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This note shows that the results presented by Jabbari Nooghabi et al. (2010) do
not hold in all expected cases. With this, the technique proposed by Kumar and Lalhita
(2012) for detecting upper outliers in Gamma samples is also not valid. Specifically, this
note shows that the probability density functions (pdf) under the null hypothesis of the
test statistics therein proposed are not always valid.

In the aformentioned works the authors propose test statistics to detect outliers in
Gamma samples using a test of discordancy for outliers framework as defined in Barnett
and Lewis (1994).

Following the approach of Barnett and Lewis (1994), the null hypothesis (H0)
of a test for discordancy is a statment of an initial probability model that explains the
data generating process. For instance, in the case here considered, H0 states that data
are generated as independent observations from a common distribution F . If F is a
Gamma distribution, as in Jabbari Nooghabi et al. (2010) and Kumar and Lalhita (2012),
then H0 : X1, X2, . . . , Xn are n independent random variables, each following a Gamma
distribution with shape parameter m > 0 and scale parameter σ > 0, denoted by Γ(m,σ),
whose probability density function (pdf) is given by

f(x;m,σ) =
1

Γ(m)σm
xm−1 exp

(
−x
σ

)
, x > 0.

As σ is a scale parameter, without loosing generality, it will be assumed from
now on that these random variables are distributed according to a Γ(m, 1) law, that is,
with pdf given by

f(x;m) =
1

Γ(m)
xm−1 exp (−x) , x > 0.

The alternative hypothesis used in Jabbari Nooghabi et al. (2010) and Kumar
and Lalhita (2012) is the slippage alternative.

We are interested in detecting 1 ≤ k < n upper outliers using Zk, the statistic
proposed by Kumar and Lalhita (2012). This statistic, after some computations, can be
written as

Zk =

∑n
j=n−k+1(n− j + 1)Yj∑n

j=2(n− j + 1)Yj
, (1)

where
Yj = X(j) −X(j−1), (2)
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X(j) denotes the j-th order statistics of the ordered sample from (Xi)1≤i≤n in nondecreas-
ing order, that is, X(1) ≤ X(2) ≤ · · · ≤ X(n), and k is the number of observations suspected
to be upper outliers.

As in any statistical test, once the test statistic is proposed we need to determine
rejection criteria related to a previously specified significance level. To do that, and to
compute the p-value associated to a sample, the distribution of the test statistic under
the null hypothesis must be known.

In Kumar and Lalhita (2012) the distribution of Zk under the null hypothesis was
obtained based, mainly, on the distribution of differences of subsequent order statistics
from Gamma random variables, i.e., the distribution of the Yj given in Eq. (2). However,
when performing simulations we observed that the empirical pdf of Zk under the null
hypothesis given by Kumar and Lalhita (2012) gave a proper adjustment only for m = 1,
that is, when the random variables (Xi)1≤i≤n follows an exponential law.

Jabbari Nooghabi et al. (2010) also used the random variables Yj to find the
pdf of the test statistic they proposed under the alternative (Theorem 3.1) and null
(Corollary 3.1) hypotheses. Kumar and Lalhita (2012), followed the very same reasoning
and methodology used in Theorem 3.1 of Jabbari Nooghabi et al. (2010) to derive the pdf
of Zk under the null hypothesis.

A strong assumption made in both works is that, under the null hypothesis, each
Yj follows a Γ(m, (n− j + 1)−1) distribution. This is not true when m 6= 1, as we show in
what follows.

Recall that under the null hypothesis of a test for discordancy, X1, . . . , Xn are
independent identically distributed Gamma random variables. In general, if X1, . . . , Xn

are independent identically distributed random variables the pdf of Ysr = X(s)−X(r) can
be found by solving the following integral (David and Nagaraja, 2003):

fYsr(y) =
n!

(r − 1)!(s− r − 1)!(n− s)!∫ ∞
−∞

F r−1(x)f(x)[F (x+ y)− F (x)]s−r−1f(x+ y)[1− F (x+ y)]n−sdx, (3)

where F and f are the cumulative distribution function and the pdf, respectively, of any
of the Xi (without sorting).

Replacing s by j and r by j − 1 in Eq. (3), the pdf of Yj = X(j) −X(j−1) can be
found by solving the following integral

fYj
(y) =

n!

(j − 2)!(n− j)!

