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Abstract 

 This work presents an experimental and numerical study of a sloshing problem in 
rectangular tanks with baffles immersed at different distance from the bottom. The 
numerical simulation is performed using a generalized streamline formulation for the 
solution of the Navier Stokes equations in conjunction with a Lagrangian approach to 
describe the free surface motion. The physical problem consists of a tank with baffles 
attached at its walls. The tank is subjected to cyclic horizontal motions with diverse 
amplitudes and frequencies. Baffles of different sizes are used to evaluate its effects on 
the waves. Steady state forced sloshing and free sloshing regimes are reported. The 
water level evolution is successfully validated by comparison with those registered in 
the experiments for the several cases analyzed. Additionally, the effectiveness of 
baffles in limiting the wave height and its propagation is satisfactorily described and 
quantified. 

1  Introduction 
Free surface flows are commonly presented in nature as well as in industrial 

applications. From ocean science to liquid storage, they present a wide range of 
technical problems that require the description of free surface evolution under 
variable acceleration effects in order to take advantage of either the swell (i.e., energy 
generation) or to reduce the nocive wave effect on coast or containers. Simple devices 
that act as dampers and deflectors are called baffles and they are designed to reduce 
the wave amplitude and to limit its evolution. Baffles are commonly installed on 
trucks or tanks used to transport or to storage liquids. Applications like those 
previously referred encourage experimental as well as numerical studies of waves and 
their evolution in presence of baffles [1-6]. 

Different numerical techniques to deal with free surface analyses have been 
reported in the literature. They could be basically classified according to the free 
surface is either considered as boundary of the domain (in such a case the 
computational domain varies in time) or is embedded in a fixed domain filled with 
two fluids (typically representing air and water). The Arbitrary Lagrangian–Eulerian 
(ALE) [7-9] or Deformable-Spatial-Domain/Stabilized-Space-Time formulation 
(DSD/SST) [10,11] are well known moving domain techniques that have been 
extensively applied. The pioneering and well reported Marker-and-Cell (MAC) 
[12,13], the pseudo-concentration method [14-16], Volume Of Fluid (VOF) [17-19], 
and Level Set (LS) [20-23] methods have been successfully used on fixed 
discretizations. Many of such formulations have been also coupled with remeshing 
techniques to make the resulting numerical schemes more powerful [24-33]. An 
important aspect in modeling is the verification and validation of the results. In fact, 
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several efforts have been done to contrast results [1-6, 33-37] that make even 
nowadays the benchmarking relevant. This task requires the definition of experiments 
able to deal with the necessary data for numerical comparison. Regarding free surface 
flow problems, experiments are reported in the literature (see, e.g., [1-6, 34-37]) 
where some works are specifically devoted to baffled tanks [3,5]. Baffles are usually 
used to reduce the effect of waves. Their location could be decisive to achieve such 
objective and, as they are added to a structure, their lightness is also a goal. Hence, 
non massive baffles are practically designed to fulfill such requirements. 

The present study encompasses experiments and numerical simulations with the 
objective of analyzing the behavior of the free surface during the sloshing of water in 
rectangular tanks with baffles submerged at different depths. The simulations are 
performed using a fixed mesh finite element formulation reported in [37, 39-41] 
where, in contrast to the strategy described in [39], the volume control algorithm used 
in this analysis is not iterative. To assess the numerical behavior of the referred 
formulation, this work is focused on the validation of a numerical model of the 
proposed problem  by comparing the computed free surface transient responses with  
experimental data. To this end, an experiment of sloshing in rectangular tanks 
subjected to cyclic acceleration including the effect of baffles with different 
geometries is conducted within the context of the present work and its collected data 
is novelty reported. Taken into account experimental observations, only 2D free 
surface evolutions will be simulated. In particular, the numerical analysis reports the 
sloshing of water in rectangular tanks under different shake conditions, varying the 
amplitude and frequency of the imposed motion. Steady state forced sloshing (time-
periodic regime) and free sloshing (damped decaying regime) are analyzed for the 
different cases of study. The efficiency to diminish the wave height is evaluated 
varying baffles sizes and positions. Moreover, primary resonance conditions are also 
tested.  

