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A B S T R A C T

It is introduced in this paper a Lattice Discrete Element Method (LDEM) for modelling the falling-
weight test of polymethyl-methacrylate (PMMA) specimens. The method exploits the inherent characteristics
of discrete methods to model crack initiation and propagation by simply breaking the links between their
discrete components. It results in a flexible modelling tool that is implemented using Abaqus/Explicit.
Numerical results are validated by comparison with experimental tests. The results are compared in terms
of the time evolution of the striker force and velocity and the specimen crack patterns. The LDEM simu-
lations are, in every case, of predictive nature. Material properties are neither left open for calibration
nor used to adjust the numerical results. There is a good agreement between experimental and numer-
ical results. It is shown that the proposed LDEM has the capability to capture all the main features of
the sequence of events that occur during the experiment: the elastic specimen loading prior to the crack
initiation, the nucleation and propagation of radial cracks as the test progresses, and the final failure after
the rapid propagation of a circular crack that joins the radial cracks together. The effects of the variabil-
ity of the material fracture toughness on the test results are studied using a series of models with random
distribution of the fracture energy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The utilization of polymers and their composites in engineer-
ing applications demands the constant improvement of test methods
and analysis tools to better understand their failure mechanics failure.
One standard test for the impact characterization of polymers is the
falling-weight test. In this test, a disk-shaped specimen is sub-
jected to the impact of a steel striker with a hemispherical head
to induce a biaxial stress state. The impact energy is controlled by
means of the striker mass and velocity [15].

The finite element method is well developed for the simulation
of dynamic crack propagation. The two main approaches for this
task are cohesive interface elements and the extended finite element
method (XFEM). Cohesive elements were initially proposed by Xu
and Needleman [37] and further developed by Pandolfi
and Ortiz [25], among others. Cohesive elements are inserted
adaptively on the element interfaces when the effective traction acting

on those interfaces reaches the cohesive strength. Since the inser-
tion of the cohesive elements is limited to the element interfaces,
this approach might perform poorly for crack paths that are not co-
incident with meshlines or when the model discretization is not
enough refined. For its part, the XFEM introduced by Belytschko et al.
[4], injects the discontinuity into the element interpolation func-
tions on the basis of a failure criterion and level sets. XFEM is not
as sensitive as the cohesive element approach to model discreti-
zation, but the use of level sets to identify the failure zone tends to
favour the propagation of a single crack, and thus the inhibition of
crack branching. Song et al. [35] have also pointed out that cohe-
sive elements perform better than XFEM to model crack nucleation.

Discrete methods are specially suited for the simulation of
dynamic crack propagation problems. In contrast to the finite
element method, discrete methods have the natural ability to in-
troduce discontinuities in a very direct and intuitive way by simply
breaking the links between their discrete components. Moreover,
discrete methods offer a convenient framework to account for the
disorder of the material microstructure by means of statistical
models. This feature is an advantage over traditional continuum
micromechanical models, which adopt homogenization tech-
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niques to convert a disordered material into an equivalent continuum
model. Different methods such as discrete elements, discontinu-
ous deformation analysis and molecular dynamics can be formulated
depending on the individual element introduced: particles, agents
or molecules.

In the classical discrete element method (DEM), the material is
represented as a collection of spherical (in 3D) or cylindrical (in 2D)
discrete elements interacting among themselves via contact forces.
Contact interaction models employ the decomposition of the contact
force into normal and tangential components. The translational and
rotational motions of the elements (particles) are governed by the
standard equations of rigid body dynamics [5]. As in DEM,
peridynamic methods represent the material by a collection of par-
ticles, but they interact directly and non-locally with all particles
that lie within a given distance [34]. Peridynamic theory offers a
mathematically consistent technique for modelling solid bodies with
continuous and discontinuous displacements as well as a method
that unifies the mechanics of particles and continuum bodies through
the utilization of long-range forces.

Lattice discrete element methods (LDEM) represent the contin-
uum as a periodic spatial arrangement of bars with masses lumped
at their ends. Lattice methods have been successfully employed in
a number of applications, like to solve small deformations of gen-
erally anisotropic plane continua [8], to model crack propagation
[31] and to estimate the damage and effective mechanical proper-
ties of disordered microstructures [26,27]. The LDEM used in this
work can be assimilated to a reverse homogenization method [33].
Nayfeh and Hefzy [24] developed and approach to model a large
panel made of interconnected bars as an equivalent orthotropic
elastic continuum. Conversely, the LDEM represents an orthotropic
continuum by an equivalent regular truss lattice. Rocha et al. [30],
and more recently Kosteski et al. [16], extended the LDEM to account
for to the irreversible effects of crack nucleation and propagation.
Since then, the method have found applications in the analysis of
impulsive loads in shells [28], fracture of elastic foundations on
soft sand beds [32], scale effects in concrete [29] and rocks dowels
[13,21] and fracture and damage propagation [16,18,22].