∫ +∞

−∞
F j−2(x)f(x)f(x+ y)[1− F (x+ y)]n−jdx. (4)

Let us suppose that the sample is only composed by two random variables X1

and X2, each Γ(m, 1) distributed with shape parameter m ∈ N. Then n = 2, and we just
have to compute Y2 = X(2) − X(1). Making n = 2, and j = 2 in Eq. (4), and having in
mind than m ∈ N, after some computations (see Appendix) the pdf of Y2 can be written
as

fY2(y) =
exp(−y)

Γ2(m)

m−1∑
i=0

(
m− 1

i

)
Γ(2m− i− 1)

22(m−1)−i yi, y > 0. (5)

As already mentioned, a strong assumption made by Jabbari Nooghabi et al.
(2010) and by Kumar and Lalhita (2012) is that if X1, X2 are random variables distributed
according to a Γ(m, 1) law then Y2 ∼ Γ(m, 1). But, if for instance m = 2 and using Eq. (5),
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the pdf fY2 can be expressed as

fY2(y) =
1

2

(
exp(−y) + y exp(−y)

)
, y > 0. (6)

This is a composition of a Γ(1, 1) and a Γ(2, 1) distributions with same probability, and
not a Γ(2, 1) distribution as claimed by both Jabbari Nooghabi et al. (2010) and by Kumar
and Lalhita (2012). The discrepancy is notorious, as will be shown henceforth.

Algorithm 1 presents the pseudocode used for the discussion. We implemented
it in the R programming language R Core Team (2014), and run it with R = 10000
replications for each case of m ∈ {1, 3, 8}.
Algorithm 1: Pseudocode for the analysis of Y2.

Data: Read m, R, and the pseudorandom number generator seed.
Initialize Z of length R;
Initialize r = 1;
for 1 ≤ r ≤ R do

Obtain X = (X1, X2) from the Γ(m, 1) distribution;
Sort X and obtain X(1) ≤ X(2);
Compute Y2 = X(2) −X(1);
Store Z(r) = Y2;
Update r = r + 1;

Analyze Z;

Figure 1 presents the results obtained with this simulation with R = 104: his-
tograms of Y2 and the densities proposed by Jabbari Nooghabi et al. (2010) and Kumar
and Lalhita (2012) (dashed lines), and the one we obtained and presented in Eq. (5) (solid
lines).

Case m = 1

Y2 = X(2) − X(1)
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(a) Xi ∼ Γ(1, 1)

Case m = 3

Y2 = X(2) − X(1)
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(b) Xi ∼ Γ(3, 1)

Case m = 8

Y2 = X(2) − X(1)

f Y
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(c) Xi ∼ Γ(8, 1)

Figure 1: The pdf of Y2 assumed by Jabbari Nooghabi et al. (2010) and by Kumar and
Lalhita (2012) in dashed lines, and in solid lines the pdf given in Eq. (5)

Both densities coincide in the case m = 1, i.e., when X1, X2 follow unitary mean
Exponential distributions; cf. Fig. 1(a). Figures 1(b) and 1(c) show the discrepancy
between the observed data and the model claimed by Kumar and Lalhita (2012). The
data is well fit by the distribution we obtained, though.
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Conclusions

In this work we have shown that if X1, X2 are independent random variables, each Γ(m, 1)
distributed, with m ∈ N≥2, then the pdf of Y2 = X(2)−X(1) is a composition of m Gamma
distributions, and not a Γ(m, 1) law as claimed by Jabbari Nooghabi et al. (2010) and
then assumed by Kumar and Lalhita (2012). Therefore, with this counterexample we
conclude that if m ∈ N≥2 then Yj, as in Eq. (2), does not follow a Gamma distribution.
This implies that most computations presented by Jabbari Nooghabi et al. (2010) and
by Kumar and Lalhita (2012) are not valid, including the pdf of Zk given by Kumar and
Lalhita (2012).

Appendix

From Eq. (4)

fY2(y) =
2!

(2− 2)!(2− 2)!

∫ +∞

0

F 2−2(x)f(x)f(x+ y)[1− F (x+ y)]2−2dx

= 2

∫ +∞

0

f(x)f(x+ y)dx

=
2

Γ2(m)

∫ +∞

0

exp(−x)xm−1 exp(−(x+ y))(x+ y)m−1dx

=
2 exp(−y)

Γ2(m)

∫ +∞

0

exp(−2x)(x2 + xy)m−1dx.

Having in mind that m ∈ N, expanding the binomial (x2 +xy)m−1 and using that∫ +∞
0

xne−axdx = a−(n+1)Γ(n+ 1), follows that

fY2(y) =
2 exp(−y)

Γ2(m)

{∫ +∞

0

exp(−2x)

[
m−1∑
i=0

(
m− 1

i

)
yix(2(m−1)−j)

]
dx

}

=
2 exp(−y)

Γ2(m)

{
m−1∑
i=0

(
m− 1

i

)
yi
[∫ +∞

0

x(2(m−1)−j) exp(−2x)dx

]}

=
exp(−y)

Γ2(m)

[
m−1∑
i=0

(
m− 1

i

)
Γ(2m− i− 1)

22(m−1)−i yi

]
.

Incidentally, the expression given for the Dixon’s Dk statistic by both the articles
commented in this work are wrong. They state that Dk = (X(n) −X(n−k))/X(n) when, in
fact, it is

Dk =
X(n) −X(n−k)

X(n) −X(1)

,

the ratio of the gap to the range of the data.
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