Effect of covalency and interactions on the trigonal splitting in $\mathrm{Na}_{x} \mathrm{CoO}_{2}$

A. A. Aligia ${ }^{*}$
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina

(Received 11 June 2013; published 19 August 2013)

Abstract

We calculate the effective trigonal crystal field Δ that splits the $t_{2 g}$ levels of effective models for $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ as the local symmetry around a Co ion is reduced from O_{h} to $D_{3 d}$. To this end, we solve numerically a CoO_{6} cluster containing a Co ion with all $3 d$ states and their interactions included, and its six nearest-neighbor O atoms, with the geometry of the system, in which the CoO_{6} octahedron is compressed along a C_{3} axis. We obtain $\Delta \approx 130 \mathrm{meV}$, with the sign that agrees with previous quantum chemistry calculations but disagrees with first-principles results in the local density approximation (LDA). We find that Δ is very sensitive to a Coulomb parameter that controls the Hund coupling and charge distribution among the d orbitals. The origin of the discrepancy with LDA results is discussed.

DOI: 10.1103/PhysRevB.88.075128
PACS number(s): 71.27.+a, 74.25.Jb, 74.70.-b

I. INTRODUCTION

The doped layered hexagonal cobaltates $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ have attracted great interest in the last years due to the high thermopower and at the same time low thermal conductivity and resistivity for $0.5<x<0.9,{ }^{1,2}$ and the discovery of superconductivity in hydrated $\mathrm{Na}_{x} \mathrm{CoO}_{2} .{ }^{3}$ Further attention was motivated by the fact that first-principles calculations in the local density approximation (LDA) ${ }^{4-6}$ predicted a Fermi surface with six prominent hole pockets along the $\Gamma-K$ direction, which are absent in measured angle-resolved photoemission (ARPES) spectra. ${ }^{7,8}$ To explain the discrepancy, several calculations including correlation effects were made..$^{9-15}$ These studies used an effective model $H_{\text {eff }}$ for the $t_{2 g} 3 d$ states of Co, split by the trigonal crystal field Δ into an $a_{1 g}^{\prime}$ singlet and an e_{g}^{\prime} doublet. ${ }^{16}$ Except for some simplifications used in the different works, $H_{\text {eff }}$ has the form

$$
\begin{align*}
H_{\mathrm{eff}}= & \sum_{i, \sigma} \Delta\left(\sum_{\beta \in e_{g}^{\prime}} \tilde{d}_{i \beta \sigma}^{\dagger} \tilde{d}_{i \beta \sigma}-\tilde{d}_{i a_{1 g}^{\prime} \sigma}^{\dagger} \tilde{d}_{i a_{1 g}^{\prime} \sigma}\right) \\
& +\sum_{i \delta \beta \gamma \sigma} \tilde{t}_{\delta}^{\beta \gamma}\left(\tilde{d}_{i+\delta, \beta \sigma}^{\dagger} \tilde{d}_{i \gamma \sigma}+\text { H.c. }\right)+U_{\text {eff }} \sum_{i \beta} \tilde{n}_{i \beta \uparrow} \tilde{n}_{i \beta \downarrow} \\
& +\frac{1}{2} \sum_{i, \gamma \neq \beta, \sigma \sigma^{\prime}}\left(U_{\mathrm{eff}}^{\prime} \tilde{n}_{i \gamma \sigma} \tilde{n}_{i \beta \sigma^{\prime}}+J_{\text {eff }} \tilde{d}_{i \gamma \sigma}^{\dagger} \tilde{d}_{i \beta \sigma^{\prime}}^{\dagger} \tilde{d}_{i \gamma \sigma^{\prime}} \tilde{d}_{i \beta \sigma}\right) \\
& +J_{\text {eff }}^{\prime} \sum_{\gamma \neq \beta} \tilde{d}_{i \gamma \uparrow}^{\dagger} \tilde{d}_{i \gamma \downarrow}^{\dagger} \tilde{d}_{i \beta \downarrow} \tilde{d}_{i \beta \uparrow}, \tag{1}
\end{align*}
$$

where $\tilde{d}_{i \beta \sigma}^{\dagger}$ creates a hole on an effective $t_{2 g}$ orbital at site i with spin σ. The first term is the effective trigonal splitting mentioned above, the second term describes the hopping between orbitals at a distance δ and the remaining terms are effective interactions discussed for example in Ref. 17.

In most works, Δ and $\tilde{t}_{\delta}^{\beta \gamma}$ were derived from fits to the LDA bands and the interaction parameters were estimated. These fits give either $\Delta=-10 \mathrm{meV}$ (Ref. 9) or $\Delta=-130 \mathrm{meV}$ (Ref. 10). With these parameters and realistic values of the Coulomb repulsion $U_{\text {eff }}$, correlations are not able to reconcile theory with experiment, as shown by different dynamical-mean-field-theory (DMFT) studies. ${ }^{12,13,15}$ The pockets still remain in the calculations.