It is introduced in this work an LDEM for the simulation of the
falling-weight impact response of polymethyl-methacrylate (PMMA)
specimens. With the aim to develop a flexible modelling tool, the
LDEM is implemented using Abaqus/Explicit [7]. This allows
combining the LDEM to the Abaqus capabilities for contact and

eigenvalue analyses, and for the inclusion of rigid parts into the
model assembly. Numerical analyses are complemented with ex-
perimental tests for the material characterization and the model
validation. A series of LDEM simulations are conducted in order to
account for the variability in the material properties. Numerical
and experimental results are compared in terms of the time evo-
lution of the striker force and velocity, and the specimen crack
pattern. The time evolutions of the kinetic, elastic and fracture en-
ergies are analyzed, and their behaviours are correlated to the
sequence of crack initiation, nucleation and propagation events that
occur during the test.

2. The lattice discrete element method

The lattice discrete element method (LDEM) used in this work
represents the continuum by means of a periodic spatial arrange-
ment of bars with masses lumped at their ends. The discretization
strategy is due to Nayfeh and Hefzy [24], and it is shown in Fig. 1(a)
and (b). The discretization uses a basic cubic module constructed
using 20 bar elements and nine nodes. Every node has three degrees
of freedom, which are the three components of the displacement
vector in the global reference system.

The lumped masses at the nodes are specified in such a way that
they add up the mass of the continuum the module represents,
mmodule = ρ·L3. Thereby, one half the module mass is assigned to the
node at the module centre, mcentre = 0.5ρL3, while the other half of
the mass is distributed evenly among the eight corner nodes. It is
worth noting that, since neighbour modules share their corner nodes,
these nodes account for the contributions of multiple modules after
the complete model assembly.

In the case of an isotropic elastic material, the equivalent axial
stiffness per unit length of the longitudinal elements (those located
along module edges and those connecting the nodes in the centre
of the modules) is:

E A E ELl
A

l= = φ 2, (1)

where Al is the cross-sectional area of the element and E is the
Young’s modulus of the solid being discretized. The function
ϕ = (9 + 8δ)/(18 + 24δ), where δ = 9ν/(4 − 8ν), accounts for the effect
of the Poisson’s ratio ν[6,24]. Similarly, the stiffness of the diago-
nal elements is

Fig. 1. Discretization strategy of the LDEM: (a) basic cubic module, (b) prism formed using several cubic modules.
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E A E ELd
A

d= = 2
3

2δφ . (2)

The coefficient 2 3 in equation (2) accounts for the differ-
ence in length between longitudinal and diagonal elements, this is,
L Ld= 2 3 .

It is important to point out that for ν = 0.25, the correspon-
dence between the equivalent discrete solid and the isotropic
continuum is complete. On the other hand, discrepancies appear
in the shear terms for values of ν ≠ 0.25. These discrepancies are
small and may be neglected in the range 0.20 ≤ ν ≤ 0.30. Different
element arrays can be adopted for materials with ν outside this
range (see Ref. [24]). It is interesting to note that while no lattice
model can exactly represent a locally isotropic continuum, it can
also be argued that no perfect locally isotropic continuum exists
in practical engineering applications. Isotropy in solids is a bulk
property that reflects the random distribution of the constituent
elements orientation. A comprehensive study on the effect of the
LDEM lattice geometry on the Poisson’s ratio can be found in
Ref. [27].

Newton’s second law is enforced at every node to obtain the
system of equations

Mx Cx F P�� �+ + ( ) − ( ) =t t 0 (3)

where vectors ��x and �x contain the nodal accelerations and ve-
locities; M and C are the mass and damping matrices respectively,
and the vectors F(t) and P(t) contain the nodal internal and exter-
nal forces. Since M and C are diagonal, the equations in expression
(3) are not coupled and they can be easily integrated in the time
domain using an explicit finite difference scheme.

Since nodal coordinates are updated at every time step, the LDEM
naturally accounts for large displacements. At the same time, the
LDEM has a natural ability to model cracks. Cracks can be intro-
duced into the models either as pre-existent features, or they can
result from the process of crack nucleation and propagation.
Crack nucleation and propagation require of non-linear constitu-
tive models that allow the elements to break when they attain a
critical condition. The details about the formulation and imple-
mentation of these non-linear constitutive models are given in the
next section.

2.1. Non-linear constitutive model for material damage

Rocha et al. [30], and more recently Kosteski et al. [16], intro-
duced non-linear constitutive models to account for the reduction
in the element load carrying capacity due to crack nucleation and
propagation. The bilinear model for quasi-brittle materials due to
Rocha et al. [30] is used in this work and it will be briefly pre-
sented next. The readers are referred to the above references for
further details.

