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ABSTRACT

Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-
fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this
species. The tissue factor (TF)-factor VIila complex, besides triggering the coagulation cascade, has been
demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase
affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological
activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and in-
flammatory events induced by snake venoms. Patagonfibrase (60 pg/kg) was administered s.c. to rats,
and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site
of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts,
plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western
blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin
samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the
subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any
systemic hemostatic disturbance, although that they may be involved in the local inflammatory events
induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the
local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might
become a strategy for treating snake envenomation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

regulate TF procoagulant activity by means of protein disulfide
isomerase (PDI), which regulates the formation of the Cysqgs-Cys209

Tissue factor (TF) is an essential component for initiating blood
coagulation in vivo. The binding of TF to factor VIIa, in the presence
of membrane phospholipids, cleaves factor X and IX, thus initiating
blood coagulation. TF is a single-chain integral membrane protein
constitutively expressed in vascular smooth muscle cells, adventi-
tial fibroblasts and pericytes, but its expression can be induced on
the surface of mononuclear cells, platelets and endothelial cells
(van der Poll et al., 2011). Several inflammatory mediators have
been shown to promote protein expression and enhanced biolog-
ical activity of TF (Breitenstein et al., 2010). In addition to express TF
molecules on their surfaces, cells have been demonstrated to
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disulfide bond in the extracellular domain of TF. The oxidation of
this disulfide bond renders TF decrypted and with higher procoa-
gulant activity (Kothari et al., 2013; Lysov et al., 2014).

Snake venoms are complex mixtures of proteins, peptides and
small organic molecules with a variety of potent enzymatic and
ligand-based biological activities (Mackessy and Mackessy, 2009).
Among the enzyme-based toxins, an important class includes the
snake venom metalloproteinases (SVMP) which act synergistically
with many other toxins to induce a complex series of local and
systemic pathophysiological effects upon envenomation (Gutiérrez
et al, 2009). In a recent publication (Yamashita et al., 2014),
increased TF activity in plasma, and increased protein expression of
TF in lungs and at the site of inoculation were noticed in rats
injected with Bothrops jararaca venom. When the crude venom was
inhibited by EDTA, TF activity in plasma was drastically reduced,
indicating that SVMP were crucial to this increase. Various PIII-
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SVMP (Fox and Serrano, 2008), such as jararhagin from B. jararaca
venom (Moura-da-Silva and Baldo, 2012), by accumulating on the
basement membrane of capillaries and venules, lead to hemor-
rhage, edema and necrosis, and thus play an important role in local
tissue damage. Other PIII-SVMP, such as berythractivase from
Bothrops erythromelas venom, preferentially exhibit a systemic
procoagulant action (prothrombin activation) and are non-
hemorrhagic (Baldo et al., 2010; Moura-da-Silva et al., 2008; Silva
et al.,, 2003). Incubation of berythractivase with endothelial cells
increases gene and protein expression of TF, whilst jararhagin does
not (Pereira et al.,, 2006). Recently, an activator of factor X and
prothrombin isolated from Bothrops moojeni (Sartim et al., 2015),
moojenactivase, also induced increased procoagulant activity of TF
in peripheral blood mononuclear cells.

Patagonfibrase (Pf) is a P-III class metalloproteinase isolated
from the venom of the South American rear-fanged snake Philo-
dryas patagoniensis (Peichoto et al., 2007, 2010). Local reactions —
such as pain, ecchymosis, erythema and edema — are conspicuous
signs of snakebites inflicted by this species, but no hemostatic
systemic signs, such as hemorrhage or blood incoagulability, are
noticed in patients bitten by this snake (de Medeiros et al., 2010).
Taking into consideration previous studies (Peichoto et al., 2011)
that demonstrated that Pf is an important contributor to local
inflammation and local hemorrhage elicited by P. patagoniensis
envenomation, this study aimed to understand whether altered TF
expression induced by hemorrhagic SVMP in dermis could induce
per se augmented levels of TF in plasma.

