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Abstract By serendipity and good fortune, as a postdoctoral
fellow in 1967, I landed at the right place at the right time, as I
was allowed to investigate the mechanism by which hormones
activate the enzyme adenylyl cyclase (then adenyl cyclase) in
Martin Rodbell’s Laboratory at the NIH in Bethesda, Maryland.
The work uncovered first, the existence of receptors separate
from the enzyme and then, the existence of transduction mech-
anisms requiring guanosine-5′-triphosphate (GTP) and Mg2+.
With my laboratory colleagues first and postdoctoral fellows
after leaving NIH, I participated in the development of the field
“signal transduction by G proteins,” uncovered by molecular
cloning several G-protein-coupled receptors (GPCRs) and be-
came interested in both the molecular makeup of voltage-gated
Ca channels and Ca2+ homeostasis downstream of activation of
phospholipase C (PLC) by the Gq/11 signaling pathway. We
were able to confirm the hypothesis that there would be mam-
malian homologues of the Drosophila “transient receptor poten-
tial” channel and discovered the existence of six of the seven
mammalian genes, now called transient receptor potential ca-
nonical (TRPC) channels. In the present article, I summarize
from a bird’s eye view of what I feel were key findings along
this path, not only from my laboratory but also from many
others, that allowed for the present knowledge of cell signaling
involving G proteins to evolve. Towards the end, I summarize
roles of TRPC channels in health and disease.
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Introduction

I was invited to present my personal views on “Half a century of
cell signaling” and highlight what we have learned. Personal
views start at the time one becomes aware that one had dropped
into a relevant field and lucked out. This was when Martin Rod-
bell withwhom Iwas post-doctoring (1967–1971) askedwhether
epinephrine, ACTH, and glucagon, which stimulate lipolysis in
adipose tissue by raising 3′5′-cylic AMP (cAMP), act via a single
adenylyl (then adenyl) cyclase or whether each hormone acts via
its own cyclase, further whether an effect of insulin to lower
cAMP increased in cells by epinephrine by inhibiting adenylyl
cyclase (Butcher et al., 1966 [1]). Rodbell left me with the prob-
lemwhile he went on a sabbatical leave to Geneva. The epineph-
rine-, ACTH-, and glucagon-stimulated activities were not addi-
tive, settling this question: a common pool of adenylyl cyclases
was stimulated by a separate pool of receptors (Birnbaumer &
Rodblell, 1969 [2]). Which led to the question of how?

The mechanism of activation of adenylyl cyclase by hor-
mone receptors became a major theme. I had been trained as
an enzymologist and performed experiments on the kinetics of
activation and on the similarity between the mechanism used
by hormone receptors and the fluoride ion, which Sutherland’s
group had found to be an activator of adenylyl cyclase. The
upshot of these studies was that hormone and fluoride affected
the requirement of the cyclase system for Mg ion (Mg2+) in a
similar manner. The role ofMg2+ was by nomeans simple: the
substrate of the enzyme was Mg2+-ATP. In addition, there was
a regulatory site where Mg2+ by itself could stimulate the
activity. And there was the curious thing that hormonal stim-
ulation and fluoride stimulation were much “better” when
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ATP concentrations were at >10× the concentration of the
apparent Km of the enzyme for ATP. This was nicely seen in
a “matrix experiment” in which I changed both the concentra-
tions of ATP and Mg2+ (Fig. 1). This also allowed me to build
a Hill plot (Fig. 2) showing the action of the hormone ACTH
and of fluoride to lower the requirement for Mg2+

(Birnbaumer et al., 1969 [3]).
We never found an effect of insulin (it stimulates phospho-

diesterase), but, in a roundabout way, changing from fat cell
membranes to liver membranes after Rodbell’s return from
Geneva, incorporation of Steve Pohl and Michiel Krans into
the group, and development of a glucagon receptor-binding
assay with 125I-labeled glucagon, we became aware that hor-
mone binding was affected by ATP and still better by 1000×
lower concentrations of guanosine-5′-triphosphate (GTP)
(Rodbell et al., 1971 [4]). This led to the discovery that acti-
vation of liver adenylyl cyclase by glucagon required GTP
(Rodbell et al., 1971 [5]). The high levels of ATP I had seen
to be needed to get good stimulations by hormone and fluoride
were to bring in the contaminating GTP.