The remainder of the paper presents: the experiments, a brief description of the 
governing equations and the numerical formulation, the modeling and its validation. 
Finally, we summarize the conclusions of the reported investigation. 

2  Experimental Work 
The experiment consists of an acrylic box of rectangular section (called tank from 

here onward, with dimensions 388 mm x 183 mm x 245 mm, see Figure 1.a)  mounted 
on a shake table [45] able to move under controlled horizontal motion (Figure 1.b). 
The laboratory facilities are similar to those reported in [37]. Nevertheless, in the 
present work, the tank is designed to attach baffles of different sizes (Cort) at 
different distance from the bottom (Hc), see Figure 1.c. The dimensions and positions of 
the baffle in the experiments are shown in Table 1. 

The tank is filled with water. In the present work only experiments using a water 
level of H = 100 mm will be reported. The present work is focused on sloshing near 
the first resonant mode. Hence, considering the frequency at the primary resonance of 
the tank without baffles (named fn ) as a reference, the tank is shaken at frequencies of  
0.58 Hz, 0.87 Hz, 1.16 Hz, 1.45 Hz, 1.97 Hz, i.e. 0.5 fn, 0.75 fn , fn , 1.25 fn and 1.7 fn 
based on fn computed from the analytical expression [38]: 
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where l is the length of the tank with respect to the direction of motion, g is the gravity and H 
is the water level at rest, resulting the reference frequency as  fn = 1.16 Hz. Moreover, motion 
amplitudes of 2.5 mm, 5 mm, 7.5 mm and 15 mm are considered. In order to prevent 
overflows, only a frequency of 0.75 fn for an amplitude of 15 mm was applied. Table 2 
summarizes the frequency and amplitude applied to obtain the imposed motion. Therefore, 
considering that the 5 baffle configurations shown in Table 1 (see Figure 1.c) are tested at 
each frequency and amplitude of the imposed motion as those reported in Table 2, a set of 55 
cases in total were analyzed. 

The free surface evolution is registered by ultrasonic sensors located in the z-
middle plane at 20 mm apart from the tank walls. Additionally, sensors placed at the 
tank corners help to evaluate the evolution of 3D free surface effects. The error in the 
experimental measurements is estimated as ±0.5 mm. 

The experimental evolutions of the free surface relative to the water level at rest, 
named h in the present work, are reported together with the computed responses in 
Section 4. In particular, free surface evolutions are reported during time-periodic 
(forced vibrations) and damped decay (free sloshing once the shake table is stopped) 
regimes.  

The experiments show that 3D effects can evolve at frequencies closely to 
primary resonance depending on the amplitude of the imposed motion as it was also 
shown in [37] where a configuration without baffles was used. Moreover, although 
the system used to fasten the baffles can induce disorder in the free surface it does not 
promote, however, strong 3D effects in the cases reported. In spite of this, the 
experimental observations presented in this work reveal that the motion evolves 
practically 2D in the X-Y plane for the cases analyzed. 

3  Governing Equations and Numerical Formulation 
The Navier-Stokes equations are used to describe a Newtonian viscous 

incompressible fluid flow: 
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∂
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0=⋅∇ ν  (3)
where ε,,,, μρ pν

21 Ω∪Ω

 and b are the density, velocity, pressure, dynamic viscosity, strain-
rate tensor and body force, respectively. The gradient operator is denoted by ∇ . The 
set of equations of motion (2) and the incompressibility constraint (3) are solved in a 
fixed domain of analysis Ω filled with fluid 1 (Ω1) and fluid 2 (Ω2) such that 

 and . The discrete form of the equations is obtained 
in the context of the finite element method using a generalized streamline operator 
technique to stabilize the solution (see [43,44] and references therein). The stabilised 
nature of the technique allows the use of equal-order interpolation functions for 
velocity and pressure. In the context of flow analysis with moving interfaces, all the 
matrices and vectors derived from the discrete form are computed including the 
discontinuity in material properties. The time integration is performed using a 

=Ω 021 =Ω∩Ω
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standard backward Euler scheme. The problem description is completed with 
appropriate initial and boundary conditions. 

