Progr. Fract. Differ. Appl2, No. 2, 1-10 (2016) %N =S¥\ 1

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/paper

Generalized Riemann-Liouville Fractional Operators
Associated with a Generalization of the Prabhakar
Integral Operator

Gustavo A. Dorrego

Department of Mathematics, Faculty of Exacts Sciencesthdast National University, Av. Libertad 5460, Corrientd@sgentina

Received: 13 Sep. 2015, Revised: 18 Jan. 2016, Accepte@r22016
Published online: 1 Apr. 2016

Abstract: The paper introduces a new integral operator which gezesathe Prabhakar integral operator. The boundedness on the
space of continuous functions and on the space of Lebestpgraible functions on an interval is studied. In additit, left inverse
operator is constructed. The properties of compositioih wie k-Riemann-Liouville fractional operators are aradizFinally, as an
application, a fractional generalization of the Cauchybpem associated with free electron laser equation is pexhos
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1 Introduction

In recent years, one focus of study in the field of fractionalcelus was the generalization of integration and
differentiation operators. In many generalizations of thiegral operators appear special functions such as Gauss
hypergeometric function, Mittag-Leffler type functionsright function, Meijer's G-function and Fox’s H-functiom i

the kernel of these operators. A very interesting work thaets many of these results @perators of fractional
integration and their application®y Srivastava and Saxena (sdd]). It is not mentioned in this work, the integral
operator introduced by PrabhakatZ]), which contains in its kernel a Mittag-Leffler type furmti of three parameters.

In 2004, Kilbas et. al. (se€9]) have studied this operator noting that generalizes tremRnn-Liouville fractional
integral and proposed its left inverse operator, as a gépatian of the Riemann-Liouville fractional derivativiem 2014,
Garra et. al. (see7]) turned to the study of that operator using it to construdtagtional differential operator that
generalizes the Hilfer fractional derivative.

Moreover, a crucial role in the field of fractional calculssthe Euler's Gamma function, which generalizes the
factorial function and appears in the definitions of intégmerators of non-integer order and at the definitions otispe
functions. Several generalizations of this function hagerbstudied (see e.q2][ [19]). One of these generalizations
was introduced in 2007 by Diaz and Pariguan (Serfamely the k-Gamma function. Since the k-Gamma functias w
introduced, many authors have presented extensions of sbthe so-called special functions, such as the k-Mittag-
Leffler function (#]), k-Wright function ([L3]), and k-Bessel functions1[14]). In addition, also they have introduced
generalizations of the classical fractional operatoee 5], [6], [10], [11], [15], [16]). In this paper, we introduces a new
generalization of the following integral operator due talftrakar:

(E) o )00 = [ (-0 EL folx 0P8 )dt (x> a). @

a
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whereE),’,“[w(x—t)P], the Mittag-Leffler function defined inlp], will be replaced by the k-Mittag-Leffler function
defined in #], and given by

z
k‘”’ ZI'k an+B n! @

whereke R*; a,B,y € C; Rega) > 0,RgB) > 0; I (x) it is the k-Gamma function given by and(y)nk W
it is the Pochhammer k-symbol.

In the following, we will highlight some points needed foethequel.

In 2012 Mubeen and Habbibulah (&f1]) introduced the k-Riemann-Liouville fractional inte§jgaven by

Definition 1. Leta € R* and ne N such that n-1 < a < n, f € L1([0,%)). Then the k-Riemann-Liouville fractional
integral of f is

17f(t) = = /t(t—r)%*lf(r)dr: th xf(t), t>0. 3)
kl'k(a) 0 kl'k(a) ’
where
a):/omt"*le*%?dt, k> 0. (4)

is the k-Gamma function introduced i8][and whose relationship with the classical Gamma funcson i

(@) =k (3) )

Since the k-Gamma function is such tiigta) — I (a) whenk — 1, it follows thatl? — 19.
The k-integral B) also satisfies the semigroup property