The concept of discriminator-transducer-amplifier was
coined by Rodbell and presaged the existence of the third
player in signaling: a component (protein) that would bind
GTP and transduce hormone binding to the discriminator
(receptor) into activation of adenylyl cylcase (amplifier) and
thus amplify the signal of one discriminator into thousands of
cAMPmolecules. Within a few years (1971–1978), it became

clear that the GTP requirement was a general property of
hormone stimulated adenylyl cyclases (reviewed in
Birnbaumer, 1990 [6]).

A conceptual breakthrough came with Daniel Cassel’s and
Joseph Selinger’s findings in Israel. The Israelis were able to
measure stimulation of a turkey membrane GTPase by isopro-
terenol and found that this GTPase was inhibited by cholera
toxin. They next correlated this effect of cholera toxin, with
cholera toxin’s action to activate adenylyl cyclases, and pos-
tulated, correctly, the existence of an active adenylyl cyclase-
GTP complex, which is transient until GTP is hydrolyzed
(Cassel & Selinger, 1977 [7]). It agreed with Rodbell’s finding
that a non-hydrolyzable GTP analog, GMP-P(NH)P, activated
adenylyl cyclase to the same level as hormones, fluoride, and
cholera toxin did. As GTP did not, Rodbell hypothesized that
the GTP GMP-P(NH)P difference might reside in the non-
hydrolysable nature of the analog, thus implicating the exis-
tence of a GTPase activity (Londos et al., 1974 [8]).

The G protein, a tale of two continents

A. In Würzburg, Thomas Pfeuffer capitalized on the effect of
GMP-P(NH)P, built an affinity matrix linking GMP-P(NH)P’sγ
phosphate to the matrix, exposed the matrix to detergent-
solubilized pigeon erythrocyte membranes and eluted with
GTP or GMP-P(NH)P. Although the adenylyl cyclase in

Fig. 1 Changes in the complex
interplay between ATP and Mg2+

upon stimulation of fat cell
membrane adenylyl cyclase:
Hormone- (ACTH) and fluoride-
stimulated activities show similar
dependence on Mg2+. Adapted
from Birnbaumer, Pohl and
Rodbell, 1969 [3]
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detergent solubilized membranes had lost hormonal stimulation,
it had retained activation by GMP-P(NH)P and fluoride. This
was also lost after incubation with the affinity matrix. The GTP-
eluate reconstituted activation by GMP-P(NH)P and fluoride
and contained two protein fractions that could be labeled with
an photoactivatable GTP analog: one of 42 kDa (now Gs-alpha)
and another at 23 kDa (now a mixture of small GTPases includ-
ing rho, rac, and the rab group of small GTPases) (Pfeuffer, 1977
[9]).

B. In Virginia, Al Gilman’s group discovered that the orig-
inally labeled “AC-minus” S49 cell variant isolated in San
Francisco by Bourne and Coffino was defective in a regulatory
component required for enzymatic adenylyl activity in the
presence of Mg2+ and characterized it as the component re-
sponsible also for GMP-P(NH)P and fluoride stimulation.
Originally called G/F (for its activity), it is now Gs—published
in 1977, in the same issue of the Journal of Biological
Chemistry in which Pfeuffer’s work was published (Ross and
Gilman, 1977 [10]). A reconstitution assay of S49 cell adenylyl
cyclase in AC-minus membranes (now cyc− (“minus”) mem-
branes, was used by Gilman’s group to purify G/F. It was an
αβ dimer. The reconstitution assay was also used by us (Juan
Codina) to purify Gs from human erythrocyte membranes.