The non-linear constitutive model is in Fig. 2. The area under
the force vs. strain plot (the area of the triangle OAB) is the energy
density necessary to fracture the area of influence of the element.
Thus, for a given point P on the force vs. strain curve, the area of
the triangle OPC represents the reversible elastic energy density
stored in the element, while the area of the triangle OAP is the
dissipated fracture energy density. Once the dissipated energy equals
the fracture energy, the element fails and loses its load carrying
capacity. On the other hand, in the case of compressive loads the
material behaves as linear elastic. Thus, the failure in compression
is induced by indirect traction. This assumption is reasonable for
quasi-brittle materials for which the ultimate strength in compres-
sion is usually from five to ten times larger than that in tension
(see Ref. [19]).

The parameters for the constitutive model in Fig. 2 are (see
Ref. [30]):

– Force, F: the element axial force as a function of the longitudi-
nal strain ɛ.

– Element stiffness, Ei
A: depending whether a longitudinal or a di-

agonal element is considered, Ed
A or El

A is adopted, see equations
(1) and (2).

– Length of the LDEM module, L.
– Specific fracture energy, Gf: it is specified as the material frac-

ture energy, Gc.
– Equivalent fracture area, Al

f: this parameter enforces the equiv-
alence between the fracture energy dissipated by the continuum
and by its discrete element representation. The energy dissipat-
ed by the fracture of a material sample of size L × L × L due to a
crack parallel to one of its faces is:

Γ Δ= =G G Lf f
2. (4)

The energy dissipated by the fracture of an LDEM module is,

ΓLDEM f AG c L= ⋅ + + ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⋅ 4 0 25 1 4
2
3

2. ,δ (5)

where the first term accounts for the four edge normal elements,
the second term for the internal longitudinal element, and the third
term for the four diagonal elements. The factor 2 3δ( ) in the third

term is the ratio between the diagonal and the longitudinal bar
stiffnesses, which is the quotient between expressions (2) and (1).
The coefficient cA is a scaling parameter that imposes the equiva-
lence between Γ and ΓLDEM. Equating equations (4) and (5) for the
case ν = 0.25, it results

G L G c Lf f A
2 222

3
≅ ⎛

⎝⎜
⎞
⎠⎟

, (6)

from which the value cA ≅ 3 22 is obtained.
Finally, the equivalent fracture areas of longitudinal and diagonal
elements are:

A Ld
f = 3

22
2 (7)

and

Fig. 2. Bilinear constitutive model with material damage.
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A Ll
f = 4

22
2 (8)

for the diagonal and longitudinal elements, respectively.

– Critical failure strain, ɛp: the maximum strain attained by the el-
ements before damage initiation (point A in Fig. 2). This is related
to the specific fracture energy as

ε p f
fR

G
E

= , (9)

where Rf is the so-called failure factor, which accounts for the pres-
ence of an intrinsic crack of length ℓ by means of

R
Y

f = 1
�

, (10)

where Y is a dimensionless parameter that depends on both, the
specimen and the crack geometry. Note that the length of the in-
trinsic defect is predetermined, and it could be considered as a
material property.

– Limit strain, ɛr: strain value for which the elements lose their load
carrying capacity (point B in Fig. 2). The limit strain is ex-
pressed in terms of the critical strain

ε εr r pK= (11)

where

K
G
E

A
A L

r
f

p

i
f

i i

=
⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝⎜

⎞
⎠⎟ε 2

2
(12)

is set to satisfy the dissipated fracture energy balance.

The condition Kr ≥ 1 must be fulfilled to guarantee the stability
of the explicit formulation. This condition is enforced be means of
the restriction Li ≤ Lcr on the element length, where

L
G
E

A
A

cr
f

p

i
f

i

=
⎛

⎝
⎜

⎞

⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟2

2ε
(13)

for both, the longitudinal, i = l, and the diagonal elements, i = d. The
values for the element cross-sectional areas, Ai, are those given in
expressions (1) and (2), while the equivalent fracture areas, Ai

f, are
in equations (7) and (8).

It is interesting to note that in contrast to the usual practice
in finite elements, the constitutive relationship in the LDEM is
not only a function of the material properties. The element consti-
tutive relationship introduced above is defined in terms of material
properties, ɛp, E, Rf and Gf; parameters that depend on model dis-
cretization, Ai

f and L; and parameters that depend on both, material
properties and model discretization, Ed

A and ɛr. A second interest-
ing feature of the method is that, although it uses a scalar damage
law to describe the uniaxial behaviour of the elements, the global
model accounts for anisotropic damage, since there are elements
oriented along different spatial directions.

