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Abstract: Sjögren’s syndrome (SS) is a chronic inflammatory disease characterized by salivary and lacrimal gland dysfunction although 

extraglandular manifestations are also found. Suitable study models and in vitro cell culture designs are used to approach SS pathogenic 
mechanisms. Cellular and molecular pathways involved in gland homeostasis loss and the autoimmune response are focused in the search 

of novel drug targets and biomarkers. Vasoactive intestinal peptide (VIP) has trophic, pro-secretory and immunomodulatory effects in 
several chronic and autoimmune disease models. Here we review evidence pointing to its role as an endogenous modulator of gland ho-

meostasis at early stages of the disease. Particularly, mechanisms involving VIP/VPAC system in the course of salivary function impair-
ment in the non obese diabetic (NOD) mouse model of Sjögren’s syndrome are described. 
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INTRODUCTION  

 Sjögren’s syndrome is a common chronic inflammatory disor-
der with high economic impact in healthcare. It affects 0.5-1% of 
adult population being the second most prevalent rheumatic disease 
after rheumatoid arthritis. The disease affects mostly women in a 
9:1 relationship, who are generally mid-aged but women at all ages 
are diagnosed. SS presents as a primary disease (pSS) or associated 
to other rheumatic diseases (sSS). 

 The disease hallmark is the loss of salivary (xerostomia) and 
lacrimal (keratoconjuntivitis sicca) gland secretion although multi-
ple organs and systems can be compromised depending on genetic 
background, sex steroids and environmental triggers [1-5]. Al-
though less frequently, chronic cough can also present associated 
with high and low respiratory epithelial tract lesions [6]. Symptoms 
of chronic fatigue raise special attention because they are present in 
about half of the patients with severe consequences for their work 
and daily activities [7]. However, the most serious manifestation 
associated with SS is a Non-Hodgkin B lymphoma of low or inter-
mediate grade and mucosa-associated lymphoid tissue origin that 
develops in about 5 % of SS patients [7].  

 Consensus criteria for SS diagnosis are currently updated and 
treatment mostly relies on local agents to prevent mucosal exces-
sive damage and antimalarials, glucocorticoids and immunosup-
pressive drugs whereas biologic agents are under study [7-10]. In 
this regard, some monoclonal antibodies showed acceptable profiles 
for extraglandular manifestation treatment, with less effect on exo-
crine dysfunction [10, 11]. 

 Sjögren’s syndrome etiopathogenic mechanisms are still un-
clear; however, evidence on biological pathways involved in exo-
crine gland dysfunction and the autoimmune response in various 
disease models of SS have provided relevant information [12, 13]. 
In fact, the complexity of SS pathogenesis challenges scientists to 
develop innovative systems analysis [14] as well as to find more 
specific biomarkers of clinical outcome. Results from animal mod-
els and human immunohistochemical studies indicate that the  
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moderate grade of immune infiltrates in the glands does not corre-
late with the severity of xerostomia. Moreover, it was proposed that 
a loss of salivary gland homeostasis with a pro-inflammatory role 
of the epithelium would increase the susceptibility of the gland to 
an autoimmune response which, in turn, can further impair salivary 
function [5, 7, 12-17]. Consistently, early functional defects of 
gland epithelium, namely inappropriate signaling pathways, in-
creased acinar apoptosis and aberrant activation of epithelial cells 
were described in spontaneous animal models as the non obese 
diabetic (NOD) mouse.  

TISSUE HOMEOSTASIS MAINTENANCE  

 The breakdown of anatomic integrity and tissue homeostasis are 
among the first events linked to the loss of immune tolerance and, 
depending on environmental conditions, to autoantigen presentation 
and the onset of autoimmune responses [18]. Tissue homeostasis 
maintenance requires a highly controlled cellular response upon 
stress stimuli that involves key processes such as cell arrest, DNA 
repair, replicative senescence and apoptosis when damage over-
whelms cell repair capacity. Various proteins are induced by 
stress: among them, the two isoforms of TP53INP1  and  were 
described as targets of p53. WhenTP53INP1 is over expressed 
and cells are induced to apoptosis, it acts as the main mediator of 
the anti-oxidant function of p53 [19, 20]. These proteins have a 
short half-life and, along with other stress proteins, they are induced 
in murine acinar cells upon inflammation [21]. On the other hand, 
altered subcellular location and impaired function of proteins that 
participate in the control of secretion like aquaporin-5, muscarinic 
acetylcholine receptors, type IV collagen and e-cadherin have been 
associated with the pathogenesis of SS [1]. In line with this, the 
presence of anti-M3 and anti-M1 muscarinic acetylcholine receptor 
autoantibodies in the serum of pSS patients has been reported [22, 
23] and assessed in other SS patient cohorts and murine models of 
the disease [24-27]. Likewise, muscarinic receptor variants are 
currently focused for their potential as SS biomarkers [12, 28].  