There is more than one G protein

Adenylyl cyclases are not only stimulated by hormone recep-
tors but also inhibited by another set of receptors. This inhib-
itory effect was also found to be dependent on GTP. The
existence of a Gi was inferred from studies by my laboratory,
first in Chicago (Birnbaumer, 1973 [11]) and then in Houston
(Hildebrandt et al., 1983 [12]), by Günter Schultz and Karl
Heinz Jakobs in Heidelberg (Jakobs et al., 1978 [13]) and in
Rodbell’s laboratory at the NIH in Bethesda, Maryland
(Londos et al., 1978 [14]). Michio Ui in Japan found that
pertussis toxin (PTX) inhibits inhibitory regulation of
adenylyl cyclase. In 1982, he discovered that PTX is an

ADP-ribosyltransferase (Katada & Ui, 1982 [15]) which
ADP-ribosylates, a 40 kDa protein, which, in my laboratory,
co-purified with Gs (Codina et al., 1983 [16]). Thus, there is a
Gi as opposed to a GTPase-activating protein. Another game
changing discovery was that Gs, Gi, and Go (the “other” PTX
substrate, expressed abundantly in the brain, discovered in the
laboratories of Eva Neer at Harvard and Al Gilman in Dallas)
were allαβ dimers that dissociate upon binding and activation
by non-hydrolyzable GTP analogs. A GTPase-driven, activa-
tion-deactivation, subunit dissociation, and re-association cy-
cle had evolved for the original transducer (Fig. 3). In 1981,
Lubert Stryer coined the name of transducin for an αβγ
GTPase that transduces the light-activated rhodopsin signal
into activation of phosphodiesterase in retinal rod cells, which
had been characterized biochemically by Bitensky at Yale and
Herman Kühn in Jülich, Germany. In 1984, my laboratory
(John Hildebrandt and Juan Codina) showed that Gs, Gi,
and Go are also αβγ trimers (HiIdebrandt et al., 1984 [20]).
In collaboration between my laboratory and that of Robert
Lefkowitz, Gs was shown to be a beta-adrenergic receptor
activated GTPase. This represents the convergence of
adenylyl cyclase related G protein research and visual signal
transduction. The parallelism had been completely missed by
the adenylyl cyclase nerds, us included.

Pure Gi (then Ni) was also found to be a GTPase (Teresa
Sunyer), requiring Mg2+ with an apparent Km 10–15 nM
(Sunyer et al., 1984 [21]). This brought the specter of the
existence of a Mg2+-binding site in the system to the forefront:
on α or on βγ?

Receptors mediating effects of many hormones, many neu-
rotransmitters, and many autacoids, around 750 in humans and
1700 in mice, were all found to regulate cellular responses using
theGTPase-G protein signal transductionmechanism. The name
G-protein-coupled receptor or G-protein-coupled receptor
(GPCR) was coined. Rather than affecting adenylyl cyclase ac-
tivity, many of these receptors stimulated phosphoinositide mo-
bilization and formation of IP3 and DAG from PIP2 by a GTP-
dependent activation of phospholipase Cβ (PLCβ). Three dif-
ferent and independent approaches led to the identification the G
proteins that stimulate PLCβwithα subunits of ca. 42 kDa. Paul
Sternweis, in Dallas, purified proteins that bound to a Gβγ
affinity matrix (Pang & Sternweis, 1989 [22]). John Exton’s
laboratory at Vanderbilt University purified a low abundance
protein doublet that stimulated PLCβ activity (Taylor et al.,
1990 [23]). Mel Simon at CalTech in California used the new
and powerful cDNA cloning approach and “fished” for homo-
logues of Gs/Gi/Go/transducin α subunits, an approach he had
pioneered, and we all had started to use and he cloned several
homologues. Naming of cloned Gα subunits became difficult.
Namingαt,αs,αi, andαo by function was OK, and whenmore
than one existed, such as rod and cone αt, they became αtr and
αc, or when threeαi’s were found to exist they becameαi1,αi2,
and αi3, but when novel α’s were cloned with as yet unknown

Fig. 2 Hormonal and fluoride stimulation of adenylyl cyclase shift the
requirement of the enzyme system for Mg2+. Adapted from Birnbaumer,
Pohl and Rodbell, 1969 [3]
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function, it becamemore difficult. Although the first suchαwith
unknown function was named αq, the next unambiguous letter
of the alphabet after the “o” of αo (p had been used for PLC-
stimulating G protein and the cDNAs had as yet an unknown
function), the subsequent αs were numbered by Mel Simon 11,
12, 13, 14 and 15/16 (Strathman & Simon, 1990 [24]).

