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Abstract Is it possible to give a logical characterization of entanglement and
of entanglement-measures in terms of the probabilistic behavior of some gates?
This question admits different (positive or negative) answers in the case of
different systems of gates and in the case of different classes of density opera-
tors. In the first part of this article we investigate possible relations between
entanglement-measures and the probabilistic behavior of quantum computa-
tional conjunctions.

1 Introduction

Entanglement, the characteristic feature of quantum theory often described
as mysterious and potentially paradoxical, represents an essential resource in
quantum information (for quantum computers, teleportation, quantum cryp-
tography, semantic applications, etc.).
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As it is well known, quantum computations are performed by (quantum
logical) gates: unitary quantum operations that transform pieces of quantum
information (mathematically represented as density operators of convenient
Hilbert spaces) in a reversible way. We investigate the following question: is it
possible to give a logical characterization of entanglement and of entanglement-
measures in terms of the probabilistic behavior of some gates? This question
admits different (positive or negative) answers in the case of different systems
of gates and in the case of different classes of density operators. We will first
discuss this problem by referring to the behavior of quantum computational
conjunctions, defined in terms of the Toffoli-gate. Other examples of gates will
be considered in the second part of this article.

2 States and gates

Let us first recall some basic definitions. As is well known, the general math-
ematical environment for quantum computation is the Hilbert space H(n) :=
C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n−times

. Any piece of quantum information is represented by a density

operator ρ of a space H(n). A quregister (which is a pure state) is represented
by a a unit-vector |ψ〉 of a space H(n) or, equivalently, by the corresponding
density operator P|ψ〉 (the projection-operator that projects over the closed
subspace determined by |ψ〉). A qubit (or qubit-state) is a quregister of the
space C2. A register (which represents a certain piece of information) is an el-
ement |x1, . . . , xn〉 of the canonical orthonormal basis of a space H(n) (where
xi ∈ {0, 1}); a bit is a register of C2. Following a standard convention, we
assume that the bit |1〉 represents the truth-value Truth, while the bit |0〉 rep-
resents the truth-value Falsity . On this basis, we can identify, in each space

H(n), two special projection-operators P
(n)
1 and P

(n)
0 that represent, respec-

tively, the truth-property and the falsity-property . The truth-property P
(n)
1

is the projection-operator that projects over the closed subspace spanned by

the set of all registers |x1, . . . , xn−1, 1〉; while the falsity-property P
(n)
0 is the

projection-operator that projects over the closed subspace spanned by the set
of all registers |x1, . . . , xn−1, 0〉. In this way, truth and falsity are dealt with
as mathematical representatives of possible physical properties. Accordingly,
by applying the Born-rule, one can naturally define the probability-value p(ρ)
of any density operator ρ of H(n) as follows:

p(ρ) := tr(P
(n)
1 ρ), where tr is the trace-functional.

Hence, p(ρ) represents the probability that the information ρ is true [6,5].
We will denote by D(H(n)) the set of all density operators of H(n), while

D will represent the union
⋃
n

{
D(H(n))

}
.

Pure pieces of quantum information are processed by quantum logical gates
(briefly, gates): unitary operators that transform quregisters into quregisters
in a reversible way. It is expedient to recall the definition of some gates that
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play a special role both from the computational and from the logical point of
view.

Definition 1 (The Toffoli-gate)
For any m,n, p ≥ 1, the Toffoli-gate (defined on H(m+n+p)) is the linear
operator T(m,n,p) such that, for every element |x1, . . . , xm〉 ⊗ |y1, . . . , yn〉 ⊗
|z1, . . . , zp〉 of the canonical basis,

T(m,n,p)|x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉
= |x1, . . . , xm, y1, . . . , yn, z1, . . . , zp−1〉 ⊗ |xmyn+̂zp〉,

where +̂ represents the addition modulo 2.

Definition 2 (The swap-gate)
For any m,n ≥ 1, the swap-gate (defined on H(m,n)) is the linear operator
SW(m,n) such that, for every element |x1, . . . , xn〉⊗|y1, . . . , yn〉 of the canonical
basis,

SW(m,n)|x1, . . . , xm, y1, . . . , yn〉 = |y1, . . . , yn, x1, . . . , xm〉.

All gates can be canonically extended to the set D of all density operators.
Let G be any gate defined on H(n). The corresponding density-operator gate
(also called unitary quantum operation) DG is defined as follows for any ρ ∈
D(H(n)):

DGρ = G ρ G† where G† is the adjoint of G.

For the sake simplicity (and following the notation introduced in [1]), also the
operations DG will be briefly called gates.