2.2. Variations in material properties

Variability in material properties can be specified for density, ρ,
Young modulus, E and specific fracture energy, Gf. A given materi-
al property X is specified for each element as a function of its mean
value, X , using

X X= ( )ϕ γ , (14)

where

ϕ γ β

γ

( ) = −
−⎛

⎝⎜
⎞
⎠⎟1 e

X (15)

is a random number with a Weibull distribution and mean value
equal to unity. The scale parameter of the distribution is

β

γ

=
+⎛

⎝⎜
⎞
⎠⎟

X

Γ 1 1 (16)

where Γ is the Gamma function (see Ref. [10]). The shape param-
eter γ is computed from a non-linear regression of the experimental
data.

The variability is given by the ratio between the standard devi-
ation and the mean value,

CV X
n

( ) = ( ) −( )∑1
1 2ϕ γ . (17)

where n is the number of data points.
Following the works by Rios and Riera [29] and by Miguel et al.

[21,22], it is assumed here that randomness of the material prop-
erties is independent of the model discretization.

2.3. Implementation in ABAQUS/Explicit

The LDEM is implemented in ABAQUS/Explicit [7] using 2-node
linear-displacement truss elements (T3D2) for the model discreti-
zation. Elements are divided into two sets, one for the longitudinal
and one for the diagonal elements. The cross-sectional areas and
the Young’s modulus are computed using equations (1) and (2) and
specified via the *SOLID SECTION and *ELASTIC keywords. Similar-
ly, element densities are specified using *DENSITY. Densities are
assigned so that, once the model is assembled, equivalent nodal
masses are those introduced in Section 2. Densities for the longi-
tudinal and diagonal elements, ρl and ρd, are computed as functions
of element cross-sectional areas and lengths. The resulting formu-
las are

ρ ρ ρ ρ
l d= =

7 8 5 2. .
.and (18)

Special cases are the nodes on the model surface, which accord-
ing to the previous procedure, will result with mass deficits due to
the absence of neighbour modules. These deficits are compen-
sated by the addition of complementary discrete masses, the values
of which are computed depending on the node connectivities. The
details about this procedure are in Ref. [17]. Discrete masses are
specified via the *MASS keyword.

The non-linear constitutive law is implemented by means of the
smeared model due to due [11] via the *BRITTLE CRACKING, *BRITTLE
SHEAR and *BRITTLE FAILURE keywords: *BRITTLE CRACKING is set
as TYPE = STRAIN and used to set the critical failure strain (point
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A in Fig. 2) and the limit strain (point B in Fig. 2); *BRITTLE SHEAR
is only specified to complete the model data, note that, since Mode-
II fracture is not relevant for bar elements, this datum is not used;
and *BRITTLE FAILURE is used to activate the automatic removal of
the failed elements from the model once they attain the limit strain.

3. Experimental tests

3.1. Falling-weight impact test

Falling-weight impact tests were conducted on a 3.2-mm-
thick sheet of PMMA kindly provided by Ineos Acrylics (Rolle,
Switzerland). Tests were carried out according to ASTM D3763 [1]
using a Fractovis Gravity Drop CEAST 6789 equipped with a CEAST
DAS 4000 data acquisition system. Fig. 3 illustrates a scheme of the
test setup. Four experiments were tested using a hemispherical
striker of diameter d = 12.7 mm, mass m = 18.49 kg and nominal
velocity v0 = 1 m/s. The diameter of the clamp was D = 76 mm.

Fig. 4(a) and (b) depicts the plots of the striker force vs. time and
striker velocity vs. time records, respectively. The curves in Fig. 4(a)
show three force peaks. The early peak during the loading stage at
t ≈ 0.5 ms is the so-called “inertial peak”, and it is not relevant for
the present work (please refer to Kakarala and Roche [14] for a de-
tailed description of the phenomena). The other two force peaks
are of interest for this work. They occur at the onset of crack prop-
agation and just before the final failure of the specimen, respectively.
The first peak is of magnitude P1 ≈ 600 N, it occurs at t1 ≈ 1.75 ms
and it exhibits an excellent repeatability for all the specimens. On
the other hand, the time and magnitude of the second peak present
significant dispersions. Maximum forces are in the 600 N ≤ P2 ≤ 830 N
range and they occur along the 6.4 ms ≤ t2 ≤ 9.4 ms range. All force
traces present important oscillations just after t1, but in every case,
they gradually diminish and they almost vanish at t2. It is worth to
observe the gradual decrement of the slopes of the force vs. time
plots as the tests progress. This is because of the gradual reduc-
tion of the specimen stiffness with crack propagation.