An additional equation is required to determine the free surface evolution. In this 
work, the interface between fluids 1 and 2 is identified by marker points. The 
positions of such markers are updated from time t to t+Δt using the following 
Lagrangian formulation [39,42]: 

ttttt VtXX Δ⋅+Δ+ ⋅Δ+= α  (4)
where X and V are respectively the position and velocity of each marker point and α  
is the time integration parameter. The new set of markers´ positions needs to be 
volume preserving for incompressible flows. To ensure this, the following algorithm 
to compute volume preserving coordinates at time t+Δt is adopted: 

ttX Δ+

XXX tttt
presvol δβ+= Δ+Δ+

−  (5)
such that δX is chosen to satisfy mass fluxes balance along the interface with unit 
normal n as: 

tVnVsignX Δ⋅−= )(δ  (6)
and β is a minimum parameter computed to fulfill the condition  

known
tt
presvol VdnX

n −
Γ

Δ+
− =Γ⋅∫ 11

dim 1

)(1  (7)

 

where Γl is the boundary of the current liquid domain Ωl , ndim is the space dimension 
and V1-known is the volume to be preserved (see references [39-42] for further details). 
Moreover, due to the Lagrangian nature of equation (4), redistribution of markers is 
required when time goes by. Hence, an interface remeshing technique based on 
preserving curvatures needs to be applied as it was reported in [40] and [41] for 2D 
and 3D cases, respectively. Material properties are distributed at every time according 
to the interface position and, in addition, the discrete Navier–Stokes equations are 
integrated using subelements [39]. 

Finally, the numerical algorithm from time t to t+Δt reads: 

1. From tX , compute properties ρ1 , μ1 , ρ2 and μ2. 
2. Calculate ν  and p  with the system of equations (2) and (3). 
3. Update the interface using equation (4); ttX Δ+  is obtained. 
4. Determine a volume preserving markers’ positions tt

presvolX Δ+
−  such that 

equations 5 to 7 are fulfilled. 
5. Re-distribute markers accordingly geometric conservation laws (i.e., 

curvature preservation); tt
presvol  is obtained. remeshed X Δ+

−

6. Advance in time, ttt Δ+=  and tt
presvolX ; go to 1. remeshedX Δ+

−=t

 

Remark 1: Numerical tests have shown stable results when using bigger time steps 
in comparison with level set type techniques (see [39]). 
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Remark 2: The described volume preserving algorithm has an excellent 
performance without loss of mass. In contrast to the original strategy reported in [39], 
note that the present volume control algorithm is not iterative.  

Remark 3: The value of V1-known is fixed in closed systems (as in the present 
analysis). In cases of open systems, it could be computed including the mass flux 
balance along the domain interface (see, e.g., [42]). 

Finally, as it was reported in previous works [37], a simple turbulence model is 
defined based on a well known mixing length law by replacing μ in equation (2) by 

);:2min( max
2 μεερμμ mixt l+= , lmix being a characteristic mixing length and μmax 

a cutoff value. This model also acts as discontinuity-capturing viscosity terms of more 
complicated turbulence models since the increased viscosity near the interface serves 
essentially to stabilize the jump in shear stresses. 

4  Modeling the Experiments: Presentation and 
Discussion of the Results 

Figure 2 sketches typical meshes used in the present analysis (not all meshes are 
shown, the meshes need to fit the different configurations). The meshes are composed 
by four noded elements. To obtain a better accuracy of the interface representation, 
the meshes are refined at the zone where the interface motion is expected by using a y 
element size equal to 1 mm, which is twice the value of the water level experimental 
error. The refined zone is commonly taken as 20 mm below and above the interface 
position at rest. Nevertheless, to analyze the problems where high waves are detected, 
this region needs to be extended where the interface is expected to be. Outside this 
zone, the y mesh size is 4 mm. Based on the mesh size, the numerical error can be 
bounded by ±0.5 for the finer mesh and ±2 mm in the coarser one. The time step used 
in the analysis is 0.005 s. 