3 Entanglement and entanglement-measures

Consider the product-space H(m+n) = H(m) ⊗H(n). Any ρ ∈ D(H(m+n)) rep-
resents a possible state for a composite physical system S = S1+S2 (consisting
of two subsystems). According to the quantum formalism, ρ determines the

two reduced states Red
(1)
[m,n](ρ) and Red

(2)
[m,n](ρ) that represent the states of

S1 and of S2 (in the context ρ)1. In such a case, we say that ρ is a a bipar-
tite state (with respect to the decomposition (m,n)). It may happen that ρ is

a pure state, while Red
(1)
[m,n](ρ) and Red

(2)
[m,n](ρ) are proper mixtures. In this

case the information about the whole system is more precise than the pieces
of information about its parts.

Definition 3 (Factorizability, separability and entanglement)
Let ρ be a bipartite state ofH(m+n) (with respect to the decomposition (m,n)).

1) ρ is called a (bipartite) factorized state of H(m+n) iff ρ = ρ1 ⊗ ρ2, where
ρ1 ∈ D(H(m)) and ρ2 ∈ D(H(n));

1 For an operation definition of reduced state, see [9, Lemma 2.2].
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2) ρ is called a (bipartite) separable state of H(m+n) iff ρ =
∑
i wiρi, where

each ρi is a bipartite factorized state of H(m+n), wi ∈ [0, 1] and
∑
i wi = 1;

3) ρ is called a (bipartite) entangled state of H(m+n) iff ρ is not separable.

Definition 4 (Maximally entangled states and maximally mixed states)

1) A pure bipartite state ρ ofH(m+n) is called maximally entangled iffRed
(1)
[m,n] =

1
2m I(m) or Red

(2)
[m,n] = 1

2n I
(n), where I(m) and I(n) are the identity opera-

tors of the spaces H(m) and H(n), respectively.
2) A state ρ of H(m+n) is called a maximally mixed state of H(m+n) iff ρ =

1
2(m+n) I

(m+n).

How to measure the “entanglement-degree” of a given state? As is well
known, different definitions for the concept of entanglement-measure (which
quantify different aspects of entanglement) have been proposed in the litera-
ture.[8] Any normalized entanglement-measure EM defined on the set of all
bipartite states of H(m+n) is supposed to satisfy the following minimal condi-
tions:

1. EM(ρ) ∈ [0, 1];
2. EM(ρ) = 0, if ρ is separable;
3. EM(ρ) = 1, if ρ is a maximally entangled pure state;
4. EM(ρ) is invariant under locally unitary maps. This means that: EM(ρ) =

EM((U
(m)
1 ⊗U (n)

2 )ρ(U
(m)
1 ⊗U (n)

2 )†), for any unitary operators U
(m)
1 ofH(m)

and U
(n)
2 of H(n).

We will use here a particular definition of entanglement-measure repre-
sented by the notion of concurrence.

Definition 5 (The concurrence of a bipartite state)

1) Let P|ψ〉 be a bipartite pure state of H(m+n). The concurrence of P|ψ〉 is
defined as follows:

C(P|ψ〉) =

√
2
(

1−
∑
i

λ2i

)
,

where the numbers λi are eigenvalues of Red
(1)
[m,n](P|ψ〉) (or, equivalently,

of Red
(2)
[m,n](P|ψ〉)).

2) Let ρ be a bipartite mixed state of H(m+n). The concurrence of ρ is defined
as follows:

C(ρ) = inf

{∑
i

wiC(P|ψi〉) : ρ =
∑
i

wiP|ψi〉

}
.

One can easily show that the concurrence C satisfies the minimal conditions
required for the general notion of entanglement-measure. We have:

C(P|ψ〉) =
√

2(1− tr(Red
(1)
[m,n](P|ψ〉)Red

(1)
[m,n](P|ψ〉))).
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In the study of entanglement-phenomena it is interesting to isolate a spe-
cial class of bipartite states represented by the Werner states. This notion has
been introduced in [12] to show that entangled bipartite states do not neces-
sarily exhibit non-local correlations. It is true that any bipartite state must be
entangled in order to produce non-local correlations; at the same time there
are examples of entangled Werner states whose correlations satisfy some simple
instances of Bell-inequalities.

Definition 6 (Werner state)
A Werner state is a bipartite state ρ of a space H(n) ⊗H(n) that satisfies the
following condition for any unitary operator U of H(n):

(U ⊗ U)(ρ)(U ⊗ U)† = ρ.

Hence, any Werner state is invariant under local unitary transformations.
Interestingly enough, one can prove that the class of all Werner states of

H(n) ⊗H(n) can be represented as a one-parameter manifold of states.