Fig. 4(b) shows that the striker velocity increases at the begin-
ning of the test, when inertial effects prevail over the specimen
stiffness. In every test, the maximum velocity is attained at t ≈ 0.8 ms.
From this moment on, striker velocity monotonically decreases until
the end of the test. Two inflection points in the velocity records occur
at times t1 and t2, respectively. They are consequences of sudden
decrements of the specimen stiffness, which result in instant in-
crements in the striker acceleration (see the changes in the slope

of the velocity records). The striker velocity increases after t2, once
it has gone through the specimen.

Photographs of tested specimens showing the developed crack
patterns are depicted in Fig. 5. All the specimens present the same
crack pattern: a set of radial cracks joined together by a circular crack.
The cracks patterns are characterized in terms of three param-
eters: the number and length of the radial cracks, and the diameter
of the circular crack. The radial crack length is quantified by the di-
ameter of the circumference that best fit the crack vertices. Similarly,
a circumference is fitted to the circular crack and used to quantify
its diameter. Note that the fitted circumferences are not restricted
to be concentric with the perimeter of the circular clamp. The results
are compiled in Table 1. It is interesting to see that while there is
a significant dispersion in the number of radial cracks has (from 6
to 9), their lengths are nearly constant, with a dispersion less then
6% with respect the mean value dr = 65.25 mm. The dispersion in
the radial crack number may be related to local material inhomo-
geneities at the impact site. Liu and Liaw [20] reported similar
observations for PMMA specimens subjected to low impact energy.
The results for the circumferential crack diameter present an im-
portant dispersion, in the 38 mm ≤ dc ≤ 54 mm range.

3.2. Mechanical characterization of PMMA

Mechanical properties of PMMA required in simulations were
determined by performing uniaxial-tensile experiments and frac-
ture impact tests.Fig. 3. Schematic of the falling-weight impact test.

Fig. 4. Experimental results: (a) force and (b) velocity vs. time records.
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Tensile tests were conducted according ASTM D638 [2] on Type-V
dumb-bell shaped samples at different strain rates. Low rate ex-
periments were carried out at 2, 10, 50 mm/min in an Instron 4467
universal testing machine, while high rate tests were performed at
1800 mm/s in a CeastResil 25 pendulum. Three specimens were
tested in every case.

Fig. 6 shows typical uniaxial stress–strain curves at different strain
rates. It can be observed that the viscous response systematically
diminishes with the increment of the strain rate. At the same time,
the initial linear response is almost independent of strain rate. As
the aim of this work is to simulate the impact response, the
behaviour of PMMA was assimilated to that observed at 1800 mm/
s. Therefore, the material was modelled as linear elastic over the
complete strain range. The Young modulus value E = 3.35 GPa was
computed from the linear part of the curves, 0 ≤ ɛ ≤ 5·10−3. In ac-

cordance with the previous hypothesis, the failure stress was
computed as the mean value of the data of the high-velocity tests.
This was σf = 75 MPa with a dispersion of 15%.

Fracture impact tests were performed using single notched three-
point-bending specimens according to ISO 17281 [12]. The test
machine was the same used in falling-weight impact tests, the striker
mass was 3.6 kg and the span was set S = 24 mm. Fourteen speci-
mens were tested, the dimensions of which were: thickness
B = 3 mm, width 6.21 mm ≤ W ≤ 7.26 mm and initial notch depth
1.9 mm ≤ a ≤ 6.38 mm. Sharp notches were introduced into the
samples using a standard notching machine equipped with a razor
cut.

Fig. 7 shows the resulting fracture-energy values, U, plotted as
a function of BWϕ (where ϕ is a calibration factor that depends on
the specimen geometry, see Ref. [3]). The fracture toughness value
GIC = 930 ±120 J/m2 was determined following the standard proce-
dure [12].

The material density was ρ = 1190 kg/m3.

4. LDEM model

Fig. 8 illustrates the LDEM model of the of the impact speci-
mens. It consists in 92.8 mm × 92.8 mm × 3.2 mm square plate
discretized with elements of length L = 0.533 mm. This results in

Fig. 5. Fracture patterns of the four specimens. The circles on the Specimen #1 show the measurements of radial crack lengths (dotted white circle) and the diameter of
the circular cracks (dashed white circle). The dashed black circles in the photos indicate the perimeters of the specimens.

Table 1
Geometrical characterization of the experimental crack pattern.

Specimen Number of
radial cracks

Radial crack
length [mm]

Circular crack
diameter [mm]

#1 6 69 54
#2 8 65 38
#3 9 63 48
#4 7 64 47

Fig. 6. Tensile tests: material response at different test velocities. Fig. 7. Results of the impact fracture test.
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six modules across the specimen thickness. Model consists of ap-
proximately 2.5 106 elements with 1.2 106 degrees of freedom.