Proposition 1. Leta,B € R*, f € L1([0,»)) and k> 0, then

LT =1 Pre =128 f ) (6)
For the proof, we remit tof1] formula (10) p. 91.
The left inverse operator o8 was defined and studied by the author@h pnd it is given by the following

Definition 2. Letk a € R™ and ne N such that n=[$]+1, f € L*([0,)) and k=9 f(t) € W0, 00); the k-Riemann-
Liouville fractional derivative is given by

@0 () e @

where W+'[a, b] denotes the Sobolev spac&¥a,b] = { f € L[a,b]: f(V € L1[a,b]}.
Remark. If k=1 (7) coincides with the classical Riemann-Liouville fract@bulerivative.

Remark. In Definitions 1.1 and 1.2 is to possible considee C (O(a) > 0). Therefore, in the Definition 1.2 must be
— {qu
n= I +1.

2 Results

Definition 3.(k-Prabhakar integral) Leta,B,w,y,€ C, ke R*; O(a) >0; O(B) >0and¢ < L1([0,b]), (0 < x <
b < ). The k-Prabhakar integral operator is defined as

X (v t\E-1 ]
(kPZ{,p,w‘P)(X):/O %E{aﬁ[ w(x—t)k]g(t)dt, (x>0) -
= (k@@!@w* f) (X) o
where E
kg"y’ﬁ’w(t):{:T Sag(h) 1> 0 (10)
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Remark. Note here that foy = 0 we have

(P .09 () = (X)) (11)
i.e. the operatorg) generalizes the k-Riemann-Liouville fractional intdgtefined by B8).

It is interesting to study the boundedness of the k-Prabhiakagral on different spaces, namely, on the space of
Lebesgue integrable functions and on the space of contgfuogtions on a closed interval. Indeed, we have the foligwi
two Propositions.

Proposition 2. The k-Prabhakar integral is bounded oh([0,b]), (0 < x < b < ).
Leta,B,w,y,e C, ke R"; O(a) >0; 0(B) >0and¢ € Ll([O b]) hence

H(kpaﬁw YX) [l < B¢ (12)
where (B>
Olk) e 0(%)yn
n= [ % (% }“_k (an+g)|n!
Proof.
First, we will prove that the series i1 ) it is convergent.
Denoting bycy, the nth term of the series, and usirky and the following relations
(Y
M=K () (14)
and
F(Z+p) _ 50U i _ _ —2
et ) =242 (p-H)(p+p—-1)+0(z) (15)

for |7 — oo, |arg(2)| < m—¢, |argz+p| < TM—€,0< < T,
we finally obtain

gy

X

(o) +0()] e oS
[0+ o) +0(d)] (1§In)°

which means that the right-hand side ©8)is convergent and thus B is finite.
Now we will prove (L2). We considerp < L1([0,b]) then by using §), interchanging the order of integration and
takingt = x—t result

dx

b a
16P% 59 = [ 5] [ -0 F 1Y glot-nFIg @t

%/b Ub(x—t)m(g)l‘EKmﬁ[w(x—t)%]

:k/ [/ 7000~ ‘Ekyaﬁ[wm]\dr} FIGIEL

IN

o o0t

</b E/brm%—l‘EV [wr?]‘dr 16(t)dt (16)
= Jo k Jo k.a,B

Q
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We note that

(V[ P o(¢)n+o(f)-1
< k “_k (an+B) |n|/ T dr=B a7

Then, from (6) and (L7) we have (2).

Proposition 3. The k-Prabhakar integral is bounded orf[G, x]), (0 < x<b < ). Leta,B,w,y,€ C,ke RT; O(a) >
0; O(B) > 0and¢ € C([0,b]) hence

1(PY p.?)Xlc <B|¢llc; (18)

where
[¢llc =max{|¢[:0<x<b} (19)

and B is given by13).

Proof.
Let us¢ € C([0,b]) andx € [0,b], and taking into accouni.@) we have

6PY g 9] < [ lix-0)k 1Ekyap[ w(x—1)£]9(t)dt
< Io®le [ x-02 01, ottt (20)

Repeating what was done ih@) and (L7) and considering that € x < b, the integral in 20) is less than or equal to
B. This completes the proof o18).