Using instead an $H_{\text {eff }}$ derived from a multiband Co-O model H_{mb} through a low-energy reduction procedure, ${ }^{17}$ and the value $\Delta=315 \mathrm{meV}$ obtained from quantum-chemistry configuration-interaction calculations, ${ }^{18}$ these pockets are absent and the electronic dispersion near the Fermi energy agrees with experiment. ${ }^{15}$ In this procedure, no LDA results were used. The parameters of H_{mb} were taken from previous fits of of polarized x-ray absorption spectra, ${ }^{19}$ and the parameters of $H_{\text {eff }}$ other than Δ were obtained fitting the energy levels of an undistorted CoO_{6} cluster (O_{h} symmetry) and calculating the effective hopping between different CoO_{6} clusters, ${ }^{17}$ following similar ideas that were successful in the superconducting cuprates. ${ }^{20-22}$ In these systems, low-energy reduction procedures that eliminate the O degrees of freedom, simplifying the problem to an effective one-band one, ${ }^{20,23-29}$ have been very successful, in spite of the fact that doped holes enter mainly at O atoms. ${ }^{30-32}$ Optical properties related with O atoms were calculated using these one-band models, which do not contain O states. ${ }^{20,21}$

Summarizing previous results, if Δ is taken as a parameter, a positive Δ has the effect of shrinking the pockets, and for large enough Δ, the pockets disappear from the Fermi surface, reconciling theory with ARPES experiments. ${ }^{12,13,15}$ A positive value has been obtained by quantum-chemistry methods ${ }^{18}$ and a negative one is obtained fitting the LDA dispersion with $H_{\text {eff }} .{ }^{9,10}$ Thus the origin of the discrepancy between different methods and the actual value of Δ remains a subject of interest.

It is known that in general, the LDA underestimates gaps and has difficulties in predicting one-particle excitations energies. Thus one might suspect that the parameters of $H_{\text {eff }}$, including Δ calculated with LDA are not accurate enough when covalency and interactions are important. This is the case of NiO , for which agreement with experiment in LDA+DMFT calculations is only achieved once the O bands are explicitly included in the model, ${ }^{33}$ or when the O atoms have been integrated out using low-energy reduction procedures, which take into account correlations from the beginning. ${ }^{33,34}$

In covalent materials, the crystal-field splitting of transitionmetal ions is dominated by the hopping of electrons between these ions and their nearest ligands. ${ }^{35}$ In particular for $\mathrm{Na}_{x} \mathrm{CoO}_{2}$, an estimate based on point charges gives $\Delta=-25 \mathrm{meV} .{ }^{36}$ This shows that the effect of interatomic
repulsions is small and of the opposite sign as that required to explain the ARPES spectra. The effects of covalency of Co and its nearest-neighbor O atoms and all Co-Co interactions are included in a CoO_{6} cluster in the realistic $\left(D_{3 d}\right)$ symmetry. In this work, we solve numerically this cluster and calculate the effective splitting Δ, neglecting interatomic repulsions. We also analyze the effects of different parameters on Δ. The main result is that $\Delta \simeq 130 \mathrm{meV}$ and is very sensitive to a parameter that controls the Hund rules. It is also sensitive to the cubic crystal-field splitting 10 Dq . A possible reason of the discrepancy with the LDA results is discussed.

In Sec. II, we describe the model, parameters, and briefly the formalism. Section III contains the results. Section IV is a summary and discussion.

II. THE MODEL AND ITS PARAMETERS

The multiband model from which $H_{\text {eff }}$ is derived, describes the $3 d$ electrons of Co and the $2 p$ electrons of the O atoms, located in the positions determined by the structure of $\mathrm{Na}_{0.61} \mathrm{CoO}_{2}$ at $12 \mathrm{~K} .{ }^{37}$ In this work, we restrict the calculation to a cluster of one Co atom and its six nearest-neighbor O atoms. The relevant filling for the calculation of Δ corresponds to formal valences Co^{4+} and O^{2-}, or 41 electrons to occupy the $3 d$ shell of Co and the $2 p$ shells of the six O atoms. This corresponds to five holes in the CoO_{6} cluster. Thus, it turns out to be simpler to work with hole operators (which annihilate electrons) acting on the vacuum state in which the Co ion is in the $3 d^{10}$ configuration and the O ions are in the p^{6} one. The most important physical ingredients are the interactions inside the $3 d$ shell H_{I} and the Co-O hopping ($t_{j}^{\eta \xi}$ below), parameterized as usual, in terms of the Slater-Koster parameters. ${ }^{38}$ We include a cubic crystal field splitting $\epsilon_{t_{2 g}}-\epsilon_{e_{g}}=10 D q$

