interactions: the value of ρ(rc) is relatively low; the
ratio of the perpendicular contraction of ρ (λ1) to its parallel
expansion (λ3), |λ1|/λ3 , is less than 1; and ∇2ρ(rc) > 0 [33]. In
concert with complex IX, a BCP between twoO atoms (O⋯O)
occurs with a density of 0,000028 au, which can also be clas-
sified as a van der Waals interaction. Since complex VIII is
more stable than complex IX by 0.21 kcal/mol, a good indica-
tor of structural stability is the distance between a BCP and a
ring critical point (RCP). If these critical points are joined, the
ring tends to open because of a bond rupture [47]. In complex

VIII, the distance between the H⋯HBCP and the nearest RCP
is 1.822 Å, whereas in complex IX, the distance between the
O⋯O BCP and its nearest RCP is 1.528 Å; therefore, the
former is more stable, in line with the BEs.

Unlike the cyclic pentamolecular complexes, the linear
structures (L-X and L-XI) show different topological pat-
terns as shown in Fig. 5. In complex L-X, the reinforced
interactions (green arrows) alternate from side to side,
whereas in complex L-XI, they occur on one side of the
complex. It is worth stressing that the linear complex L-X
is more stable than the cyclic one by 0.14 kcal/mol. This

Fig. 5 Molecular graphs of the complexes. Values of ρ(rc) at bond critical
points (BCPs) are reported in units of 10−3 au. Green arrows and red
arrows indicate increase and decrease respectively of ρ(rc) at BCPs.

The lines connecting the nuclei are the bond paths. Small red dots and
small yellow dots represent BCPs (3, −1) and ring critical points (3, +1)
respectively
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small difference could be attributed to the O⋯O interac-
tion in complex IX that adds some steric stress. As ex-
pected, an increase in the stability of the cyclic rosette
complex (complex XII) is produced by the formation of
three additional HBs, which forms a new RCP. This ar-
rangement is driven by the enhanced interactions (positive
cooperativity) that occur in the outer region of the com-
plex; thus forming a ring of cooperativity.

Besides ρ(rc), another property that could be considered as
an indicator of the strength of interactions is the value and the
sign of the total electronic energy density [46, 48, 49] H(rc),
which has also been associatedwith the covalent character of a
bond when this property takes negative values [50]. All N–
H⋯N interactions have a negative value ofH(rc), whereas N–
H⋯O interactions have a positive value. This indicates that
the N–H⋯N interaction is much stronger than the N–H⋯O
interaction. Figure 6 clearly reveals how these two properties
vary with the cluster size. The lowest value of H(rc) and the
highest value of ρ(rc) are reached in the adduct. Whereas ρ(rc)
decreases as the cluster size increases, H(rc) becomes less
negative, indicating a weakening of N–H⋯N interactions
and, in other words, a negative cooperativity.

Figure 7 shows the variations ofH(rc) and ρ(rc) at N–H⋯O
BCPs. SinceH(rc) accounts for contributions from both kinet-
ic and potential energy densities, the stablest complexes are
those with smaller H(rc) values (less positive)—that is, com-
plexes with a greater potential energy density—and V(rc) rep-
resents the capacity to concentrate electrons at BCPs. From
Fig. 7 it can be immediately seen that the electron density
increases (above the dashed line) and decreases within each
complex, in line with variations of N⋯O distances. In gener-
al, it can be observed that as N⋯O lengths decrease, ρ(rc)
values increase. Nevertheless, despite the increase of the
N⋯O lengths in complex S-IV (M3CA) with respect to
complex I (M/CA), the magnitude of ρ(rc) increases and
H(rc) decreases, indicating an enhancement of N–H⋯O
interactions.