 Macrophages have a central role in tissue homeostasis mainte-
nance. They have been classified according to their classical or 
alternative activation profiles [29-31]. However, their functional 
multiplicity is better represented by a spectrum of functional pro-
files with three mainly defined phenotypes: the inflammatory phe-
notype that has the characteristics of the classically activated M1 



2    Current Pharmaceutical Design, 2014, Vol. 20, No. 00 Vanesa et al. 

phenotype; the wound healing phenotype which derives L-arginine 
to ornithine and polyamine synthesis; and the regulatory phenotype 
involved in apoptotic cell clearance with suppressant mediators’ 
release [32, 33]. Many stimuli as immunocomplexes, glucocorti-
coids and vasoactive intestinal peptide (VIP) induce regulatory 
macrophage phenotype, characterized by the release of high levels 
of IL-10, TGF-  y PGE2, low levels of IL-12 and high expres-
sion of co-stimulatory molecules CD-80/CD-86 [32, 34-36]. 
Besides, macrophages express serotonin, steroid hormone, VIP 
and acetylcholine receptors, among other neuroendocrine recep-
tors, that can suppress the expression of pro inflammatory genes 
through inhibition of the NF- B pathway [34, 37-39]. 

VIP IMMUNOMODULATORY AND TROPHIC EFFECTS  

 VIP is a 28-amino acid peptide structurally related to secretin, 
pituitary adenylate cyclase activating polypeptide (PACAP), gluca-
gon and growth hormone-releasing factor. It binds to class B mem-
bers of the G-protein coupled receptor super-family. Two subtypes 
of VIP receptors named VPAC1 and VPAC2 were described on the 
basis of sequence, affinity, expression and signaling profiles [40]. 
They recognize VIP and PACAP with similar affinity whereas other 
members of class B G-protein coupled receptors like PAC1 bind 
VIP with lower affinity [41]. Both VPACs are coupled to 
Gs/AMPc/PKA signaling, they also signal through PLC and MAPK 
[42, 43]. VIP, first described as a neurotransmitter by Sami Said & 
Viktor Mutt in 1970, has trophic and potent immunomodulatory 
effects through its action on VPACs on adult and embryonic tis-
sues. VIP has neurotrophic effects [44] and elicits trophic, pro-
secretory and vasodilator effects on exocrine gland cells [45-47]. 

 VPACs expressed on immune cells promote anti-inflammatory 
and tolerogenic responses in human [48] and murine cells [49] and 
viral disease models [50]. Particularly, VIP reversed salivary gland 
hypofunction and reduced Th1 cytokines in the NOD model of SS 
[51] and reduced chronic inflammation in several disease models 
[52-57]. Due to its low bioavailability, dendritic cells transduced 
with lentiviral vectors expressing VIP were assayed to locally de-
liver the peptide in inflammation models [58]. Likewise, VPACs 
are expressed in synovial cells from arthritis and osteoarthritis pa-
tients and in vitro VIP treatment modified their inflammatory pro-
file [59-61].  