The Hamiltonian for the $\mathrm{Co} \mathrm{O}_{6}$ cluster takes the form

$$
\begin{align*}
H_{\mathrm{mb}}= & \sum_{\alpha \in e_{g}, \sigma} \epsilon_{e_{g}} d_{\alpha \sigma}^{\dagger} d_{\alpha \sigma}+\sum_{\beta \in t_{2 g}, \sigma} \epsilon_{t_{2 g}} d_{\beta \sigma}^{\dagger} d_{\beta \sigma}+H_{I} \\
& +\sum_{j \eta \sigma} \epsilon_{\mathrm{O}} p_{j \eta \sigma}^{\dagger} p_{j \eta \sigma}+\sum_{j \eta \xi \sigma} t_{j}^{\eta \xi}\left(p_{j \eta \sigma}^{\dagger} d_{\xi \sigma}+\text { H.c. }\right) \tag{2}
\end{align*}
$$

The operator $d_{\xi \sigma}^{\dagger}$ creates a hole on the orbital ξ of Co with spin σ. Similarly, $p_{j \eta \sigma}^{\dagger}$ creates a hole on O $2 p$ orbital η at site j with spin σ. The first two terms corresponds to the energy of the e_{g} orbitals $\left(x^{2}-y^{2}, 3 z^{2}-r^{2}\right)$ and $t_{2 g}$ orbitals ($x y, y z, z x$) written on a basis in which x, y, and z, point to the vertices of a regular CoO_{6} octahedron (symmetry O_{h}). The compression along the axis $x+y+z$ reduces the symmetry to $D_{3 d}$ and splits the states of symmetry $x y+y z+z x\left(a_{1 g}^{\prime}\right.$ in $D_{3 d}{ }^{16}$) from the other two $t_{2 g}$ ones (e_{g}^{\prime} in $D_{3 d}$).
H_{I} contains all interactions between d holes assuming spherical symmetry [the symmetry is reduced to O_{h} by the cubic crystal field $10 D q$ and to $D_{3 d}$ by the last (hopping) term of Eq. (2)]. The expression of H_{I} is lengthy. It is included in Appendix [Eq. (A4)] together with a brief description of its derivation for the interested reader. A more detailed discussion is in Ref. 17. The form of H_{I} is rather simple and well known when either only e_{g} orbitals ${ }^{39}$ or only $t_{2 g}$ orbitals [as in Eq. (1)] ${ }^{40,41}$ are important, although the correct expressions
were not always used. ${ }^{40,42}$ In the general case, H_{I} contains new terms which are often disregarded. For example, in a recent study of Fe pnictides, ${ }^{43}$ a simplified expression derived previously ${ }^{44}$ was used. More recently, to estimate the effective Coulomb interaction for transition-metal atoms on metallic surfaces, only density-density interactions were included. ${ }^{45}$ Some of the effects of these simplifications were discussed in Ref. 17.

All interactions are given in terms of three free parameters $F_{0} \gg F_{2} \gg F_{4}$. For example, the Coulomb repulsion between two holes or electrons at the same $3 d$ orbital is $U=F_{0}+$ $4 F_{2}+36 F_{4}$, and the Hund rules exchange interaction between two $e_{g}\left(t_{2 g}\right)$ electrons is $J_{e}=4 F_{2}+15 F_{4}\left(J_{t}=3 F_{2}+20 F_{4}\right)$. Thus F_{2} is the main parameter responsible for the spin and orbital polarizations related with the first and second Hund rules, respectively.

Note that in Eq. (2) there is no trigonal splitting. This means that we take the bare value of the splitting $\Delta_{0}=0$ (neglecting the effect of interatomic repulsions). The dressed value Δ that enters the effective Hamiltonian Eq. (2) is calculated as

$$
\begin{equation*}
\Delta=E\left(e_{g}^{\prime}\right)-E\left(a_{1 g}^{\prime}\right) \tag{3}
\end{equation*}
$$

where $E(\Gamma)$ is the energy of the lowest lying state that transforms under symmetry operations according to the irreducible representation Γ of the point group $D_{3 d} .{ }^{16}$

As in previous calculations for the regular CoO_{6} octahedron (with symmetry O_{h}), ${ }^{17}$ the diagonalization is simplified by the fact that several linear combinations of O $2 p$ orbitals do not hybridize with the Co $3 d$ ones, forming nonbonding orbitals. However, in the present case, the reduced $D_{3 d}$ symmetry increases the bonding $2 p$ combinations to seven, and a different basis should be used, but still the size of the relevant Hilbert space is small enough to permit the diagonalization numerically by the Lanczos method. ${ }^{46}$

As a basis for the present study, we take parameters determined previously ${ }^{19}$ from a fit of polarized x-ray absorption spectra of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ to the results of a CoO_{6} cluster with four and five holes including the core hole. In the present case, we have neglected the O-O hopping for simplicity (this allows a reduction of the relevant Hilbert space). Thus the parameters of H_{mb} in eV are ${ }^{19}$

$$
\begin{align*}
F_{0} & =3.5, F_{2}=0.2, F_{4}=0.006 \\
\epsilon_{\mathrm{O}} & =13, \epsilon_{t_{2 g}}=1.2, \epsilon_{e_{g}}=0 \tag{4}\\
(p d \pi) & =\frac{-\sqrt{3}}{4}(p d \sigma)=1
\end{align*}
$$

The choice of the origin of on-site energies $\epsilon_{e_{g}}=0$ is arbitrary. The resulting values of $U=4.516 \mathrm{eV}$ and charge transfer energies are similar to those derived from other x-ray absorption experiments. ${ }^{47}$ We note that while above $\epsilon_{t_{2 g}}$ $\epsilon_{e_{g}}=10 \mathrm{Dq}=1.2 \mathrm{eV}$, the effect of hybridization increases the splitting between $t_{2 g}$ and e_{g} orbitals to more than 3 eV .