We now calculate the operator applied to certain functiarth sas potential function and k-Mittag-Leffler function.
To this end, first we demostrate the following lemmas.

Lemmal. Leta,B,w,y,€ C,keR"; O(a)>0; O(B)>0.Then

W [@<—T) lEZPB( (t- T)g)]::@<_r) " lE{pB+a(aKt—-T)§) (21)
Poof.
_ krk:ta) /t (t— T) (t — r)w 1EIZp B( (t— T)E)dr o
1 hd kwn t pnip .
= /_k(a Z)kl—k pn_|_B n|/(t—T)T 1(t—'[)? 1dT (23)
g, T ot
— - E L (ot o

k.p.B+a

Lemma2. Leta,B,w,y,€ C, ke R*; O(a)>0; 0(B)>0and¢ € LY(R]) and’wk(ks)‘{%)’ < 1. Then
LR 5,001 = L8 5 ,0}(92{9}(9) (26)
= (kg% (1- wk(ks)‘g)_EXW}(s) (27)

Proof. It is sufficient to calculate the Laplace transform of thene(10). For this purpose, taking into accous) @nd
the generalized binomial theorem, we have

im:;;“”n = (1—kw) K, |ko| <1. (28)
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L{Y 5 ot k/ e Stk Y, o(wtf)dt (29)

Y)nk® g st any B g
- tk"Tk Tt

Tk Zjl‘k an+B)n'/

an+ﬁ)

(V)nxe” ’_( ;
Solk(an+ B)nt - o8

<1 (30)

Proposition 4. Letp,B,w,y€ C, ke RT andUO(p) > 0,0(B) > 0,0(a) > 0. Then

(WPY 5 D[F Y1) = Rt .Y (wtf) (31)

k.p.B+a
Proof.
Taking into account (1], f.11) we have

— -1 P a
(kpkpﬁw)[a%_l](t) Z/(:%E{pﬁ( (t—o)k)ox ldo

S (Wit =0) "5 okt
~Jo k& (pn+ B)n!
e (V)nkw" 1 /t P g a g
= : t—o) k “ok -do
n; n kfix(pn+B) o( )
_ ad (V)nkw pn+B -1
N n; n! Ik [ } ®
_ 5 Wk Rda) ey
&L n L(pn+B+a)
B P
= l_k(a) lE&/p c{Jrﬁ(th)
Proposition 5. Letp,B,u,d,w,ye C, ke RT; O(p) > 0,0(8) > 0and (kkﬁ < 1. Then
S
y GF 1 P '[“jt*B’l 5ty P
(P! o) | T Epu(@x=0)F) | () = ——EZ Y p(w(x—1)f) (32)
Proof.
The left hand side 0f32), according to §) can be written as
(ké{)ppw*ké{)puw)() (33)

Now, taking Laplace transform and applying the convolutlieorem for the Laplace transform abeémma 2

LY o kG pa) (D} = z{kéb,,ﬁ RONCEZPEIMONC

— (k95 (1 wk(ks) ™ ﬁ)fT

Then because the inverse Laplace transform, the resultsecachieved.
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2.1 Compositions of k-fractional calculus operators whike k-Prabhakar integral operator.

We now consider composition with the k-Riemann-Liouviliadtional integral.

