
Computers and Chemical Engineering 25 (2001) 997–1002

Parallel observability analysis on networks of workstations

Ignacio Ponzoni a,b, Gustavo E. Vazquez a, Mabel C. Sánchez b, Nélida B. Brignole b,*
a Department of Computer Science, Uni�ersidad Nacional del Sur, A�. Alem 1253, 8000 Bahı́a Blanca, Argentina

b Planta Piloto de Ingenierı́a Quı́mica (UNS-CONICET), Complejo CRIBABB, Km. 7, Camino La Carrindanga, CC 717,
8000 Bahı́a Blanca, Argentina

Received 15 February 2000; received in revised form 27 December 2000; accepted 28 December 2000

Abstract

In this work we present the parallelisation of the global strategy with first least-connected node (GS-FLCN), which is a novel
structural technique for the classification of unmeasured variables in process plant instrumentation design. The algorithm aims at
partitioning the process’ occurrence matrix to a specific block lower-triangular form. A parallel master–workers philosophy is
employed to search for all the paths of a given length existing in the associated graph. The code was conceived for distributed
environments and the implementation was carried out using the parallel virtual machine (PVM) library. The performance of the
parallel algorithm was tested for industrial case studies and the results were compared with those yielded by the sequential version.
The time savings achieved thanks to the parallelisation were significant. Besides, in the parallel version, more paths can be
explored per unit time. In practice, this implies greater robustness. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Instrumentation design; Observability; Parallel distributed processing; Networks of workstations

www.elsevier.com/locate/compchemeng

1. Introduction

Observability analysis is a broadly used tool for plant
instrumentation design that basically consists in deter-
mining which unmeasured variables can be calculated
from the measurements by means of model equations.
There are two main methodologies to carry out this
task, the topology-oriented approach and the equation-
oriented approach. The former (Kretsovalis & Mah,
1988) is based on graph theory and applies analysis
rules to classify the variables by inspecting a sequence
of graphs derived from the process topology. Although
efficient, these techniques become less rigorous when
the model involves strongly non-linear relationships. As
to the equation-oriented philosophy, the structural
techniques (Romagnoli & Stephanopoulos, 1980) ob-
tain the classification by means of the structural rear-
rangement of the model’s occurrence matrix. Due to its
nature, these methods allow more independence from
the degree of non-linearity exhibited by the mathemati-
cal model.

Ponzoni, Sánchez and Brignole (1999) developed an
equation-oriented structural strategy, called global
strategy with first least-connected node (GS-FLCN),
which is unique in the sense that it can deal with
strongly non-linear mathematical models and proves to
be extremely robust. Though GS-FLCN yielded excel-
lent classification results, it became computationally
expensive for industrial applications of big size because
run-times grew considerably. Therefore, the parallelisa-
tion of the algorithm constitutes and efficient way of
overcoming this drawback.

Parallel processing is a well-known technique that
enables significant reductions in execution time. The
traditional approach has been to employ parallel com-
puters. Nevertheless, its applicability is limited by the
need for expensive equipment and the lack of manufac-
turer standards. In contrast, the use of a distributed
configuration made up of workstations connected by a
local data-communication network allows the efficient
use of existing resources, offering minimal start-
up budget and easier scalability. In view of these
facts, we decided to develop a parallel-distributed im-
plementation for the GS-FLCN strategy, called GS-
pFLCN.

* Corresponding author. Tel.: +54-291-4861700; fax: +54-291-
4861600.

E-mail address: dybrigno@criba.edu.ar (N.B. Brignole).

0098-1354/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 8 -1354 (01 )00625 -1



I. Ponzoni et al. / Computers and Chemical Engineering 25 (2001) 997–1002998

Fig. 1. Hierarchical structure of the GS-pFLCN program.

2. A parallel GS-FLCN formulation

GS-FLCN basically consists in decomposing the pro-
cess, occurrence matrix M by means of an incremental
search in order to yield a maximum number of assign-
ment subsets of minimum size. An assignment subset is
a block associated to a solvable square subsystem of
algebraic equations. Fig. 1 shows the program’s hierar-
chical tree, where the procedure FindSubSets guides the
search. First, the classical forward triangularisation
method detects removable 1×1 blocks. Then, GS-
FLCN uses the routines FindSets2×2 and Find-
Sets3×3 to find subsets of size 2 and 3, respectively.
Finally, the first least-connected node (FLCN) al-
gorithm (routine FindSetsN×N) looks for blocks of
order 4 or greater. Each of the subroutines FindSets2×
2, FindSets3×3 and FindSetsN×N comprises two
main procedures, SubMat and Set. First of all, SubMat
builds the input submatrix for Set, which carries out
the search within it. In particular, p-FLCN explores
different combinations in parallel from an initial node
chosen by SetFLCN. Each subtree is explored by pre-
ordering from the far left. If no subsets are found, the
control is transferred to the nearest subtree on the
right, whenever it exists. Otherwise, the program ends.
Whenever a subset is found, the control returns to the
Forward-Triangularisation root to ensure getting the
maximum number of blocks of minimum size.