III. RESULTS

The splitting Δ is determined from Eq. (3). We have also calculated the occupation of the $a_{1 g}^{\prime} 3 d$ orbital in each state to verify that the expected physics is obtained.

FIG. 1. Trigonal splitting as a function of F_{2} keeping the remaining parameters as given by Eq. (4).

For the parameters determined previously [Eq. (4)], we obtain $\Delta=124 \mathrm{meV}$. The sign agrees with quantum-chemistry configuration-interaction calculations ${ }^{18}$ which obtained $\Delta \approx$ 300 meV , although our magnitude is smaller. The difference might be at least partially due to some uncertainty in our parameters determined from a fitting procedure. Motivated by this possibility, we have studied the effect of different parameters on the results. Of course, since we have neglected interatomic interactions, Δ vanishes if the hopping parameters $p d \sigma$ and $p d \pi$ are zero, and one would expect than an increase in these parameters, has the largest impact on Δ. However, we find that an increase of 50% in the hopping increases Δ by only 25%. In addition, changes of the oxygen energy ϵ_{O} (the charge transfer energy) or F_{0} (which determines the intraorbital Coulomb repulsion U) by 1 eV have an effect of only a few percent on Δ.

Instead, and rather surprisingly, as shown in Fig. 1, Δ is very sensitive to F_{2}, the most important parameter in the expressions for the exchange between d electrons [J_{v} with $v=e, t, a$ or b in Eq. (A4)] and the interorbital repulsions ($U-2 J_{v}$) among other interactions. Thus it is the main responsible for the spin and orbital polarizations resulting in the first and second Hund rules. In particular, the repulsion between different $e_{g}\left(t_{2 g}\right)$ orbitals is reduced with respect to the intraorbital repulsion U by $2 J_{e}\left(2 J_{t}\right)$ (see Appendix).
Δ becomes negative for $F_{2}<21 \mathrm{meV}$. Curiously, increasing F_{4} has a small effect, but in the opposite sense as increasing F_{2}. This points to nontrivial effects of the correlations, particularly those involving both e_{g} and $t_{2 g}$ electrons. When both F_{2} and F_{4} vanish, we obtain a small positive value $\Delta=12 \mathrm{meV}$. If one adds to this result the contribution -25 meV from the interatomic Coulomb repulsion estimated using point charges, ${ }^{36}$ one obtains a value close to -10 meV , obtained in one of the LDA calculations. ${ }^{9}$ This suggest that the LDA negative results for Δ might be due to the difficulties of LDA in treating correlations related with the Hund rules. In particular, it is known that orbital-related Coulomb interactions are underestimated in the spin LDA, ${ }^{48}$ and empirical orbital polarization corrections ${ }^{49}$ are frequently used to cure this problem. This fact has been also analyzed in the framework of a self-consistent tight-binding theory. ${ }^{50}$

FIG. 2. Trigonal splitting as a function of the cubic crystal field keeping the remaining parameters as given by Eq. (4).

The fact that correlations between both e_{g} and $t_{2 g}$ holes play a role is supported by the dependence of Δ on the cubic crystal field parameter $10 D q$, displayed in Fig. 2. Note that this parameter in the present case represents only the contribution of interatomic repulsion to 10 Dq . The covalency part is included in our calculation and the splitting between hybridized e_{g} and $t_{2 g}$ is larger than 3 eV . Also in the fitting procedure, the best value of $10 D q$ depends on composition x, being 1.2 eV for $x=0.4$ and 0.9 eV for $x=0.6 .{ }^{19}$ For the latter, value Δ increases to 134 meV . As it is apparent in Fig. 2, Δ increases with decreasing $10 D q$. This shows that the e_{g} states play an important role. In fact, the results for the regular octahedron show that although these states are absent in the effective Hamiltonian for the cobaltates, they have a larger degree of covalency than the $t_{2 g}$ states. ${ }^{17}$ Most of the O holes reside in bonding combinations of e_{g} symmetry.