The clamp is modelled using two rigid rings, one on each side
of the plate (see Fig. 3). Both rings are anchored to prescribe null
displacements and rotations. The inner and outer diameters of the
rings are 76 mm and 90 mm respectively. Rings are modelled as rigid
bodies via the *RIGID BODY. No-slip contact boundary conditions
are specified between the rings and the plate via *SURFACE
INTERATION, *FRICTION, ROUGH and *SURFACE BEHAVIOR,
PRESSURE-OVERCLOSURE=HARD keywords. The hemispherical
striker is modelled as a *RIGID BODY with mass m = 18.49 kg. The
striker displacement is only allowed in the direction perpendicu-
lar to the plate surface. The contact boundary condition between
the striker and the plate is specified as *FRICTION, 0; this is, fric-
tionless. According to the results in Fig. 4(b), the initial striker is
specified v0 = 1.065 m/s. The velocity and force as functions of time
are reported at the striker reference point.

The impact test is modelled for two sets of material properties:

a) Homogeneous material

Parameters of the non-linear constitutive law are computed from
mean values of the experimental data in Section 3.2 and the adopted
element length. The element stiffnesses are El

A = 375.47 N/m and
Ed

A = 195.10 N/m, see equations (1) and (2); the specific fracture
energy Gf = 1034 N/m; the equivalent fracture areas
Ad

f = 0.03878 mm2 and Al
f = 0.05171 mm2, see equations (7) and

(8); the critical failure strain, ɛp = 0.01818 with Rf = 31.45, see equa-
tion (9); and the limit strain ɛr = 0.02238 with Kr = 1.23, see
equation (11).

In addition to the analysis of the impact problem, the model with
the homogeneous materials was used to solve the eigenvalue
problem to compute the natural frequency for the specimen free-
oscillations. These results are used to assess the quality of the LDEM
model. The eigenvalue problem was solved using Abaqus/Standard
procedures by means of the *STEP, PERTURBATION and *FREQUEN-
CY commands.

b) Non-homogeneous material

LDEM parameters are set the same of the homogeneous case,
with the exception of the fracture toughness, which is specified using
a Weibull distribution of probability, as it is detailed in Section 2.3.
The mean value for the distribution is Gf = 1034 N/m, and three values
for the variability are considered, CV(Gf) = 0.10, 0.25 and 0.50. The
strategy for the setting of the Gf is illustrated in Fig. 9: the differ-
ent values of Gf are accompanied by consistent adjustments of the
critical and the limit strains, ɛp and ɛr, such that the values of Rf and
Kr are keep constant, see equations (10) and (12).

The time increment was set Δt = 9·10−8 s, which satisfies both,
the LDEM stability condition in equation (13) and the critical time
increment required by Abaqus.

5. Results

5.1. Free oscillations

Results of the eigenvalue analysis are given in Table 2 and Fig. 10.
Frequency results are compared to those computed using the
Rayleigh–Ritz method for a circular clamped disk [36]. It can be ob-
served that there is a good agreement between the two sets of
results. This evidences the effectiveness of the model to properly
represent the model stiffness and the spatial mass distribution. No
attempt was made to compensate the differences via the calibra-
tion of the material properties.

5.2. Falling-weight impact tests

Results of the simulations of the impact test of the homoge-
neous specimen are shown in Figs. 11 and 12. Fig. 11 presents the
plots of the time evolutions of the striker force and velocity. Also
included in these plots are the envelopes of the experimental results.
Fig. 11(a) allows observing that the LDEM captures the first force
peak at t1 very accurately, within the dispersion of the experimen-
tal results. Like in experiments, LDEM results present important
oscillations after the first force peak, but in contrast to experi-
ments, the oscillations in the numerical results do not diminish

Fig. 8. LDEM model of the impact test.

Fig. 9. Strategy for the setting of the Weibull distribution for the fracture toughness.

126 L.E. Kosteski et al./International Journal of Impact Engineering 87 (2016) 120–131



with time. This difference might be attributed to the some damping
capacity of the striker and/or the specimen, which have not been
considered in the LDEM model. It is important to note that, al-
though the oscillations, the mean value of the force vs. time plot
along during t1 ≤ t ≤ t2 presents the same slope as it experimental
counterpart. Moreover, the predicted time to failure, t2 ≈ 7.5 ms,
lies well within the experimental envelope. These are indicators
that the model is able to capture the sequence of events conduct-
ing to the specimen failure. In an attempt to attenuate the effect
of the oscillations, LDEM results for t > t1 are filtered using a low-
pass filter for the frequencies of the free-oscillations computed in
Section 5.1. Results for the filters with f1 and f2 are given in Fig. 11(a).
It can be observed that the filter for f1 has a noticeable effect. Fil-
tered LDEM results exhibit amplitudes of the same order of their
experimental counterpart. Filtering with frequencies higher to f1

has no noticeable effects. These results indicate that the speci-
mens oscillate mainly in the first (lowest) mode, what it is coherent
with the shape of the displacement field that is induced to the
specimen in the beginning of the test.