2. Materials and methods
2.1. Animals

Male Wistar rats (220—250 g) were obtained from the Animal
House of Butantan Institute, and were supplied with free access to
food and water. All procedures involving the use of rats were
approved by the Animal Ethical Committee of Butantan Institute
(protocol 883/12), and were in accordance with the Guide for Care
and Use of Laboratory Animals (2011), the International Guiding
Principles for Biomedical Research Involving Animals (2012), the
Brazilian guidelines from the Conselho Nacional de Controle de
Experimentacao Animal (CONCEA) (2015), and ARRIVE guidelines.
Rats were anesthetized by intraperitoneal administration of xyla-
zine (10 mg/kg b.w.) and ketamine hydrochloride (100 mg/kg b.w.).

2.2. Philodryas patagoniensis venom (PpV) and purification of
patagonfibrase (Pf)

A pool of PpV was obtained from wild specimens captured in
northeastern Argentina and maintained at the serpentarium of the
local Zoo, Corrientes, Argentina. Venom was extracted according to
a procedure described previously (Ferlan et al., 1983). Pf was pu-
rified from PpV as previously described (Peichoto et al., 2007).
Protein concentrations were determined (Smith et al., 1985) using
bovine serum albumin (Sigma, USA) as a protein standard.

2.3. Envenomation protocol and sample collection

Pf (60 pg/kg) was administered s.c. to rats; this dose reproduced
a characteristic hemorrhagic lesion. Rats injected with saline were
used as negative controls. Three hours after Pf injection (period of
time considered representative of the acute phase reaction of
Philodryas envenomation), rats were anesthetized, and blood was
collected by puncture of the abdominal aorta. For complete blood
counts (CBC), blood (500 uL) was collected into plastic bottles
containing 5 pL of 269 mM Nay-EDTA, and samples were counted in

an automated cell counter BC-2800 Vet (Mindray, China). To obtain
plasma samples, blood (4.3 mL) was collected into plastic bottles
containing 700 pL of CTAD anticoagulant (75 mM trisodium citrate,
42 mM citric acid, 139 mM dextrose, 15 mM theophylline, 3.7 mM
adenosine, 0.2 mM dipyridamole, and 2 mM imipramine) (Santoro
and Sano-Martins, 2004), and centrifuged at 2500 g for 15 min at
4°C.

One circular 4-cm-diameter skin fragment, whose center was
the point of Pf inoculation, was also removed from each animal and
used to evaluate protein expression of TF and PDI by Western
blotting (WB) (Yamashita et al., 2014), and immunohistochemistry
(IH) (Santoro and Sano-Martins, 2004).

2.4. Assays in blood samples

Plasma fibrinogen was assayed as described elsewhere (Ratnoff
and Menzie, 1951). Prothrombin time was assayed by incubating
plasma samples (80 pL) with rat thromboplastin ((Yamashita et al.,
2014), 40 uL) for 1 min at 37 °C, and then 50 mM CaCl; (40 uL) was
added, and clotting times were measured on a Start4 coagulometer
(Diagnostica Stago, France). TF activity was evaluated in plasma
samples with Actichrome TF kit (American Diagnostica, USA), ac-
cording to manufacturer’s instructions.

2.5. Assays with skin samples

2.5.1. Western blotting

TF and PDI protein expression in rat skin lysate supernatants
was evaluated as described previously (Yamashita et al., 2014),
except that membranes were incubated at room temperature for
2 h with either 1:500 mouse monoclonal anti-TF antibody (TF9-
10H10, Calbiochem, USA) or 1:5000 rabbit polyclonal anti-PDI
antibody (Sigma P7372). Expression of B-actin, used as a loading
control, was evaluated using 1:5000 mouse monoclonal anti-f-
actin antibody (Sigma A5316), and 1:10000 peroxidase-conjugated
anti-mouse IgG (Sigma A4416). Membranes were developed as
reported elsewhere (Antunes et al., 2010), and densitometric ana-
lyses were carried out identically as described (Yamashita et al.,
2014).

2.5.2. Histological analysis and immunohistochemistry

Histological sections were stained with hematoxylin-eosin or
toluidine blue. TF protein expression in rat skin sections was
evaluated as described (Santoro and Sano-Martins, 2004), except
that slides were incubated with 1:50 mouse monoclonal anti-TF
antibody (TF9-10H10, Calbiochem, USA); negative controls were
performed without the use of primary antibody. Specimens were
incubated later with 1:100 peroxidase-conjugated anti-mouse IgG
(Sigma A4416), and the detection of primary antibody was per-
formed with DAB (3,3’-diaminobenzidine tetrahydrochloride hy-
drate, Sigma D5637) or AEC (3-amino-9-ethylcarbazole, Sigma
A5754) — according to manufacturer’s instructions -, and counter-
stained with 1% neutral red or Mayer’s hematoxylin counterstain,
respectively.