IV. SUMMARY AND DISCUSSION

Using exact numerical diagonalization of a CoO_{6} cluster, with the realistic geometry of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$, we have calculated the effects of covalency and interactions on the trigonal crystal-field parameter Δ, which splits the $t_{2 g}$ states in O_{h} symmetry into $a_{1 g}^{\prime}$ and e_{g}^{\prime} in the reduced $D_{3 d}$ symmetry. This parameter enters effective models [of the form of Eq. (1)] for the description of the electronic structure of $\mathrm{Na}_{x} \mathrm{CoO}_{2}$ and only positive values (in contrast to the negative ones obtained from LDA) seem consistent with ARPES data. ${ }^{12,13,15}$ We obtain $\Delta \approx 130 \mathrm{meV}$.

While changes of the order of 1 eV in charge-transfer energy or F_{0} (which controls the part of the Coulomb repulsion that does not depend of the symmetry of the orbitals) do not affect Δ very much, we find that Δ is very sensitive to the parameter F_{2}, which controls (among others) interaction constants related with the Hund rules (exchange interactions and decrease of interorbital repulsions with respect to intraorbital ones). To a smaller extent, it is also sensitive to the cubic crystal field $10 D q$ reflecting the importance of interactions between $t_{2 g}$ and e_{g} states, and the effect on the latter on the effective parameters.

Since the LDA underestimates correlations that affect the orbital polarization of the d states, ${ }^{48-50}$ this is likely to be the reason of the failure of LDA approaches and effective
models based on LDA parameters, to reproduce the observed ARPES data. In fact, since the exchange and correlations in LDA are based on a homogeneous electron gas, it is expected that this approximation treats F_{0} (the part of the repulsion which does not distinguish between different orbitals) in mean field, but does not contain the effects of F_{2} and F_{4}, which depend on the particular orbitals. The exchange of the electron gas taken into account in the LDA helps to follow the first Hund rule (maximum spin), but the second one, related with orbital polarization, is not well described and seems crucial to establish effective energy differences between different orbitals inside an incomplete d shell.

ACKNOWLEDGMENTS

Useful comments of G. Pastor and C. Proetto are thankfully acknowledged. A.A.A. is partially supported by CONICET, Argentina. This work was sponsored by PIP 112-20080101821 of CONICET, and PICT 2010-1060 of the ANPCyT.

APPENDIX: INTERACTIONS INSIDE A \boldsymbol{d} SHELL

The part of the Hamiltonian that contains the interaction among ten d spin-orbitals is ${ }^{51}$

$$
\begin{equation*}
H_{I}=\frac{1}{2} \sum_{\lambda \mu v \rho} V_{\lambda \mu \nu \rho} d_{\lambda}^{+} d_{\mu}^{+} d_{\rho} d_{v} \tag{A1}
\end{equation*}
$$

where d_{λ}^{+}creates an electron or a hole at the spin-orbital λ (H_{I} is invariant under an electron-hole transformation) and
(neglecting screening by other electrons),

$$
\begin{equation*}
V_{\lambda \mu \nu \rho}=\int d \mathbf{r}_{1} d \mathbf{r}_{2} \bar{\varphi}_{\lambda}\left(\mathbf{r}_{1}\right) \bar{\varphi}_{\mu}\left(\mathbf{r}_{2}\right) \frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \varphi_{\nu}\left(\mathbf{r}_{1}\right) \varphi_{\rho}\left(\mathbf{r}_{2}\right) \tag{A2}
\end{equation*}
$$

where $\varphi_{\lambda}\left(\mathbf{r}_{1}\right)$ is the wave function of the spin-orbital λ. Assuming spherical symmetry, these integrals can be calculated using standard methods of atomic physics ${ }^{52}$ in terms of three independent parameters $F_{j}, j=0,2,4$, which are related to decomposition of the Coulomb interaction $e^{2} /\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ in spherical harmonics of degree j. To remove uncomfortable denominators, the three free parameters are defined as $F_{0}=$ $R^{0}, F_{2}=R^{2} / 49$, and $F_{4}=R^{4} / 441$, where

$$
\begin{equation*}
R^{k}=e^{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} R^{2}\left(r_{1}\right) R^{2}\left(r_{2}\right) r_{1}^{2} r_{2}^{2} d r_{1} d r_{2} \tag{A3}
\end{equation*}
$$

$R(r)$ is the radial part of the wave function of the d orbitals and $r_{<}\left(r_{>}\right)$is the smaller (larger) between r_{1} and r_{2}. The angular integrals are given in terms of tabulated coefficients. ${ }^{17,52}$ Screening reduces F_{0} significantly, but not F_{2} and F_{4}.

The final result can be written in the form below. ${ }^{17}$ To express it in a more compact form, we introduce different sums which run over a limited set of orbitals as follows. The sums over α run over the five d orbitals, those over β, γ run only over the $t_{2 g}$ orbitals $x y, y z, z x$, and those over $\chi(\zeta)$ run over the pair of orbitals $x^{2}-y^{2}, x y(z x, z y)$.

The values of the different interactions energies below are given in terms of the F_{j} as follows: $U=F_{0}+4 F_{2}+36 F_{4}$, $J_{e}=4 F_{2}+15 F_{4}, J_{t}=3 F_{2}+20 F_{4}, J_{a}=35 F_{4}, J_{b}=F_{2}+$ $30 F_{4}$, and $\lambda=\sqrt{3}\left(F_{2}-5 F_{4}\right)$.