LDEM results for the time evolution of the striker velocity is in
very good agreement with the experiments; see Fig. 11(b). The LDEM
output is within the narrow envelope of the experimental results
up to the time of the first force peak. The model fails to catch
the inflection in the velocity curve at t1, and from this moment on,
the velocity is underestimated by approximately 2%. The pre-
dicted striker velocity after failure lies well within the experimental
envelope. In contrast to force results, there are no oscillations in
velocity results.

Fig. 12 presents the time evolution of the energies and the spec-
imen fracture pattern. The time evolution of the energies in Fig. 12(a)
is completely coherent with the above results. The strain energy
monotonically increases up to t2, the moment in which the speci-
men loses its load carrying capacity due to final failure. On the other
hand, the specimen kinetic and dissipated damage energies are neg-
ligible before t1. Increments in these magnitudes after t1 are
associated to the onset and subsequent crack propagation. Both,
damage and kinetic energies exhibit sudden increments at t2. In-
crement in dissipated damage energy is due to rapid
crack propagation, while increment in the kinetic energy is due to

specimen pieces moving apart after failure. The predicted fracture
pattern in Fig. 12(b) is in good agreement with the photographs of
the tested specimens in Fig. 5. The model nucleates five radial cracks,
which are just below the low bound of the experimental results.
The radial crack pattern is uniform, like in the experiments, but the
crack length, dr ≈ 57 mm is smaller than that experimentally mea-
sured. The diameter of the circumferential crack dc ≈ 42 mm is within
the experimental range.

Table 2
Modes of the free oscillations of the homogeneous disks.

Free-oscillation frequencies [kHz]

Mode LDEM Rayleigh–Ritz Difference

1 1.46 1.61 −9.6%
2 3.04 3.35 −9.3%
3 4.85 5.51 −12.0%
4 5.51 6.29 −12.3%
5 11.85 14.05 −15.6%

Fig. 10. Modes of the free oscillations of the homogeneous specimen.

Fig. 11. LDEM results for the homogeneous specimen: (a) force and (b) velocity vs.
time records.
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The results for the heterogeneous specimens are given in
Figs. 13–15. Fig. 13 illustrates the time evolution of the striker force
and the velocity for the three variabilities in Gf distribution. Four
tests with different random Gf fields were simulated for each case.
There are also given in the figure the envelopes for the experimen-
tal results. Force results are filtered for the free-oscillation frequencies
using the same procedure as for the homogeneous case. It can be
observed in Fig. 13(a) that the simulations with the three levels of
variability capture the first peak: the simulations with CV(Gf) = 10%
and 25% provide accurate predictions for P1 and t1 while the simu-
lations with CV(Gf) = 50% properly predicts t1, but underestimates
P1. The simulations with CV(Gf) = 10% and 25% present similar
behaviours, close to that of the homogeneous case for t1 ≤ t ≤ t2,
whereas CV(Gf) = 50% can be assimilated to the lower bound of the
numerical results. This last observation is coherent with the results
for the velocity time evolution in Fig. 13(b). Velocity vs. time plots
for all the simulations with CV(Gf) = 10% and 25% present practi-
cally no dispersion and they are coincident to that of the
homogeneous case; see Fig. 11(b). In the case CV(Gf) = 50%, three
out of the four simulations result with velocities higher than those
of their counterparts with lower variabilities in Gf. In every case,
the numerical results for velocity are in excellent agreement with
experimental ones.

It can be observed from Fig. 13(a) that CV(Gf) = 10% and 25% pre-
dicts failure times (t2) between 6 ms and 8 ms. This range is almost
completely comprised within the experimental envelope. In con-
trast, the case CV(Gf) = 50% consistently predicts that the final failure
occurs earlier than it is observed in the experiments. It is worth
noting that, due to the absence of oscillations, the velocity vs. time
plot is the best means to measure the time to failure.

Results for the energy time evolution are shown in Fig. 14. It can
be observed that in every case, the results are very smooth and they
present no oscillations for t ≤ t2. So, these plots are also accurate
means to retrieve the time to failure. Consistently with the results
above, the sets of results for CV(Gf) = 10% and 25% are nearly coin-
cident, while the results for CV(Gf) = 50% slightly differ. The damage
energy plot is of particular interest, as its departure from zero allows
retrieving t1, the time for fracture initiation.