The FindSetsFLCN section was the most time-con-
suming branch in the strategy because it deals with the
detection of all assignment subsets of significant size.
For this reason, it was convenient to parallelise only
this part of the code, while the search for subsets of
sizes 1–3 was processed sequentially. The core of this
section is a depth-first search (DFS) with heuristics
through an undirected graph G corresponding to MTM.
Each assignment subset can be associated to a path in
G, whose nodes correspond to the observable variables.
Therefore, the central idea was to devise an efficient

way of parallelising a classical DFS algorithm, later
incorporating this know-how into a specific parallel
FLCN routine.

3. The p-FLCN design

The parallelisation of DFS algorithms has been dis-
cussed in the literature (Chaudhuri, 1992). Nevertheless,
the classical methods were designed to run on parallel
computers and neither their adequacy nor their appli-
cability under distributed environments has been ad-
dressed. In particular, Wilkinson and Allen (1999)
presented an approach that consists in partitioning the
search space into multiple independent DFSs. This
implies that breadth-first explorations are triggered
from a certain threshold. Each of the subtrees born at
the chosen threshold is processed individually as a
depth-first search on an available computing node. This
strategy was chosen in this work because it can be
applied naturally to networks of workstations (NOWs),
resulting in a general scheme that corresponds to the
well-known master–workers philosophy. The master
sends one message to each idle worker that contains
information about the subtree to be processed. As soon
as a worker finishes its exploration, he returns an
end-of-task message with the results.

Fig. 2 shows the general task distribution for Find-
SetFLCN. The choice of the most appropriate

Fig. 2. The tree-search decomposition.



I. Ponzoni et al. / Computers and Chemical Engineering 25 (2001) 997–1002 999

threshold is a key decision that implies a trade-off
between search-domain sizes and number of messages.
When the threshold augments, moving into deeper lev-
els, the size of the subtrees to be explored by each
worker becomes smaller. So, in this sense, a higher
threshold would be desirable. Nevertheless, it is clear
that the amount of lower subtrees grows exponentially
with the threshold, thus leading to an increase in the
number of messages. Besides, the amount of work the
master carries out sequentially also increases with the
threshold. Then, from this point of view, a lower
threshold would be better. In view of these opposing
trends, we performed some experiments in order to
determine the most convenient threshold for this prob-
lem. Due to the complexity of the original GS-FLCN
code, we implemented an auxiliary DFS program to
carry out the tests. Ten representative examples with
sparse incidence matrices of order 100 and densities
around 5% were employed. The parallel runs for vari-
ous thresholds and path lengths revealed that the best
threshold was one. So, the dominating aspect was the
joint effect of the message–passage overhead together
with the pure sequential run-time load.

The load-balancing strategy chosen for this imple-
mentation was a demand–driven approach, i.e. a dy-
namic distribution of tasks, assigning them as soon as
the workers become idle. This is suitable because the
run-times for each task cannot be foreseen. First of all,
the densities of the lower subtrees are not equal, thus
implying different exploration efforts. Besides, the com-
putational resources are usually shared with other
users, thus overloading the processing units dynami-
cally. As a result, the amount of time to be employed
by a processor for the execution of each task differs in
an unpredictable way during the computations. An
additional advantage of a demand–driven approach is
that it can also be applied under heterogeneous dis-
tributed environments, i.e. where the processors do not
have the same performance.

The time complexity (order) of an algorithm is ex-
pressed as a function of the problem size. It describes
the speed with which run-times grow as problem size
increases. Given an occurrence matrix M, whose dimen-
sion is r×c, FLCN’s order is:

O(max[r, c ](k−1)s)

where k is a constant that depends on M’s degree of
sparsity and s is the maximum size of the subsets to be
explored. The variable k represents the average amount
of adjacent nodes in MTM, its typical values being real
numbers that range between 2 and 4. This formula was
obtained for the serial algorithm using recursive recur-
rence analysis.

For the parallel version p-FLCN, the same amount
of work is partitioned and the tasks are distributed
among the processors. The time complexity of a paral-

lel algorithm is the sum of the complexity of the
computation and the communication. Therefore, if we
consider an even task distribution, the computation
time complexity for the parallel implementation
becomes

O
�max[r, c ](k−1)s

P
�

where P is the number of processors. In turn, the
communication time complexity is O (c).