The properties used in the simulations are: ρ1 = 998 kg/m3 and μ1 = 0.001 kg/(m·s) 
for the water and ρ2 = 1.2 kg/m3 and μ2 = 1.8 E-5 kg/(m·s) for the air. The turbulent 
viscosity is computed using a global mixing length chosen proportional to the 
freesurface wave length (instead of a typically-used local mixing length, see also [33] 
for models comparison) lmix = 0.15 m  and μmax = 0.1 kg/(m·s).  

To illustrate the effect of the baffles on the free surface evolution, the results 
computed with and without baffles using a frequency f = fn = 1.16 Hz and amplitude A 
= 5 mm for the imposed motion are plotted in Figure 3 for the first 6 s of the analysis. 
Baffles are located at different positions from the bottom of the tank Hc and their 
heights Cort are also varied (see Figure 1c). The simulation without baffle 
demonstrates a constant increase in the sloshing height in accordance to the expected 
analytical behavior. On the other hand, it is observed that the presence of baffles 
contributes to decrease the wave heights and a time-periodic regime is reached in 
shorter times. Greater reductions on the water level is obtained for the highest baffles, 
especially for the baffle of Cort = 56.25 mm positioned at Hc = 75 mm from the 
bottom of the tank, which is closer to the water level at rest. 

The experimental data obtained during time-periodic regime for an imposed 
motion of f = fn = 1.16 Hz and A = 5 mm and baffles positioned at Hc = 50 mm and Hc 
= 75 mm, are reported together with the numerical prediction in Figure 4. As it can be 
seen, the simulations satisfactorily match the experiments. Experimental data 
obtained for a baffle of Cort = 25 mm positioned at Hc = 50 mm could not be 
satisfactorily registered; due to this fact the corresponding results are not shown. 
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Moreover, the free surface evolution without baffle does not reach a time-periodic 
regime since a resonant mode evolves at the imposed frequency. 

The free surface evolution during time-periodic regimes for an imposed motion of 
different amplitudes and frequencies are shown in Figures 5 to 9 (A = 5 mm at f = 
0.87 Hz and f = 1.45 Hz in Figures 5 and 6, respectively; A = 7.5 mm at f = 0.87 Hz 
and f = 1.45 Hz in Figures 7 and 8, respectively; A = 15 mm at f = 0.87 Hz in Figure 
9). Experiments were not conducted at this higher amplitude at f = 1.45 Hz to prevent 
overflows. As it can be seen from Figures 5 to 9, the simulations are able to 
reasonably capture the sloshing for different baflle configurations. At frequencies 
under the first resonance the numerical results match the experiments for the imposed 
motions of the three amplitudes analyzed. For the frequency over the first resonance, 
numerical results exhibit discrepancies. This could be attributable to a poor numerical 
discretization when the wave height has a magnitude over 20 mm which increases the 
numerical error to at least ±2 mm. Moreover, a Fast Fourier Transform (FFT) analysis 
reveals that numerical and experimental signals reported in Figures 5, 7 and 9 present 
as main frequencies the imposed one and its second harmonic, i.e., 0.87 Hz and 1.76 
Hz. The FFT study for signals plotted in Figures 6 and 8 shows that the main 
frequencies for the experiments are: the imposed (1.45 Hz), its second harmonic (2.90 
Hz) and second resonance mode (1.9 Hz). Nevertheless, the FFTs obtained from the 
numerical solutions report as main frequencies the same but in the following order of 
relevance: 1.45 Hz, 1.9 Hz and 2.9 Hz. The discrepancies observed in Figures 6 and 8 
could be explained for such differences. 

To evaluate similarities and discrepancies of the reported amplitude signals during 
time-periodic regimes, upper and lower bounds for maximum and minimum wave 
heights are reported in Tables 3 and 4 for imposed motion frequencies of 0.87 Hz and 
1.45 Hz. These tables summarize experimental values and numerical ones for 
different baffles configurations and amplitudes of the imposed motion. To assess the 
influence of the sensor location (ds), results computed at ds = 20 mm and 30 mm from 
the wall are also included. These results illustrate that higher wave heights occur 
closer to the wall. Higher differences between the water levels registered in points at 
20 mm and 30 mm from the wall are found when strong imposed motions are applied. 
The modeling at ds = 20 mm from the wall satisfactorily approaches the experimental 
data (registered at the same point). 