Fig. 15 depicts snapshots of the fracture patterns at the radial
cracks achieve their maximum length, i.e., just before the nucle-
ation of the circular crack. This is found to happen at t2. Nucleation
and propagation of the circular cracks occur almost instanta-
neously, not later than 0.4 ms to 0.5 ms after t2. The snapshots with
the final fracture patterns are depicted in Fig. 16.

Fig. 12. LDEM results for the homogeneous specimen: (a) time evolution of the strain,
kinematic and damage energies and (b) fracture pattern. The dotted circle is for the
measurement of the circumferential crack radio. Fig. 13. LDEM results for the heterogeneous specimen: (a) force and (b) velocity vs.

time records for three values of variability of the material fracture energy.
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Table 3 compiles the data of the geometrical characterization of
the LDEM crack patterns. It can be observed that the heterogene-
ity in the fracture energy does not have a major effect on the number
of radial cracks, which ranges from 4 to 6 in all the cases. Maximum
number of cracks in the simulations attains the minimum number
of cracks observed in experiments. Similarly, the variability in Gf has
not a strong influence on the radial crack lengths. As in the homo-
geneous case, the simulations consistently underestimate radial crack
lengths. On the other hand, circular crack diameters, replicating the
experimental observations. Most of the crack-diameter results for
CV(Gf) = 10% and 25% lie within the bottom half of the experimen-
tal measurements (see Table 1), while the simulations for
CV(Gf) = 50% conduct to predictions that are smaller than their ex-
perimental counterparts.

6. Conclusions

This paper presents a lattice discrete element method (LDEM)
to model the falling-weight impact response of polymethyl-
methacrylate (PMMA) specimens. The LDEM is based on a
formulation that accounts for material damage that in turn allows
cracks to nucleate and to propagate spontaneously, without the use
of initial cracks or special elements. The LDEM has been imple-
mented using Abaqus/Explicit. This not only makes the
implementation very versatile in terms of the model pre and post
processing, but it allows exploiting the Abaqus capabilities for contact
mechanics, eigenvalue analysis and for the inclusion of rigid parts
into the model assembly.

Computational analyses are complemented with experimental
tests. The mechanical characterization of the PMMA is performed
using uniaxial tensile and fracture impact tests. Experimental results
of a set of falling-weight biaxial impact tests on circular speci-
mens are used to validate the numerical models. LDEM simulations
are, in every case, of predictive nature. This is, material properties
are neither left open for calibration nor used to adjust the numer-
ical results. Simulations are carried for specimens with homogeneous
and heterogeneous material fracture energy.

LDEM has the capability to capture all the main events during
the experiment: the initial elastic specimen loading prior to the crack
initiation, the nucleation and propagation of the radial cracks as the
test progresses, and the final failure after the rapid propagation of
a circular crack that joins the radial cracks together. Numerical and
experimental fracture patterns are in good agreement. Consistent
with experimental results, simulations show that the variability in
the fracture energy has no significant effects on the number and
length of the radial cracks. Moreover, the dispersions of the diam-
eters of the circular cracks are important in both simulations and
experiments.

Forces responses from the simulations exhibit larger oscilla-
tions than their experimental counterparts. This difference is
attributed to the damping capacities of the striker and/or the ma-
terial, which are not included in the numerical model. A low-pass
filter for the specimen free-oscillation-frequencies is introduced to
successfully remove these oscillations.

The LDEM predictions of the time histories of the striker force
and velocity and of the strain, damage and kinetic energies of the
disk are in very good agreement with those retrieved from the ex-
perimental results. Evolutions of these variables during the tests
show very good correlations with the sequence of events that occur
during the tests. Energy results allow having a better insight about
the failure mode of the specimens. A variability of up to 25% in the
PMMA fracture energy results in predictions for the specimen failure
that lie within the experimental envelope.

The lattice LDEM introduced in this work has shown excellent
capabilities to deal with complex impact fracture problems. The

Fig. 14. LDEM results for the heterogeneous specimen: time evolution of the (a) strain
energy, (b) dissipated damage energy and (c) kinetic energy for three values of vari-
ability of the material fracture energy.
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Fig. 15. Snapshots o f the LDEM fracture patterns at t2, the moment when the radial cracks attain their maximum lengths. Results are shown for four different random
specimens for each of the variations in the fracture energy.

Fig. 16. Snapshots of the LDEM final fracture patters. Results are shown for four different random specimens for each of the variations in the fracture energy.
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method is versatile, and its implementation into Abaqus allows easily
extending it to deal with other material behaviours and more
complex problems. Natural extensions to this work are to investi-
gate the performance of constitutive laws with different softening
curves, like those proposed by Elices et al. [9] and Murphy and
Ivankovic [23] for PMMA in the context of the cohesive zone models,
and to account for damping effects. It might result also of interest
to couple LDEM with finite element method, what would allow com-
bining the capabilities of both methods in a single model.
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