Sternweis’s Gβγ binding αs and Exton’s PLCβ stimulating
proteins were encoded in the q/11 cDNA clones (Smrcka et
al., 1991 [25]; Taylor & Exton, 1991 [26]; Wu et al., 1992
[27]). Gα12 and Gα13 were eventually shown to stimulate
GTP exchange factors specific for Rho, Rac, and Cdc42 with
roles in cytoskeletal assembly and remodeling.

Gβγ is also a signaling arm of trimeric G proteins

So had been the discovery of G protein signaling mediated by
their α subunits. But in 1990, Monserrat Camps, a student in
the Heidelberg laboratories working with Peter Gierschik,
showed activation of PLCβ by Gβγ (Camps et al., 1990
[28]). Confirmed by Simon’s laboratory at CalTech (Katz et
al., 1992 [29]), this became the first of many mammalian ef-
fector systems regulated by Gβγs instead of Gαs. PLCβs and
adenylyl cyclases are regulated by both Gαs and by Gβγs,
and, while Gsα is always stimulatory and Giαs are always
inhibitory, Gβγs are either stimulatory or inhibitory, depend-
ing on which of nine adenylyl cyclase subtypes one is consid-
ering (Taussig et al., 1994 [30]). At the level of voltage-gated
calcium channels, first shown to be under G protein regulation
by Jürgen Hescheler, Walter Rosenthal, Wolfgang Trautwein,
and Gunter Schultz (Hescheler at al., 1987 [31]), Gβγs are
stimulatory (Logothetis et al., 1987 [32]).

Whereas by 1992 “Signal transduction by G proteins” had
become a field of its own (more fully reviewed in [33, 34]), the
mechanism by which G proteins were activated by GPCRs was
still a matter of conjecture. It was clear that GPCRs promoted
exchange of GTP for GDP. But what drove the reaction for-
ward? Two types of study with Mg2+ indicated that there should

B

A

Fig. 3 a One of several drawings depicting the discriminator-transducer-
amplifier concept proposed by us in 1970. Adapted from Birnbaumer, 1990
[17] and Birnbaumer and Zurita, 2010 [18]. b The GTPase-driven double
activation- subunit dissociation deactivation-subunit reassociation cycle that
is the core of the signal transduction by G proteins mechanism. b Top: the
cycle in the absence of hormonal stimulation. Adapted from Birnbaumer,
1993 [19]; b bottom, the cycle under hormone receptor stimulation.
Although the βγ is shown as dissociating together with HR, this has not
been experimentally addressed. Adapted from Birnbaumer, 1990 [6] and
1993 [19]

Fig. 4 Atomicmodel of how theβ andγ phosphate oxygens of GTP and
the γ subunit’s Ser and Thr hydroxyls coordinate Mg2+ with the
consequence that the GTPase fold is locked into its signaling competent
conformation. The coordinates of the crystal structure are those of the
crystallized Mg2+ GMP-P(NH)P-Gi1γ complex (accession number
1CIP.pdb). Adapted from Birnbaumer and Zurita, 2010 [18]
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be a Mg2+-binding site other than GTP (Kd 60 *M). The sub-
strate ATP (Kd also 60 μM) could not be it, because of the
following: (1) the apparent Km forMg2+ of the intrinsic GTPase
activity mentioned above was 10–15 nM, and (2) the Km for
Mg2+ for activation of liver membrane Gs by GTPγS, as mea-
sured in the absence and presence of glucagon by Ravi Iyengar
in 1982, was of about 15 μM, also lower than the two known
Mg2+-binding components in the activation reaction (Iyengar et
al., 1982 [35]).