2.6. Statistical analyses

One-way ANOVA, followed by the Tukey test, was used to
compare quantitative results. Statistical analyses were performed
using the software SigmaStat (version 3.5, USA). Differences with
p < 0.05 were considered statistically significant. Data were
expressed as mean + standard deviation (SD).
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3. Results and discussion

Subcutaneous injection of Pf did not alter CBC, prothrombin
time or plasma fibrinogen levels (Fig. 1a), demonstrating that it did
not induce systemic hematologic nor hemostatic alterations, as so
does crude B. jararaca venom (Yamashita et al., 2014). In addition,
normal values of plasma TF activity were observed in samples from
Pf-treated animals. This lack of systemic action may be related with
the fact that a very low dose of Pf was used, almost 7-fold lower
than that used elsewhere (Peichoto et al., 2007), which induced
systemic hemorrhage in mice. However, Pf evoked evident local
hemorrhage (Fig. 1b), and it increased TF protein expression at this
site, in similar levels than that induced by the s.c. administration of
PpV (1.6 mg/kg, (Yamashita et al., 2014), data not shown). Three
hours after Pf injection, protein bands of 47 and 57 kDa, corre-
sponding to TF and PDI, respectively, were observed, and by semi-
quantitative Western blotting, TF expression was noticed to be
upregulated two-fold, while PDI expression was downregulated 3-
fold (Fig. 1c), similarly to what is observed for B. jararaca venom
(Yamashita et al., 2014).

The increased plasma TF levels observed during experimental
B. jararaca envenomation have been ascribed to the action of SVMP,
once incubation of crude venom with Na,-EDTA blocked this phe-
nomenon (Yamashita et al., 2014). Interestingly, Pf increases the
expression of TF in skin, but does not lead to increased TF levels in
plasma. Pf is a remarkably hemorrhagic PIII-SVMP, similar to jar-
arhagin in action (Peichoto et al., 2007). In fact, hemorrhagic P-III
SVMPs, e.g. jararhagin, have been demonstrated to bind collagens I
and IV by means of their motif of Da disintegrin subdomain, which
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grants their accumulation at capillaries and venules close to the site
of injection, and in turn restrict their systemic action. On the other
hand, berythractivase, which does not possess the same motif, has a
systemic activity on coagulation (Baldo et al., 2010; Moura-da-Silva
et al,, 2008). In line with these findings, our in vivo results using Pf
evidence that only the local inflammatory reaction induced by
hemorrhagic PIII-SVMP is not sufficient to promote the increment
in TF levels in circulation. Thus, increased TF levels in plasma during
snake envenomation (Yamashita et al., 2014) seems to be due to the
release of procoagulating SVMP — e.g. berythractivase or mooje-
nactivase — into the circulation, or to a great extent of the local
inflammatory reaction, which would induce TF expression in
mononuclear cells derived from circulating blood. In fact,
leukocyte-derived microparticles express TF and may bind to acti-
vated platelets (Falati et al., 2003).