Lemma 1 [9]
Any Werner state of the space H(2n) can be represented as follows:

ρ(2n)w =
1

22n − 1

[ (
1− w

2n

)
I(2n) +

(
w − 1

2n

)
SW(n,n)

]
,

where −1 ≤ w ≤ 1 (while I(2n) and SW(n,n) are the identity operator and the
swap-gate of the space H(2n)).

A deep and simple correlation connects the concurrence of a Werner state

ρ
(2n)
w with the parameter w.

Theorem 1 [2, Eq.33]

C(ρ(2n)w ) =

{
−w, if w < 0;

0, otherwise.

As a consequence, one can easily show that:

1. ρ
(2n)
w is separable iff w ≥ 0.

2. ρ
(2n)
w is maximally mixed iff w = 1

2n .

3. ρ
(2n)
w is pure iff n = 1 and w = −1;

4. If ρ
(2n)
w is pure, then ρ

(2n)
w is maximally entangled.

Consider now the case of two-qubit Werner states ρ
(2)
w , which live in the

space C2 ⊗ C2 and consequently have the following form:

ρ(2)w =
1

3

[(
1− 1

2
w

)
I(2) +

(
w − 1

2

)
SW(1,1)

]
.

We obtain:
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Fig. 1

Fig. 2 The class of all ρ(abc) states

1. ρ
(2)
w is separable iff w ≥ 0;

2. ρ
(2)
w is maximally mixed iff w = 1

2 iff ρ
(2)
w is factorized;

3. ρ
(2)
w is a maximally entangled pure state iff w = −1 iff ρ

(2)
w is the Bell state

P 1√
2
(|0,1〉−|1,0〉).

The concurrence of an arbitrary two-qubit Werner state in terms of the
parameter w is depicted in Figure 1.

Another interesting subclass of the class of all two-qubit states is the class
of all three-parameter qubit states ρ

(abc)
, defined as follows:

ρ
(abc)

=
1

4


1 + a 0 0 0

0 1− b ic 0
0 −ic 1 + b 0
0 0 0 1− a

 ,

where a, b, c are three real numbers such that a2 ≤ 1 and b2 + c2 ≤ 1.
One can prove that a state ρ

(abc)
is separable iff a2 + c2 ≤ 1.

4 Entanglement and quantum computational conjunctions

As is well known, the Toffoli-gate allows us to define a quantum computational
conjunction that behaves according to classical logic, whenever it is applied
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Fig. 3 The class of all separable ρ(abc) states

Fig. 4 The class of all entangled ρ(abc) states

to certain pieces of information (bits and registers). At the same time this
conjunction may have some deeply anti-classical features when the inputs are
uncertain pieces of quantum information. The most peculiar property is rep-
resented by a holistic behavior: generally the conjunction defined on a global
piece of quantum information (represented by a given density operator) can-
not be described as a function of its separate parts. This is the reason why the
quantum computational conjunction is called “holistic”.

Definition 7 (The holistic conjunction)
For any m,n ≥ 1 and for any density operator ρ ∈ D(H(m+n)), the holistic
conjunction AND(m,n) is defined as follows:

AND(m,n)(ρ) = DT(m,n,1)(ρ⊗ P
(1)
0 ).

Clearly, the falsity-property P
(1)
0 plays, in this definition, the role of an ancilla.

Generally we have:

AND(m,n)(ρ) 6= AND(m,n)(Red
(1)
[m,n](ρ)⊗Red(2)[m,n](ρ)).

Hence, the holistic conjunction defined on a global information consisting of
two parts does not generally coincide with the conjunction of the two sep-
arate parts. As an example, consider the following density operator (which
corresponds to a maximally entangled pure state):

ρ = P 1√
2
(|0,0〉+|1,1〉).



8 H. Freytes, R. Giuntini, R. Leporini, G. Sergioli

We have:
AND(1,1)(ρ) = P 1√

2
(|0,0,0〉+|1,1,1〉) ,

which also represents a maximally entangled pure state. At the same time we
have:

AND(1,1)(Red
(1)
[1,1](ρ)⊗Red(2)[1,1](ρ)) = AND(1,1)(

1

2
I(1) ⊗ 1

2
I(1)),

which is a proper mixture.
The following theorem sums up the main probabilistic properties of the

holistic conjunction.

Theorem 2 [3, § 3]
For any ρ ∈ D(H(m+n)):

1) p(AND(m,n)(ρ)) = tr((P
(m)
1 ⊗ P (n)

1 )ρ).

2) p(AND(m,n)(ρ)) ≤ p(Red
(1)
[m,n](ρ)) and p(AND(m,n)(ρ)) ≤ p(Red

(2)
[m,n](ρ)).