4. Main results

The GS-pFLCN algorithm was implemented in C,
employing the PVM message-passing library (Geist,
Beguelin, Dongarra, Jiang, Manchek & Sunderam,
1994). Then, the parallel code was applied to classify
the unmeasured variables for two real process plants:
an ammonia synthesis plant (Bike, 1985) and an ethane
plant (Ponzoni et al., 1999). The main concern was to
determine whether the existing instrumentation yielded
enough information to estimate the values of a set of
unmeasured variables of interest. To ensure the accu-
racy of the results, the analysis was carried out using
rigorous non-linear plant models that comprised mass
and energy balances.

The size and complexity of the case studies were
significant enough to justify the employment of a paral-
lel strategy. The model of the ammonia plant consisted
of 560 algebraic equations, starting with 516 unmea-
sured variables. The ethane plant was represented with
1830 equations and 1425 unmeasured variables. The
runs were carried out on a homogeneous environment
made up of 10 Pentium 200 MHz workstations with
LINUX operating system using a 10 Mb Ethernet local
area network. To achieve optimal results on this
configuration, the network was isolated and no other
processes that could interfere with the runs were trig-
gered during execution. The parallel performance was
quantified in comparison with the sequential algorithm
by the successive incorporation of processing nodes to
the parallel virtual machine. To quantify the benefits
derived from the parallelisation, fair comparisons be-
tween sequential and parallel computing times were
carried out.

Table 1 shows the times elapsed for the sequential
and parallel runs. The reductions in execution time
were always significant. In this respect, it should be
taken into account that the savings are even greater
because the parallel algorithm is used repeatedly during
the instrumentation design procedure as a whole. In
practice, the observability analysis is typically carried
out several times before a satisfactory final set of
measured variables is reached. During a typical design
session, the process engineer proposes a set of measure-



I. Ponzoni et al. / Computers and Chemical Engineering 25 (2001) 997–10021000

Table 1
Sequential and parallel times (min) for homogeneous distributed processing

Number of processors (parallel run)

2 4 6 8 101 (Sequential algorithm)

18:47 09:51Ammonia plant 06:5834:19 05:42 04:53
Ethane plant 36:5458:23 21.54 17:05 14:25 11:53

ments, obtains the final pattern and analyses whether
the instrumentation is enough to have full knowledge of
the plant. If some of the indeterminable variables are of
interest, he adds or removes measurements at the most
convenient locations and repeats the procedure.

Figs. 3 and 4 show the performance improvements
achieved thanks to the parallel implementation. These
comparisons are fair because the reference value for
both speed-up and efficiency calculations was the time
elapsed when running the sequential version of the
same algorithm. The use of the parallel code running
on a single processor would have been a poor choice as
reference time because the penalty associated with task
management would have led to an artificial overestima-
tion of performance values.

Speed-up curves typically have a maximum that indi-
cates a scalability limit, the highest number of proces-
sors that is worthwhile adding to the network. In these
problems, this critical point has not been reached yet,
so more processing nodes could have been
incorporated.

4.1. Performance analysis

The parallel performance was always satisfactory in
spite of the fact that the runs were carried out on a
standard 10 Mb Ethernet network. Better results are to
be expected on faster LANs. The theoretical optimum
performance corresponds to the upper bound for the
speed-up value, known as linear speed-up, which is
equal to the number of processors and corresponds to
100% efficiency. This limit represents the ideal situation
that arises when the whole algorithm has been paral-
lelised, communication costs are negligible and the pro-
cessing units have no idle time. For the kind of
problems and the hardware architecture addressed in
this work, attainable speed-ups are always lower than
this bound because the first two conditions mentioned
above do not hold.

First of all, the GS-pFLCN algorithm involves a
serial section that was not worthwhile parallelising. For
the runs reported in Table 1, the elapsed sequential
times were 32.45 and 401.37 s for the ammonia and
ethane plants, respectively. The former example always
exhibited better performance because its sequential part
of the code — i.e. the searches for subsets of order

lower than 4 — was comparatively smaller. In other
words, a higher percentage of the run was processed in
parallel. As is clear from Amdhal’s law, these values set
the limits for the speed improvements that can be
achieved by the incorporation of additional processors.

Fig. 3. Scalability speed-up evolution.

Fig. 4. Scalability efficiency changes.