Figures 10 and 11 plot maximum and minimum wave heights reached during 
time-periodic regimes for different imposed amplitudes at frequencies 0.87 Hz and 
1.45 Hz, respectively. They demonstrate a good match between experimental and 
numerical values. However, important differences for an imposed amplitude of 15 
mm are observed. On the other hand, a major effect on decreasing the wave heights 
when the baffles were used for these frequencies could not be found. 

Figure 12 shows the frequency scan using an imposed amplitude of 5 mm for 
baffles positioned at 50 mm and 75 mm from the bottom of the tank. As in resonance 
without baffles, the wave height increases continuously. The values reported are at 6 
cycles in the time evolution and they are taken as a qualitative reference. Tables 5 and 
6 report more detailed information of the frequency scan analysis. It is seen that the 
baffles play a relevant role at frequencies near resonance. In addition, a good 
agreement can be found between numerical and experimental data. Major differences 
are found at frequency 1.16 Hz between upper and lower bound values for both the 
maximum and minimum wave heights illustrating the phenomenon of beating that 
appear when the imposed motion has a frequency near (but not exatly equal) to the 
resonance frequency of the system. The difference between upper and lower bound 
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limits at 1.16 Hz (and or at higher imposed amplitude motion) could be amplified due 
to the 2D model adopted, neverthless strong 3D effects are not confirmed as it was 
mentioned in Section 2 when baffles are used in the cases analyzed.   

Figures 13 to 15 encompass the numerical and experimental results obtained 
during damped decaying regime for the studies without baffle, Cort = 25 and Cort = 
37.5 mm at Hc = 50 mm and Cort = 37.5 and Cort = 56.25 mm at Hc = 75 mm. The 
free sloshing behavior evolves when the shake table is stopped from different 
imposed motions: amplitude of 7.5 mm and frequency 0.87 Hz (Figure 13); amplitude 
of 7.5 mm and frequency 1.45 Hz (Figure 14); and amplitude of 15 mm and frequency 
0.87 Hz (Figure 15). A global good agreement can be found in the prediction of the 
decaying time. Major discrepancies are obtained in the computed amplitudes. Such 
differences can be attributable to the conditions developed at the beginning of the 
damped decaying regime as it can be also observed from the figures. Impulsive 
behaviors are present in the experiments at early stages of those periods. These 
aspects are not reproduced in the numerical model. Nevertheless, the FFT analysis 
reported in Table 7 demonstrates a satisfactory description of frequencies (only the 
first two representative frequencies are reported). 

In addition, Figure 16 shows the numerical evolution of the free surface during the 
damped decaying regime that progresses after an imposed motion of amplitude 7.5 
mm at frequency 1.45 Hz. These results show a more rapid decrease of the wave 
height with baffles. The highest decrease occurs when the taller baffle (Cort = 56.25 
mm) is used placed at 75 mm from the bottom of the tank.  

5  Conclusions 
This paper reports on simulations and experiments conducted to evaluate the 

effect of baffles in rectangular tanks during sloshing at different frequencies and 
amplitudes of the imposed motion. Water level evolutions were registered with 
ultrasonic sensors. The simulations were performed using a fixed mesh finite element 
formulation where the free surface was updated via a Lagrangian scheme. 

The water level evolution was properly captured by the model. In particular, wave 
heights and frequencies response for the several cases analyzed satisfactorily 
compared with the experimental data during forced and free sloshing. The major 
discrepancies were found at imposed motions with higher amplitudes. Nevertheless, 
the numerical solution globally described the free surface behavior in such cases. 

The effectiveness of the baffles increases near resonance conditions. From the set 
of experiments studied, the major reduction of the wave height was obtained when 
larger baffles were positioned closer to the water level at rest. 
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