The interaction is

$$
\begin{align*}
& H_{I}=U \sum_{\alpha} n_{\alpha, \uparrow} n_{\alpha, \downarrow}+\left(U-2 J_{e}\right) \sum_{\chi} \sum_{\sigma_{1}, \sigma_{2}} n_{\chi, \sigma_{1}} n_{3 z^{2}-r^{2}, \sigma_{2}}+\frac{U-2 J_{t}}{2} \sum_{\beta \neq \gamma} \sum_{\sigma_{1}, \sigma_{2}} n_{\beta, \sigma_{1}} n_{\gamma, \sigma_{2}}+\left(U-2 J_{t}\right) \sum_{\zeta} \sum_{\sigma_{1}, \sigma_{2}} n_{x^{2}-y^{2}, \sigma_{1}} n_{\zeta, \sigma_{2}} \\
& +\left(U-2 J_{a}\right) \sum_{\sigma_{1}, \sigma_{2}} n_{x^{2}-y^{2}, \sigma_{1}} n_{x y, \sigma_{2}}+\left(U-2 J_{b}\right) \sum_{\zeta} \sum_{\sigma_{1}, \sigma_{2}} n_{3 z^{2}-r^{2}, \sigma_{1}} n_{\zeta, \sigma_{2}}+J_{e} \sum_{x} \sum_{\sigma_{1}, \sigma_{2}} d_{\chi, \sigma_{1}}^{\dagger} d_{3 z^{2}-r^{2}, \sigma_{2}}^{\dagger} d_{\chi, \sigma_{2}} d_{3 z^{2}-r^{2}, \sigma_{1}} \\
& +\frac{J_{t}}{2} \sum_{\beta \neq \gamma} \sum_{\sigma_{1}, \sigma_{2}} d_{\beta, \sigma_{1}}^{\dagger} d_{\gamma, \sigma_{2}}^{\dagger} d_{\beta, \sigma_{2}} d_{\gamma, \sigma_{1}}+J_{t} \sum_{\zeta} \sum_{\sigma_{1}, \sigma_{2}} d_{x^{2}-y^{2}, \sigma_{1}}^{\dagger} d_{\zeta, \sigma_{2}}^{\dagger} d_{x^{2}-y^{2}, \sigma_{2}} d_{\zeta, \sigma_{1}}+J_{a} \sum_{\sigma_{1}, \sigma_{2}} d_{x^{2}-y^{2}, \sigma_{1}}^{\dagger} d_{x y, \sigma_{2}}^{\dagger} d_{x^{2}-y^{2}, \sigma_{2}} d_{x y, \sigma_{1}} \\
& +J_{b} \sum_{\zeta} \sum_{\sigma_{1}, \sigma_{2}} d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{\zeta, \sigma_{2}}^{\dagger} d_{3 z^{2}-r^{2}, \sigma_{2}} d_{\zeta, \sigma_{1}}+J_{e} \sum_{\chi}\left(d_{\chi, \uparrow}^{\dagger} d_{\chi, \downarrow}^{\dagger} d_{3 z^{2}-r^{2}, \downarrow} d_{3 z^{2}-r^{2}, \uparrow}+\text { H.c. }\right)+J_{t} \sum_{\beta \neq \gamma} d_{\beta, \uparrow}^{\dagger} d_{\beta, \downarrow}^{\dagger} d_{\gamma, \downarrow} d_{\gamma, \uparrow} \\
& +J_{t} \sum_{\zeta}\left(d_{x^{2}-y^{2}, \uparrow}^{\dagger} d_{x^{2}-y^{2}, \downarrow}^{\dagger} d_{\zeta, \downarrow} d_{\zeta, \uparrow}+\text { H.c. }\right)+J_{a}\left(d_{x^{2}-y^{2}, \uparrow}^{\dagger} d_{x^{2}-y^{2}, \downarrow}^{\dagger} d_{x y, \downarrow} d_{x y, \uparrow}+\text { H.c. }\right) \\
& +J_{b} \sum_{\zeta}\left(d_{3 z^{2}-r^{2}, \uparrow}^{\dagger} d_{3 z^{2}-r^{2}, \downarrow}^{\dagger} d_{\zeta, \downarrow} d_{\zeta, \uparrow}+\text { H.c. }\right)+\lambda \sum_{\sigma_{1}, \sigma_{2}}\left[2\left(n_{y z, \sigma_{1}}-n_{z x, \sigma_{1}}\right)\left(d_{3 z^{2}-r^{2}, \sigma_{2}}^{\dagger} d_{x^{2}-y^{2}, \sigma_{2}}+\text { H.c. }\right)\right. \\
& -2\left(d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{x y, \sigma_{1}}+\text { H.c. }\right)\left(d_{z x, \sigma_{2}}^{\dagger} d_{y z, \sigma_{2}}+\text { H.c. }\right)+\sqrt{3}\left(d_{x^{2}-y^{2}, \sigma_{1}}^{\dagger} d_{z x, \sigma_{1}}+\text { H.c. }\right)\left(d_{x y, \sigma_{2}}^{\dagger} d_{y z, \sigma_{2}}+\text { H.c. }\right) \\
& -\sqrt{3}\left(d_{x^{2}-y^{2}, \sigma_{1}}^{\dagger} d_{y z, \sigma_{1}}+\text { H.c. }\right)\left(d_{x y, \sigma_{2}}^{\dagger} d_{z z, \sigma_{2}}+\text { H.c. }\right)+\left(d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{z x, \sigma_{1}}+\text { H.c. }\right)\left(d_{x y, \sigma_{2}}^{\dagger} d_{y z, \sigma_{2}}+\text { H.c. }\right) \\
& \left.+\left(d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{y z, \sigma_{1}}+\text { H.c. }\right)\left(d_{x y, \sigma_{2}}^{\dagger} d_{z x, \sigma_{2}}+\text { H.c. }\right)+\left(d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{z x, \sigma_{2}}^{\dagger} d_{x^{2}-y^{2}, \sigma_{2}} d_{z x, \sigma_{1}}-d_{3 z^{2}-r^{2}, \sigma_{1}}^{\dagger} d_{y z, \sigma_{2}}^{\dagger} d_{x^{2}-y^{2}, \sigma_{2}} d_{y z, \sigma_{1}}+\text { H.c. }\right)\right] \\
& +\lambda\left[\left(d_{x^{2}-y^{2}, \downarrow} d_{3 z^{2}-r^{2}, \uparrow}-d_{x^{2}-y^{2}, \uparrow} d_{3 z^{2}-r^{2}, \downarrow}\right)\left(d_{z x, \uparrow}^{\dagger} d_{z x, \downarrow}^{\dagger}-d_{y z, \uparrow}^{\dagger} d_{y z, \downarrow}^{\dagger}\right)+\text { H.c. }\right] . \tag{A4}
\end{align*}
$$