 VIP induced regulatory macrophage phenotype [32] with in-
creased IL-10 synthesis and reduced IL-12, TNF-  and inducible 
nitric oxide (NO) synthase (NOS) activity in human and murine 
macrophages through VPAC receptors [38, 43]. Dendritic cells are 
also targeted by VIP to differentiate into a tolerogenic profile that 
produce high levels of IL-10 and induce antigen specific regulatory 
T cells [62, 63]. VIP was shown to induce Foxp3+ regulatory T 
cells [64] and, in the presence of TGF- , VIP can promote murine 
CD4+T cell differentiation to a distinct Th17 cell phenotype that 
generates IL-17 but not IL-6 or IL-21 [56]. It has emerged as a 
physiological inhibitor of the master regulator of immune responses 
calcineurin–NFAT pathway [65, 66]. VIP is not synthesized by 
human or murine macrophages and peptide expression was found in 
CD4+ T cells after antigen stimulation [67-70]. VPAC1/VPAC2 
relative expression on immune cells was proposed as a potential 
modulatory mechanism of neuropeptide effects [43, 48]. VIP is 
currently studied as a candidate drug in pulmonary hypertension 
(https://www.clinicaltrialsregister.eu/ctr-search/search?query= eu-
dract_number:2007-003621-24). Pharmacochemical and biophar-
maceutical strategies are also under study to produce VPAC1 and 
VPAC2 selective agonists and to circumvent its extremely low 
bioavailability. Based on cumulative evidence on VIP as a prose-
cretory and anti-inflammatory peptide, its role and potential in 
Sjögren syndrome has been explored [51, 57, 71-74]. Both the 
NOD mouse model at the prediabetic stage and genetically modi-
fied B6/NOD backcrosses provided valuable information on SS 
pathogenesis [75-78]. Results from our laboratory working in the 

NOD strain that will be next summarized point to the role of VIP in 
gland hypofunction and they also support the concept that the 
VIP/VPAC system may serve as a marker of gland homeostasis loss 
and pathology.  

 Polyamine synthesis by salivary epithelial cells and trophic 
effects of VIP on rat salivary glands were first described by Ek-
strom, Månsson and coworkers [45, 47]. This observation gave 
support to the hypothesis that endogenous peptidic neurotransmit-
ters could act as long term trophic factors. The concept applied to 
salivary gland parenchyma is the base of a recently developed de-
vice to induce reflex salivary flow in SS patients [79, 80]. Particu-
larly, Konttinen and coworkers described defective innervation of 
SS patients’ salivary glands by VIP-containing nerve fibers com-
pared with normal volunteers and suggested that its depletion could 
contribute to acinar atrophy [81]. Consistent with this observation, 
it was recently demonstrated that VIP stimulates neuritogenesis in a 
neuroblastoma cell line through cAMP/ERK y p38MAPK pathways 
with increased expression of anti-apoptotic Bcl-2 [82]. This step is 
required in neuron development and during neuronal regeneration 
after injury. Interestingly, VIP stimulates neural differentiation of 
mouse embryo and increases E9 embryo growth [44, 83, 84]. 
Moreover, the expression of VIP in maternal tissues peaks early 
during gestation whereas it was detected in peripheral nervous sys-
tem of embryo at E14,5 [85]. Finally, we have shown a trophic 
effect of VIP on human trophoblast cells (line Swan 71) which 
synthesize the polypeptide and express VPACs suggesting possible 
autocrine and paracrine VIP modulation during pregnancy [86]. 

VIP/VPAC SYSTEM IN THE NOD MOUSE MODEL OF 
SJÖGREN SYNDROME 

 As referred to above, of particular interest is the study of VIP in 
SS based on its secretory, vasodilator, immune and trophic effects 
on exocrine gland cells. On the hypothesis of an early functional 
defect of the glands as a compromising factor to increase gland 
susceptibility to an autoimmune response, with a role of the local 
VIP/VPAC system, we analyzed several parameters of gland func-
tion and homeostasis in salivary glands of NOD mice at different 
ages. Results indicate functional impairment of the neural isoform 
of nitric oxide (NO) synthase expressed in the glands of NOD fe-
males of 12 weeks of age, before the appearance of immune infil-
trates, with a reduced or altered activity of VIP/NOS/CaMK II-
mediated signaling pathways and amylase release [71-73, 87]. On 
the other hand, a loss of acinar cells through apoptosis mechanisms 
was described previously by other groups in both NOD and NOD-
scid mice at 20 weeks of age suggesting a non-immune origin of 
acinar loss through apoptosis [88, 89]. Consistently, we observed an 
increased duct-to-acinar cell ratio in submandibular glands of NOD 
mice at 16 weeks of age and histological images consistent with 
acinar cell apoptosis appearing at 10 weeks of age in NOD glands 
[73]. Both signals –reduced number of acinar cells and picnotic 
nuclei- were concomitant with an increased expression of the stress 
proteins TP53INP1 in isolated acinar preparations [74]. Together 
with stress proteins, acinar cells from NOD but not normal mice 
also exhibited an increased expression of TNF- R1; and TNF-  
was able to further induce TP53INP1 in acinar cells [90]. Acini 
isolated from normal and NOD mouse submandibular glands 
treated in vitro with VIP showed increased cAMP levels and lower 
apoptosis levels through functional VPAC receptors coupled to 
cAMP/PKA mediated pathways [90]. VIP also reduced TNF- -
induced expression of TP53INP1. Moreover, the effect of VIP re-
quired the inhibitory phosphorylation of Bad through cAMP and 
implicated NFkB activation favoring survival/death signals in iso-
lated acinar cells from NOD mice [91]. Figure 1 schematizes these 
results. 