I. Ponzoni et al. / Computers and Chemical Engineering 25 (2001) 997–1002 1001

Table 2
Communication times for the runs reported in Table 1

Number of processors 42 6 8 10

32.25 32.50Communication times for the ammonia plant (s) 33.1032.15 33.97
102.01 103.76 105.12Communication times for the ethane plant (s) 107.3101.1

Besides, communication costs are significant, which is
to be expected for a distributed computing environment
connected with a slow Ethernet network. Table 2 shows
the corresponding values for the two examples pre-
sented in this paper. Nevertheless, the impact of com-
munication costs on overall performance becomes
lower as the density of the subtrees to be explored in
parallel increases.

It is also clear from Table 2 that the degree of
network contention is not significant. The increases in
communication time due to the addition of processors
are very small, which means that there is little interfer-
ence among the messages passing along the network.

Finally, with respect to idle times, the choice of a
demand–driven load–balancing approach is advanta-
geous because the strategy keeps the workers busy most
of the time. As a result, there is no load imbalance
affecting parallel efficiency.

4.2. Robustness analysis

Since FLCN is combinatorial in nature, assignment
subsets of great size are costly to detect. This is clear
from the time complexity analysis (see Section 3). In
Ponzoni et al. (1999), we had proposed the use of
branching factors (BFs), an acceleration strategy that
consists in pruning some branches wisely in order to
reach deeper levels more quickly. The BFs set upper
bounds for k, thus reducing run-times, but this is
detrimental to robustness because some potential as-
signment subsets might eventually be omitted. An addi-
tional benefit of the introduction of parallelism into
GS-FLCN strategy is the fact that it makes it possible
to explore more subtree branches within reasonable
times. As a result, less pruning is required, so the risk of
missing out blocks is reduced. In practice, this repre-
sents a desirable improvement in robustness.

5. Conclusions

The main purpose of this work was to develop a
parallel implementation of a novel structural combina-
torial technique for observability analysis that rear-
ranges the process occurrence matrix to yield a block
lower-triangular form with specific features. In contrast
with previous works, the novel procedure, called GS-
FLCN, is able to deal with structurally singular ma-

trices satisfactorily. The parallel implementation is
highly advantageous for the treatment of realistic in-
strumentation design problems because significant time
savings are achieved in comparison with the sequential
approach. Moreover, the parallel methodology is more
trustworthy in the sense that higher branching factors
can be employed, thus increasing the degree of
robustness.

The core algorithm for the parallelisation of this
combinatorial technique is a DFS. Therefore, we car-
ried out a preliminary analysis by developing a parallel
implementation of a DFS procedure. It was determined
that the quality of the performance strongly depends on
the threshold choice. In this respect, the study revealed
that problems of this kind should be parallelised using
low thresholds. On the basis of the DFS results, we
developed a parallel master–workers scheme for the
observability algorithm and tested it for realistic indus-
trial examples on a network of homogeneous
workstations.

An important feature of this implementation is that it
is potentially applicable to heterogeneous distributed
environments because we adopted a dynamic load–bal-
ancing policy. Besides, we employed the PVM library
that allows message passage among workstations of
different architectures and/or operating systems.

Acknowledgements

We gratefully acknowledge the economic support
given by the Consejo Nacional de Investigaciones Cien-
tı́ficas y Técnicas (CONICET) through grant PEI 0068/
98 and the Agencia Nacional de Promoción Cientı́fica y
Tecnológica, SeCyT, Argentina, through grant: PICT97
No. 03-00000-01258.

References

Bike, S. (1985). Design of an ammonia synthesis plant. CACHE case
study, Department of Chemical Engineering, Carnegie Mellon
University.

Chaudhuri, P. (1992). Parallel algorithms : design and analysis. New
Jersey: Prentice Hall.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., &
Sunderam, V. (1994). PVM : parallel �irtual machine. A users guide
and tutorial for network parallel computing. MIT Press.

Kretsovalis, A., & Mah, R. S. H. (1988). Observability and redun-
dancy classification in generalized process networks-I. Theorems.



I. Ponzoni et al. / Computers and Chemical Engineering 25 (2001) 997–10021002

II. Algorithms. Computers and Chemical Engineering, 12, 671–
703.

Ponzoni, I., Sánchez, M. C., & Brignole, N. B. (1999). A new
structural algorithm for observability classification. Industrial and
Engineering Chemistry Research, 38, 3027–3035.

Romagnoli, J. A., & Stephanopoulos, G. (1980). On the rectification
of measurement errors for complex chemical plants. Computers
and Chemical Engineering, 35, 1067–1081.

Wilkinson, B., & Allen, M. (1999). Parallel programming. New Jersey:
Prentice Hall.

.