*aligia@cab.cnea.gov.ar
${ }^{1}$ I. Terasaki, I. Tsukada, and Y. Iguchi, Phys. Rev. B 65, 195106 (2002).
${ }^{2}$ M. Mikami, M. Yoshimura, Y. Mori, T. Sasaki, R. Funahashi, and M. Shikano, Jpn. J. Appl. Phys., Part 1 42, 7383 (2003).
${ }^{3}$ K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53 (2003).
${ }^{4}$ D. J. Singh, Phys. Rev. B 68, 020503(R) (2003).
${ }^{5}$ P. Zhang, W. Luo, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 93, 236402 (2004).
${ }^{6}$ K. W. Lee, J. Kunes, and W. E. Pickett, Phys. Rev. B 70, 045104 (2004).
${ }^{7}$ H. B. Yang, Z.-H. Pan, A. K. P. Sekharan, T. Sato, S. Souma, T. Takahashi, R. Jin, B. C. Sales, D. Mandrus, A. V. Fedorov, Z. Wang, and H. Ding, Phys. Rev. Lett. 95, 146401 (2005).
${ }^{8}$ D. Qian, L. Wray, D. Hsieh, L. Viciu, R. J. Cava, J. L. Luo, D. Wu, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. 97, 186405 (2006). ${ }^{9}$ S. Zhou, M. Gao, H. Ding, P. A. Lee, and Z. Wang, Phys. Rev. Lett. 94, 206401 (2005).
${ }^{10}$ H. Ishida, M. D. Johannes, and A. Liebsch, Phys. Rev. Lett. 94, 196401 (2005).
${ }^{11}$ A. Bourgeois, A. A. Aligia, T. Kroll, and M. D. Núñ ez-Regueiro, Phys. Rev. B 75, 174518 (2007).
${ }^{12}$ C. A. Marianetti, K. Haule, and O. Parcollet, Phys. Rev. Lett. 99, 246404 (2007).
${ }^{13}$ A. Liebsch and H. Ishida, Eur. Phys. J. B 61, 405 (2008).
${ }^{14}$ G.-T. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 101, 066403 (2008).
${ }^{15}$ A. Bourgeois, A. A. Aligia, and M. J. Rozenberg, Phys. Rev. Lett. 102, 066402 (2009).
${ }^{16} \mathrm{We}$ use the primes in $a_{1 g}^{\prime}$ and e_{g}^{\prime} to differentiate the irreducible representations of the point group $D_{3 d}$ of the octahedron compressed along a ${ }_{3}$ axis, to those of the point group O_{h} of the regular octahedron.
${ }^{17}$ A. A. Aligia and T. Kroll, Phys. Rev. B 81, 195113 (2010).
${ }^{18}$ S. Landron and M. B. Lepetit, Phys. Rev. B 74, 184507 (2006); 77, 125106 (2008).
${ }^{19}$ T. Kroll, A. A. Aligia, and G. A. Sawatzky, Phys. Rev. B 74, 115124 (2006).
${ }^{20}$ M. E. Simon, A. A. Aligia, and E. R. Gagliano, Phys. Rev. B 56, 5637 (1997), references therein.
${ }^{21}$ J. M. Eroles, C. D. Batista, and A. A. Aligia, Phys. Rev. B 59, 14092 (1999).
${ }^{22}$ C. D. Batista and A. A. Aligia, Phys. Rev. B 47, 8929 (1993).
${ }^{23}$ J. H. Jefferson, H. Eskes, and L. F. Feiner, Phys. Rev. B 45, 7959 (1992).
${ }^{24}$ H.-B. Schüttler and A. J. Fedro, Phys. Rev. B 45, 7588 (1992).
${ }^{25}$ M. E. Simon and A. A. Aligia, Phys. Rev. B 48, 7471 (1993).
${ }^{26}$ V. I. Belinicher and A. L. Chernyshev, Phys. Rev. B 49, 9746 (1994).
${ }^{27}$ V. I. Belinicher, A. L. Chernyshev, and L. V. Popovich, Phys. Rev. B 50, 13768 (1994).
${ }^{28}$ A. A. Aligia, M. E. Simon, and C. D. Batista, Phys. Rev. B 49, 13061 (1994).