Proposition 6. Let a € C,(0(a)), and p,B,w,y € C,(O(p) > 0,0(B) > 0). Then relation for any function
f € L1([0,b]), (0 < x < b < ) hold

Py g .ot 1) =P a0 f (1) =kP) 5 o1 (1) (34)
Proof. We will start proving the first equality ir34),

Iﬁ(kP;B@f(t)):W]@/O‘(t_ x) & —1kawa( )dx

1 t a_q X(X—'[)'[kE 1 y p
= i@ o t0F [P pletx - 0 f(rdrax

By inverting the order of integration,

kz,_k // 1tk 1E) ox—1)fjdxdr

1 t t 5, b1y )
K2r(a) /o f(T)/T (X=T)k S (t—x)k Ecp. B[ (X—T)k]dxdr (35)
making the change of variable- T = £ we have

1 t -1 a_q1.B_q y P
W/Of(r)/o (t—1-§F ek 1E), [wEk]dEdt

k/'k —DkE et - 0f]] t(r)dr (36)

and by @1) finally obtains
1 t B+a _1 y P
E/o (t—1) % Ekp p+a[‘*’(t — )R] (1)dT = kPp gra,wf (). 37)
To prove the second equality, with an analogous procedakimgo = 1 — &, we have

Popullif(1) = Wlm) /ot (Popald® ) t-8)1(&)de.

Taking into account31) we get

krkl(o,) /Ot (kpp,ﬁ,w(a%_l)) (t—¢)f({)dé = k,I_Elf(O;)) /Ot(t—s)ﬁk——lE&’p B+a[w(t—§)§]f(§)dg
=P (V) (38)

Then, from 87) and @38), (34) is obtained.
Now we study the composition with the k-fractional diffeti@hoperato 3,

Proposition 7. Leta,p,B,y,wc C; ke R*, O(a) > 0,0(p) > 0,0(B) > 0; then for fc L1([0,b]) and0 < x < b < e
hold

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 2, 1-10 (2016) wwww.naturalspublishing.com/Journals.asp NS = 7

Proof. Let us supposa = [%] + 1, then by {) and 34) we have:

d n
ORPY o1 (0) = (51 ) 1 CUPhp o)

d\" v
n
:k <&) kPP»B-‘rnk—a,wf(t)
d not B+nk— a_ a
= 1<dt> /o(t_ X) 1El¥pB+nk g (@t —=x)%)f(x)dx

B ba_
k/ (3" Y 5 (-8 Fxdx= P!, . f() (40)
Another important property of the operat@) (s the semigroup property.

Proposition 8. Let ke R* and p,B,y,v,5,w < C, O(p) > 0,0(B) > 0,0(v) > 0; then for any$ < L1([0,b]) and
0 < x< b < we have

P 5 o (Poyw®) (1) = (PY2, )1 = kPS, o(kPY 5 ,#)(0) (41)
As particular case
P! 5 o (Pl.w®) ) =180 (1) (42)
Proof. Interchanging the order of integration, taking-= u — x, and finally the formula32) is
P P2t = ¢ [0 (ol F)pxdx
= (kpgfﬁiv,ww(t)

2.2 The inverse operator

We here construct the left inverse operator. To do that, vepgse the following Volterra integral equation of the first
kind.

(PY 5,00 = (0, () € L([0,%) (43)

Taking into account¥2) we have that < L1([0,)), then givenv € C,(v) > 0, by composition with the operator
kP;X,,w and by the property4@) we have,

kP;X,@(kPZYB@(P)(X) = ka_),)\//,wf(X) (44)

P80 = Ppl ot (X (45)

Sinced(B +v) > 0 andf € L([0,)), then by Definition 6 of §], we can apply the k-Riemann-Liouville fractional
derivative {7) of orderf3 + v, and we obtain

() = kDB kP o f (), (46)

which is the solution of43).
In conclusion, the left inverse operatorkcﬁg’&w is k@ﬁf"kPE}\’w, ie.