 To evaluate the effect of VIP on the immune response, NOD 
mice were treated every other day with the neuropeptide from week 
4 of age. A switch to an immunosuppressant profile was observed 
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both in plasma levels of certain cytokines as well as in the expres-
sion of immune tolerance markers TGF-  and Foxp3 [57]. A VIP 
codifying adenoviral construct injected in NOD mice glands pre-
vented SS-like salivary dysfunction and reduced IL-2 levels [51]. In 
addition, VIP reduced pro-inflammatory cytokines and induced a 
predominant regulatory profile with IL-10 and PGE2 synthesis in 
peritoneal macrophages from NOD mice [92]. NOD macrophage 
inflammatory profile was also modulated to a regulatory phenotype 
at early gestation and VIP further contributed to NO reduced levels 
in pregnant NOD mice [93]. Finally, T helper cell phenotypes and 
Th1/Treg cell ratios were modulated after VIP treatment of NOD 
mice providing further support to its potential for therapeutic ap-
proaches in SS [94, 95].  

VIP/VPAC SYSTEM IN THE INTERACTION OF EPITHE-
LIAL CELLS WITH MACROPHAGES 

 On the hypothesis that VIP released by nerve terminals in the 
glands can promote long term trophic effects, and that a deficit in 
this process could underlie acinar cell loss by apoptotic mecha-
nisms, we studied VIP/VPAC system expression and signaling in 
salivary glands from NOD mice at different ages. A reduction of 
the neural isoform of nitric oxide synthase along with the progres-
sion of the autoimmune response was found [73]. Moreover, there 
was a reduction of VIP expression in NOD mice glands studied 
from week 4 to week 20 of age, with no changes in VPACs expres-
sion [91]. VIP/VPAC expression ratio in gland parenchyma dimin-
ished in parallel with an enhanced susceptibility to apoptosis of 
acinar cells in the NOD mouse model of SS [89, 90].  

 Based on these observations and provided the central homeo-
static role of macrophages in their ‘silent’ phagocytosis of apoptotic 

cells, we analyzed phagocytosis of apoptotic acinar cells by perito-
neal macrophages of NOD mice and the potential modulation 
through the VIP/VPAC system. Reduced levels of pro-
inflammatory cytokines and enhanced IL-10 production, favored by 
VIP, was observed when apoptotic acinar cell were engulfed by 
NOD mice macrophages [91].  

CONCLUDING REMARKS 

 Few markers fairly reflect pathological disruption of exocrine 
gland homeostasis early in the course of SS. Mechanisms involved 
in the high susceptibility of epithelial cells to apoptosis as well as 
mechanisms of macrophage functional plasticity upon interaction 
with epithelial salivary gland cells remain to be further explored. 
These might include the aberrant expression of stress proteins and 
other factors that could serve in the future as early biomarkers of 
gland damage. Supporting evidence on the immunomodulatory and 
trophic effects of VIP in the NOD mouse model may thus contrib-
ute to get more insight into SS pathogenesis, particularly its poten-
tial role in gland homeostasis maintenance/loss at early stages of 
the disease.  
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Fig. (1). Participation of VIP/VPAC system in gland homeostasis loss in the NOD mouse model of SS. Based on results described in the text, it is proposed that 

VIP released in the glands inhibits acinar cell apoptosis, aberrant TNF-  receptor 1 and stress protein expression, altered signaling through NFkB and NOS, 

and the production of inflammatory mediators. The scheme gathers information published on the NOD model that was quoted in the text. NOS: nitric oxide 

synthase; TNF- R1: receptor 1 for the tumor necrosis factor ; NFkB: nuclear factor kB. 
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