Consequently, for any factorized density operator ρ = ρ1 ⊗ ρ2 of the space
H(m+n) (with ρ1 ∈ D(H(m)) and ρ2 ∈ D(H(n))) we have:

p(AND(m,n)(ρ)) = p(Red
(1)
[m,n](ρ))p(Red

(2)
[m,n](ρ)) = p(ρ1)p(ρ2).

Definition 8 (Probabilistic factorizability)
A conjunction AND(m,n)(ρ) is called probabilistically factorizable iff p(AND(m,n)(ρ)) =

p(Red
(1)
[m,n](ρ))p(Red

(2)
[m,n](ρ)).

Is there any interesting correlation between the probabilistic factorizability
of AND(m,n)(ρ), the factorizability of ρ and the separability of ρ?

Of course, we have:

ρ is factorized =⇒ AND(m,n)(ρ) is probabilistically factorizable.

The following questions arise:

1. AND(m,n)(ρ) is probabilistically factorizable ⇒ ρ is factorized?
2. AND(m,n)(ρ) is probabilistically factorizable ⇒ ρ is separable?
3. ρ is separable ⇒ AND(m,n)(ρ) is probabilistically factorizable?

These three questions have a negative answer. As to our third question,

consider the following counterexample: take a Werner state ρ
(2)
w such that

0 ≤ w ≤ 1 and w 6= 1
2 . Thus, ρ

(2)
w is a separable, non-factorized state since the

only factorized Werner state is ρ
(2)
1/2. At the same time, AND(m,n)(ρ

(2)
w ) is not

probabilistically factorizable, because:

p(AND(m,n)(ρ(2)w )) =
1 + w

6
6= 1

4
= p(Red

(1)
[m,n](ρ

(2)
w ))p(Red

(2)
[m,n](ρ

(2)
w )).

Negative answers to our first and to our second question can be obtained
as a consequence of the following general theorem.
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Theorem 3
For any ε ∈ (0, 1] ⊂ R and for any m,n ≥ 1, there exists a bipartite pure state
P|ψε〉 of H(m+n) such that:

1) P|ψε〉 is entangled;
2) C(P|ψε〉) = ε;

3) p(P|ψε〉) = 1
2 ;

4) p(AND(m,n)(P|ψε〉)) = p(Red
(1)
[m,n](P|ψε〉))p(Red

(2)
[m,n](P|ψε〉)).

Proof
1)-2) Let ε ∈ (0, 1] and let kε :=

√
1− ε2. Define the numbers a00 and a11 as

follows:

a00 :=
1√
2

√
1− kε and a11 :=

1√
2

√
1 + kε.

We have: kε ∈ [0, 1) and a00, a11 ∈ (0, 1). Consider the following pure state:

|ϕε〉 = a00|0, . . . , 0︸ ︷︷ ︸
m+n

〉+ a11|0, . . . , 0, 1︸ ︷︷ ︸
m

, 0, . . . , 0, 1︸ ︷︷ ︸
n

〉.

One can easily show that:

C(P|ϕε〉) = 2|a00a11| = ε.

Since 0 < ε ≤ 1, the state |ϕε〉 turns out to be entangled. Consider now the
state

|ψε〉 := (I(m+n−1) ⊗
√
I
(1)

)|ϕε〉.
An easy computation shows that:
|ψε〉 := 1

2

√
1− kε|0, . . . , 0︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
n

〉+ 1
2

√
1− kε|0, . . . , 0︸ ︷︷ ︸

m

, 0, . . . , 0, 1︸ ︷︷ ︸
n

〉

+ 1
2

√
1 + kε|0, . . . , 0, 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
n

〉 − 1
2

√
1 + kε|0, . . . , 0, 1︸ ︷︷ ︸

m

, 0, . . . , 0, 1︸ ︷︷ ︸
n

〉.

Since I(m+n−1) ⊗
√
I
(1)

is a locally unitary map and concurrence is invariant
under locally unitary maps, the state |ψε〉 is entangled and its concurrence is
ε.
3) An easy computation shows that:

p(P|ψε〉)) =
1

4
(1− kε + 1 + kε) =

1

2
.

(4) By Theorem 2,

p(AND(m,n)(P|ψε〉)) = tr((P
(m)
1 ⊗ P (n)

1 )P|ψε〉) =
1

4
(1 + kε).

It turns out that:

p(Red
(1)
[m,n](P|ψε〉)) =

1

2
(1 + kε) and p(Red

(2)
[m,n](P|ψε〉)) =

1

2
.