[kpp B, w} kCDRL kP[_),)\//,w (47)
Remark. Note here that putting = 1, we have that47) coincides with the inversion formula given in Theorem 9%jf [

To obtain an equivalent expression &), we introduce the following

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

8 NS 2 G. A. Dorrego: Generalized Riemann-Liouville fractiongkoators...

Definition 4.(The k-Prabhakar derivative) Letke R™, p,B,y,w <€ C, O(p) > 0,0(B8) >0, m= [%} +1land fe
L1(]0,b]). We define the k-Prabhakar derivative by

kDpﬁwf( ): (%) kmk [_)mk Bwf(x) (48)

We note that 47) and @8) are equivalent. Indeed, proceeding analogously to what d@ne in F], taking
veC, O(v)>0p= {W} +1, by (11.9) of [6] we have

K™ kP;ﬁqk gt (¥

mkm d p_mkp—m|(p*m) = y f
X & k p,mk—,w (X)

kkag’pkf(BH)’ka;f",@f(x), veC,d(v)>0

p
k— _
~ (&) PPt
= OB kP (%)
Therefore, 48) is the left inverse operator o8).

Remark. If y=0 in (48) then the k-Prabhakar derivative coincides with the k-RiemLiouville derivative given ing].
Indeed,

kDpwa( ): <%() k™ kamk ﬁwf(x) (49)
d\™ e

- (5() k™™ P £ (x) (50)

= kDB f(x) (51)

3 A generalization of the free electron laser equation.

In this section we consider an equation that generalizesutar (1.1) of [L]], in the case a = 0, and that contains, as a
particular case, the free electron laser equation.

Theorem 1. Given the following Cauchy problem

DY 5 YX) = APE, WY(X) 4 F(x), T € L1, w); 2
(kak Bwy) 0)=c, c>0.
where[%] +1=m=1w, A eC,p>0,v>0y>075>0, we have that the solution is
6+y nty VH; Bk (5+y)nty £
20)‘ WP gl (¥ FC ZO’\ "X Bp.(vBntB—k (‘*’XR) (53)

To prove the theorem the following lemma is required.

(@© 2016 NSP
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Lemma 3. The Laplace transform of the k-Prabhakar derivative ford:hee[%] +1=m=1,is

p

Z{D) 5 Y} = (k9K (1- wk(ke %) 2y }(5) —k (P, Y 5 ..) (O) (54)
with ‘wk(ks)*ﬂ <1

Proof of Lemma 3.2 It is sufficient to calculate the Laplace transform dB). To do that, we use the Laplace
transform of the derivative of orden= 1 and Lemma 2.

Proof of Theorem 3.1. Applying the Laplace transform to both sides 62|

(ke % (1 wk(ks)~ u)y{é_/\
5 Y(s) =F(s)+ck (55)
(ks k (1_ wk(ks)*g) .
(k9)¥ (1 aok(ke) )"
Y(s)= v F(s) (56)

(ke 5 (1 wk(ks)~ §)T_A

+ck 5 (57)
(kg %" (1_ wk(ks)*fkl) o
(ke * (1— wk(ks)—r)
Y(s) = — | F® (58)
1- Ak~ 5 (1-wkke#) ©
-B P *ﬁ/
(kg * (1_ wk(ks)—w)
+ck 5 (59)
1- (kg% (1-wkiko=€)
o\~ 5
Taking |2 (ks %" (1 wk(ks)~ r) < 1, we have
v n _ (ytd)nty
ZO)\ (ot R (- okke B) T F(y (60)
(v _ (ytd)nty
+c ZO)\ (kg TR (1 wk(ks k) T 61)
Finally, by the inverse Laplace transform, we have the ddgiesult.
Remark. We note thatik=1,y=0,p=08=10=v=2f(X) =0,w=ir,A = —imp,(r,pe R) (52 is
X .
%(y(x) — iom / (x— )" y(t)dt, y(0) = 1. (62)
0

which is the free electron laser equation wixen (0, 1], and its solution is given in term of the k-Mittag-Leffler fuian

Ef an (irX)
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4 Conclusion

Fractional differential operators introduced representraéieresting generalization of the Riemann-Liouville rgiers
from the point of view of k-Fractional Calculus generateshfrthe k-Gamma function and the Pochhammer k-symbol.
These operators may be useful from a physical point of viewsictering the origin of these generalizations of the Gamma
function and Pochhammer’s symbol set by Diaz and PariguameX&r, also allows us to give a new generalization of a
Cauchy problem associated with the free electron lasertequa
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