The crystals

The GTPγS-Mg2+-transducin α complex was crystalized in
1994 (1TND.pdb), that of the nucleotide- and Mg2+-free
transducin αβγ complex (1GOT.pdb) in 1996, and that of

the Mg2+-free GDP-Gi1αβγ complex (1GP2.pdb) in 1996.
No indication of where an allosteric site for Mg2+ could be.
At one point, I had placed it on the Gβγ dimer. In 2006, I
was referred by David Siderovski to a paper from Steven
Sprang’s group in which binding of Mg2+ to purified nucle-
otide GTP-Goα complexes increased the intrinsic fluores-
cence of the Trp of the switch II region of the GTPase fold
and did so with an apparent Kd of 8 nM (Raw et al., 1997
[36]). This placed the Mg2+ site on the α subunit. Gazing at
crystals, I came to realize that Mg2+ was held into place by
four coordinating oxygens: the β and γ hydroxyls of GTP
and one hydroxyl each from the equivalent of ras Se16 and
Thr35 (Gs Ser54 and Thr204, and Goα Ser47 and Thr182).
The octahedral coordination shell of the Mg2+ is completed
by the oxygens of two coordinating water molecules held in
place by hydrogen bonds of the α phosphate of GTP and the

Table 1 G protein-coupled receptor (GPCRs) families constitute the largest gene family in the mammalian genome. Human and mouse GPCR
familiesa

Receptor H. sapiens M. musculus
1.Rhodopsin (Class A) 659 1337

Non-Olfactory 271 300
alpha (Opsin Family – DRY) 101 105

Opsin
Prostaglandin
Amine (NE, DA, 5HT)
Melatonin
Melacor�n

beta 43 46
gamma (Pep�des) 64 67

MCH
Chemokine

delta 63 82
MAS-related
Glycoprotein /LH, FSH, TSH)
Purine

Olfactory 388 1037
Olfactory Pseudogenes ~ 450 ?

2. Secre�n (Class B) 15 15
3. Glutamate (Class C) 22 79
4. Adhesion 33 31
5. Frizzled 11 11
6. Taste type 2 (TAS2) 25 34
7. Vomeronasal type 1 (VR1) 3 165
8. Other 23 25
Total 791 1697

* from Bjarnado�r et al (2006) [40]
a Number of GPCRs identified in the human and mouse genomes by subclasses. The number of orthologues in the two genomes is very close except for
olfactory receptors of which there are many more in mouse than man, and also V1R-type pheromone receptors of the vomeronasal system of the mouse,
which upper primates and man have lost. The data summarized in the table were taken from Bjarnadóttir et al., 2006 [40]
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carbonyl group of a conserved aspartate. Thus, the allosteric
site was the coordinating α subunit itself. Further, changing
viewpoints, Mg2+ acts as a keystone locking GTP into place
and the GTPase in its active signaling conformation. The
only way for Mg2+ to exit is hydrolysis of GTP, at which
point GDP is also free to exit. The site would then be
refilled by GTP or GDP, in proportion to their relative abun-
dance in the cytosol, which is GTP to GDP 10:1. This of
course could only happen after the occluding Gβγ dissoci-
ates to allow GTP to GDP exchange to happen. GPCRs
therefore promote GTP to GDP exchange by promoting
the dissociation, total or partial, of Gβγ to open the path
for nucleotide exchange. Entering GTP, but not GDP, is
again locked into place by Mg2+. And so the cycle proceeds
until the GPCR ligand leaves. The geometry of the coordi-
nation of Mg2+ by GTP and Gi1α is illustrated in Fig. 4. For
further reading, see Birnbaumer and Zurita, 2010 [18].

GPCRs

Although the first GPCR with known structure and sequence
was rhodopsin, the existence of structural homologues be-
came evident only after the cloning of the various adrenergic
receptors in Robert Lefkowitz’s laboratory using amino acid
sequence information derived from purified proteins (Brian
Kobilka and lab colleagues). Cloning by nucleotide sequence
homology soon led to an explosion of structural homologues
(to which also my laboratory contributed; cf. Liao et al., 1989
[37]; Levy et al., 1992 [38, 39]) that formed the superfamily of
GPCRs as we know it today (reviewed in Bjarnadóttir et al.,
2006 [40]; summarized in Table 1).

By 1991, it had also become evident that there were many
more subtypes of GPCRs than ligands. Presaged by pharma-
cology and confirmed by structural analysis of the
abovementioned cloning work. Thus, acetylcholine (Ach) ac-
tivates five muscarinic receptors, norepinephrine, and epi-
nephrine interact with nine adrenergic receptors, glutamate
interacts with five metabotropic GPCRs (Mg2+ luRs), seroto-
nin interacts with seven GPCRs (Fin Olav Levy and Thomas
Gudermann cloned two, while in my lab). In all cases, the
signaling of the ligand through Gs, Gi, or Gq/11 depends on
the GPCR it encounters on its different target cells. For neu-
rotransmission, ligands also interact with non-GPCR
ionotropic receptors, i.e., ion channels: nicotinic for ACh,
5HT3 for serotonin, GluR’s (NMDA, AMPA) for glutamate,
GABA-A (for γ-aminobutyric acid).