Hence,

p(AND(m,n)(P|ψε〉)) = p(Red
(1)
[m,n](P|ψε〉))p(Red

(2)
[1,1](P|ψε〉)).
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Consequently, there are infinitely many entangled pure states P|ψε〉, whose
holistic conjunction is probabilistically factorizable. On this basis we can con-
clude that the probabilistic behavior of holistic conjunctions cannot charac-
terize either entanglement or entanglement-measures.

In spite of these general negative results, some interesting correlations be-
tween entanglement, entanglement-measures and the probabilistic behavior of
holistic conjunctions can be found in the case of Werner states and in the case
of three-parameter qubit states.

Theorem 4
Let ρ

(2n)
w be a Werner state of H(2n).

1) p(ρ
(2n)
w ) = 1

2 ;

2) p(AND(n,n)(ρ
(2n)
w )) = 22n−1+2n−1w−1

2(22n−1) ;

3) p(Red
(1)
[n,n](ρ

(2n)
w )) = p(Red

(2)
[n,n](ρ

(2n)
w )) = 1

2 ;

Proof

1) p(ρ
(2n)
w ) = tr(P (2n)ρ

(2n)
w ) = 1

2

[∑22n−1

i=1

(
1− w

2n

)
+
∑2n−1

i=1

(
w − 1

2n

) ]
= 1

2 .

2) p(AND(n,n)(ρ
(2n)
w )) = tr(P (2n+1) DT(n,n,1)(ρw⊗P (1)

0 )) = tr((P
(n)
1 ⊗P

(n)
1 )ρw) =

1
22n−1

[∑22(n−1)

i=1

(
1− w

2n

)
+
∑2n−1

i=1

(
w − 1

2n

) ]
= 22n−1+2n−1w−1

2(22n−1) .

3) In a similar way.

As a consequence, we obtain:

AND(n,n)(ρ(2n)w ) is probabilistically factorizable iff

p(AND(n,n)(ρ(2n)w )) =
1

4
iff w =

1

2n
iff ρ(2n)w =

1

22n
I(2n).

Hence, the holistic conjunction of a Werner state ρ
(2n)
w is probabilistically

factorizable iff ρ
(2n)
w is the maximally mixed state 1

22n I
(2n). Accordingly, the

class of all Werner states ρ
(2n)
w for which AND(n,n)(ρ

(2n)
w ) is probabilistically

factorizable coincides with the singleton of the maximally mixed state. When-

ever ρ
(2n)
w is a non-factorized, separable Werner state, its holistic conjunction

AND(n,n)(ρ
(2n)
w ) cannot be probabilistically factorizable (because 1

22n I
(2n) is the

only factorized Werner state of H(2n) ).
A different situation arises in the case of three-parameter two-qubit states

ρ(abc). As we already know, any ρ(abc) satisfies the following condition:

ρ(abc) is separable iff a2 + c2 ≤ 1.

Furthermore we have:

1. p(ρ(abc)) = 1−a
4 ;

2. p(Red
(1)
[1,1](ρ(abc))) = 1

2 −
a+b
4 ;
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Fig. 5 The class of all probabilistically factorizable AND(1,1)ρ(abc)’s

3. p(Red
(2)
[1,1](ρ(abc))) = 1

2 −
a−b
4 .

Theorem 5

(1) AND(1,1)(ρ(abc)) is probabilistically factorizable iff a2 = b2 .

(2) If AND(1,1)(ρ(abc)) is probabilistically factorizable, then ρ(abc) is separable.

(3) If AND(1,1)(ρ(abc)) is probabilistically factorizable and c 6= 0, then ρ(abc) is
separable but not factorized.

Proof
(1) AND(1,1)(ρ(abc)) is probabilistically factorizable iff
1−a
4 = p(ρ(abc)) = p(Red

(1)
[1,1](ρ(abc)))p(Red

(2)
[1,1](ρ(abc))) =

1

16
(−2 + a− b)(−2 + a+ b)) iff a2 = b2.

(2) If AND(1,1)(ρ(abc)) is probabilistically factorizable, then, by (1), a2 = b2.
By definition of ρ(abc), b

2 + c2 ≤ 1. Thus, a2 + c2 ≤ 1 and therefore ρ(abc) is
separable.
(3) Suppose that AND(1,1)(ρ(abc)) is probabilistically factorizable. By (2), ρ(abc)
is separable. By hypothesis, c 6= 0. Thus, ρ(abc) cannot be factorized since every
factorized ρ(abc) is a diagonal matrix (with c = 0).

By Theorem 5(3), we can conclude that the class of all ρ(abc)’s for which

AND(1,1)(ρ(abc)) is probabilistically factorizable contains separable states that
are not factorized.
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