${ }^{29}$ L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B 53, 8751 (1996), references therein.
${ }^{30}$ N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, Phys. Rev. B 37, 5158 (1988).
${ }^{31}$ P. Kuiper, G. Kruizinga, J. Ghijsen, M. Grioni, P. J. W. Weijs, F. M. F. de Groot, G. A. Sawatzky, H. Verweij, L. F. Feiner, and H. Petersen, Phys. Rev. B 38, 6483 (1988).
${ }^{32}$ E. Pellegrin, N. Nücker, J. Fink, S. L. Molodtsov, A. Gutiérrez, E. Navas, O. Strebel, Z. Hu, M. Domke, G. Kaindl, S. Uchida, Y. Nakamura, J. Markl, M. Klauda, G. Saemann-Ischenko, A. Krol, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 47, 3354 (1993).
${ }^{33}$ J. Kunes, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt, Phys. Rev. Lett. 99, 156404 (2007).
${ }^{34}$ J. Bala, A. M. Oleś, and J. Zaanen, Phys. Rev. Lett. 72, 2600 (1994).
${ }^{35}$ S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition Metal Ions in Cristals (Academic Press, New York and London, 1970), Chap. X.
${ }^{36}$ W. Koshibae and S. Maekawa, Phys. Rev. Lett. 91, 257003 (2003).
${ }^{37}$ J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burley, and S. Short, Phys. Rev. B 68, 214517 (2003).
${ }^{38}$ J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954); R. R. Sharma, Phys. Rev. B 19, 2813 (1979).
${ }^{39}$ C. D. Batista, A. A. Aligia, and J. Eroles, Europhys. Lett. 43, 71 (1998).
${ }^{40}$ R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997). The correct value of the exchange interaction between $t_{2 g}$ electrons is $J_{t}=3 F_{2}+20 F_{4}$.
${ }^{41}$ A. A. Aligia and M. A. Gusmão, Phys. Rev. B 70, 054403 (2004).
${ }^{42}$ C. D. Batista, A. A. Aligia, and J. Eroles, Phys. Rev. Lett. 81, 4027 (1998).
${ }^{43}$ E. Kaneshita, T. Morinari, and T. Tohyama, Phys. Rev. Lett. 103, 247202 (2009).
${ }^{44}$ A. M. Oleś, Phys. Rev. B 28, 327 (1983).
${ }^{45}$ S. Gardonio, M. Karolak, T. O. Wehling, L. Petaccia, S. Lizzit, A. Goldoni, A. I. Lichtenstein, and C. Carbone, Phys. Rev. Lett. 110, 186404 (2013)
${ }^{46}$ E. R. Gagliano, E. Dagotto, A. Moreo, and F. C. Alcaraz, Phys. Rev. B 34, 1677 (1986).
${ }^{47}$ W. B. Wu, D. J. Huang, J. Okamoto, A. Tanaka, H. J. Lin, F. C. Chou, A. Fujimori, and C. T. Chen, Phys. Rev. Lett. 94, 146402 (2005).
${ }^{48}$ H. Eschrig, M. Sargolzaei, K. Koepernik, and M. Richter, Europhys. Lett. 72, 611 (2005), references therein.
${ }^{49}$ O. Eriksson, M. S. S. Brooks, and B. Johansson, Phys. Rev. B 41, R7311 (1990).
${ }^{50}$ G. Nicolas, J. Dorantes-Dávila, and G. M. Pastor, Phys. Rev. B 74, 014415 (2006).
${ }^{51}$ J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1988).
${ }^{52}$ E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, Cambridge and New York, 1935).