Finally, the relationship between the local electronic poten-
tial energy density, V(rc), and the BE was evaluated, since
Espinosa et al. [51] have shown that V(rc) is a good parameter
that reflects the strength of HBs [52] (involving X–H⋯O
HBs, where X is C, N, O). Figure 8 shows the linear fitting
between ΣV(rc) at all HBs and BEs for all clusters. These
results show an excellent linear correlation, as evidenced in

Fig. 6 –H(rc) × 10−3 and ρ(rc) × 10−3 at N–H⋯N BCPs for complexes I
to XIII

Fig. 7 H(rc) × 10−3 and
ρ(rc) × 10−3 at N–H⋯OBCPs for
complexes I to XIII. The dashed
line represents the ρ(rc) value of
complex I as a reference

Fig. 8 Relationship between absolute values of ΣV(rc) at all hydrogen-
bond BCPs and binding energies. BEcorr corrected binding energy
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the value of the correlation coefficient. Therefore, we consider
that this method is suitable to quantify the contribution of
individual interactions to the total BE. Considering that ρ(rc)
gives an indication of HB strength, a good linear correlation
between this property and the BE was also evidenced, with
R2 = 0.9999.

Molecular electrostatic potential maps

A very useful topographical analysis is the study of the mo-
lecular electrostatic potential (MEP). MEP maps allow one to
study noncovalent interactions and to how discover how the
electronic charge is distributed within a complex. The electro-
static behaviors of the M/CA adduct and the isolated mole-
cules were analyzed by this method.

The MEP maps of the CA and M isolated compounds and
the corresponding M/CA adduct are shown in Fig. 9. As ex-
pected, the most negative electrostatic potentials of CA
(Fig. 9a) lie on the oxygen atoms, associated with its lone
pairs. It can also be seen that the central region of the molecule
has a positive electrostatic potential. For the M molecule (see
Fig. 9b), since the amino groups have a pyramidal conforma-
tion (two up and one down), the molecular plane displays an
anisotropic distribution of the electronic charge. Unlike CA,
the M ring has a less positive V(r) on the central region, due to
the π-electron delocalization on the M ring.

When the M/CA adduct is formed, M undergoes a redistri-
bution of the electronic charge. Comparison of Fig. 9b with
Fig. 9c shows this. As can be seen in Fig. 9c, all amino groups
exhibit a negative region. The –NH2 group that does not in-
teract with CA exhibits a more negative region on one side of
the complex, according to the orientation of the nitrogen lone
pair. The remaining –NH2 groups display the same V(r) on
both sides of the molecular plane. In addition, a look at the
contact limit between M and CA shows how the electronic
charge is distributed because of the interactions.

Finally, when all –NH2 groups are interacting with at least
one CA molecule, they display almost the same charge

distribution above and below the molecular plane. This indi-
cates that nitrogen lone pairs delocalized over the entire mol-
ecule, and the central region of M takes more positive values.

Conclusions

In this work, a theoretical study at the B3LYP/6-311++G(d,p)
level of theory in conjunction with QTAIM and MEP analysis
was conducted on a series of M/CA clusters taken from crys-
tallographic data so as to characterize the self-assembling in-
teractions and explore the molecular factors that govern the
self-assembly process of this system.

The BEs explain the stability of the different aggregates.
The cyclization process is favored over linear aggregation. In
these cyclic motifs, the outer HBs are strengthened, whereas
the inner ones are weakened with respect to the primitive
complex (i.e., the M/CA adduct).

The geometrical and topological parameters suggest that
the fundamental process of M/CA self-assembly is driven by
a hydrogen-bonded network that is governed by a complex
combination of cooperative and anticooperative effects. The
topological properties at BCPs also give detailed insight into
the strength of the intermolecular interactions involved in the
cluster formation. In addition, the N–H⋯N interaction is far
stronger than the N–H⋯O HBs, since the former shows neg-
ative values of the total electronic energy density at the BCP,
which is associated with a greater stabilization.

It is thought that these findings will serve to complement
kinetic and thermodynamic considerations involved in the
study of self-assembly systems. Our theoretical results support
the experimental finding of a novel M3/CA (3:1) network,
which was found in adsorption experiments, besides the
well-known M3/CA3 (1:1) hydrogen-bonding network of the
co-crystal.
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