Similarly to the results exposed in this work, the s.c. injection of
B. jararaca venom downregulated PDI expression simultaneously to
upregulating TF expression (Yamashita et al., 2014). PDI is a
fundamental and copious enzyme in the endoplasmic reticulum,
essential for catalyzing oxidative protein folding in different cell
types (Wang et al., 2015). On the cell surface, PDI has important
functions, including the control of TF encryption-decryption and
platelet activation, and consequently thrombus formation
(reviewed in (Ali Khan and Mutus, 2014; Furie and Flaumenhaft,
2014; Xu et al., 2014)). Besides, PDI has been demonstrated to be
an intracellular anti-inflammatory molecule; downregulation of
PDI by sepsis significantly increases TNF-o. gene expression and
release, suggesting that prevention of PDI downregulation might
attenuate the inflammatory reaction (Hu et al., 2012; Zhou et al.,
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Fig. 1. a. Blood cell counts, fibrinogen concentration, prothrombin time, and plasma TF factor levels in blood samples from rats inoculated s.c. with patagonfibrase (Pf, 60 pg/kg) or
vehicle (control). The results are expressed as mean + standard deviation (SD) (n = 4—6 rats/group). b. Macroscopic view of dorsal rat skin 3 h after s.c. injection of patagonfibrase
(60 pg/kg). A- External view of the ecchymosis (black arrow). B- The internal hemorrhagic lesion was 4 cm in diameter (blue line). c. Western blot detection of tissue factor (TF) and
protein disulfide isomerase (PDI) in rat skin lysate supernatants (50 pg of protein) after s.c. injection of patagonfibrase (Pf, 60 pg/kg). Western blot analysis from five individual
experiments demonstrated a significant decrease in PDI levels and a significant increase in TF levels. Protein expression was normalized relative to the level of total proteins in each
sample. Bars represent the mean + standard deviation (SD). Asterisks indicate statistically significant differences (p < 0.05) with the control group (treated with vehicle). Insert
shows representative western blots of TF and PDI proteins in samples of both groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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2008). Our results point out that cell injury evoked by Pf down-
regulates PDI at the site of inoculation.

We also evaluated the local damage induced by Pf by histology
and immunohistochemistry at the site of inoculation. Histologi-
cally, hemorrhage and edema were observed concomitant with an
inflammatory reaction characterized by the presence of a poly-
morphonuclear infiltrate (Fig. 2a). With toluidine blue, abundant
degranulated mast cells were detected around the blood vessels,
mainly below the hypodermis region (Fig. 2b). Immunohisto-
chemical reactions confirmed prominent TF expression in the
subcutaneous tissue (Fig. 3), however it is important to note that

333

any kind of cells/microparticles could be explicitly detected herein
as the main elements reacting with anti-TF antibodies.

Similarly to the increased expression of TF in dermis induced by
Pf, the intraplantar injection of carrageenan, a flogistic agent,
induced expression of TF, TNF-¢, interleukin (IL) 6 and IL1-B, at the
site of injection, mainly by endothelial cells and infiltrating neu-
trophils and monocytes. However, unlike Pf, carrageenan also
induced a systemic inflammatory response (demonstrated by
raised levels of fibrinogen and C-reactive protein), acute lung
inflammation, and increased immunostaining for TNF-«, IL1-8, and
TF in rat lungs (Vazquez et al., 2015). Moreover, increased plasma

Patagonfibrase

Patagonfibrase

o

e

B

Fig. 2. Light micrographs showing the histopathological changes in rat skin at 3 h after s.c. injection of patagonfibrase (60 pg/kg). a. Note: congestion of blood vessels, edema,
inflammatory infiltrate of polymorphonuclear leukocytes, and extravasation of erythrocytes induced by patagonfibrase, mainly in and below the hypodermis region. Sections were
stained with hematoxylin and eosin. b. Note mast cells stained metachromatically with toluidine blue (black arrows) in the subcutaneous tissue of control samples, but they are
degranulated in samples treated with patagonfibrase. Sections were stained with toluidine blue. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 3. Immunohistochemistry (peroxidase method with AEC staining) for tissue factor (TF) in rat skin 3 h after s.c. injection of patagonfibrase (Pf, 60 pg/kg). Note the prominent TF
expression (labeled in red) induced by Pf in the subcutaneous tissue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

levels of TF have been associated with the inflammatory condition
of sickle cell disease and endotoxemia (Chantrathammachart et al.,
2012; Pawlinski et al., 2004).

4. Conclusions

Patagonfibrase effectively increased TF and reduced PDI locally
in a rat model of acute hemorrhage without evidencing any sys-
temic action. The agreement of the results from this study with
those noticed for B. jararaca snake venom in the same model
(Yamashita et al., 2014) indicates that the upregulation of TF and
downregulation of PDI may contribute to the local inflammatory
reactions that characterize snakebites. In fact, besides its hemo-
static activity, the cytoplasmic domain of TF has been implicated in
the regulation of the immunoinflammatory responses (Sharma
et al.,, 2004). Therefore, taking into account that the antivenom
therapy is not very effective locally, modulation of TF or PDI could
become a tempting strategy for the treatment of local injuries eli-
cited by snakebites.
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