Calcium signaling

My laboratory became interested in Ca2+ regulation by G
proteins when in 1989 my graduate student Ching-Fong Liao

cloned the fifth muscarinic receptor (Liao et al., 1989 [37])
and found it to activate the pathway Gq/11→PLCβ→IP3→
IP3R→Ca2+ release from the endoplasmic reticulum (ER)
store, thus triggering changes in cytosolic Ca2+ levels. This
brought together in my laboratory two signaling fields:
GPCR-Gs/Gi proteins and phosphoinositide turnover by Gq/
11-coupled GPCRs causing Ca2+ release from the ER through
activation of the IP3 receptor. The initial observations leading
to the understanding of this signaling pathway had been made
by the Hokins in the early 1950s (Hokin & Hokin, 1953 [41]).
The signaling pathway had been worked out over the years
with the participation of the laboratories of Bob Michell
(reviewed in Michell, 1992 [42], of Michael Berridge and
Robin Irvine that led to the discovery of inositol-
trisphosphate (IP3 as a second messenger (Streb et al., 1983
[43]; reviewed in Berridge and Irvine, 1989 [44]); of
Katsuhito Mikoshiba (characterization of the IP3 receptor
(cerebellar P400, now IP3R,Miyawaki et al. [45]); the cloning
of three IP3Rs by Salomon Snyder in collaboration with Axel
Ulrich at Genentech (Ross et al. [46]); and many others which
remain unnamed.

After cloning of theM5muscarinic receptor (an example of
the power of molecular biology), my laboratory was faced
with the question: how does it signal? We used the Dowex1
chromatography system developed by Robin Irvine and Mi-
chael Berridge to asses stimulation of PLCβ’s activity to hy-
drolyze PIP2 to PIP+IP3 in intact cells pre-labeled with
[3H]myo-inositol (Irvine et al., 1982 [47]) and determined that
it was a Gq/11-coupled GPCR. Interestingly, upon testing oth-
er GPCRs for their assumed G protein specificity, we found
this parameter to be more of a selectivity than a specificity.
Even typical Gs-coupled GPCRs, such as the luteinizing hor-
mone receptor (Gudermann et al., 1992 [48]) and the beta-

Fig. 5 The first TRPC-less mouse (ID tag 4537-7) after having delivered
8 pups, four of which were TRPC-less HeptaKO and four were Trpc3+/-
HexaKO
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adrenergic receptor (Zhu et al., 1994 [49]) were found to also
be able to activate the PLCβ system.

The visualization of changing cytosolic Ca2+ levels with
ratiometric fluorescent Ca2+ indicator dyes, invented by Roger
Tsien (Grynkiewicz et al., 1985 [50]), had opened our minds
to the dynamic aspects of signaling triggered by Gq-coupled
GPCRs. The newly clonedM5muscarinic receptor turned out
to be a potent activator of the Gq/11 signaling pathway and
my laboratory’s focus became the mechanism by which cells
refill Ca2+ stores after they are emptied by IP3-IP3R (Liao et
al., 1990 [51]). One hypothesis prevailing at that time was that
refilling might be mediated by functional homologues of the
Drosophila ion channel mutated in the trp fly (suggested to me
first by Reinhold Penner but also proposed by others in the
literature). Did such a homologue exist in the mammalian
genome? Between 1995 and 1996, we succeeded in finding
not one but six such homologues in the mammalian genome
by molecular cloning (Zhu et al., 1994; 1995 [52, 53]). They
were initially called TRP (for transient receptor potential, the
phenotype of the Drosophila mutant), but parallel, unrelated
research lines discovered the existence of other more distant
structural homologue of Drosophila trp, such as the capsaicin
and menthol receptors, the polycystic kidney disease gene
product, one of the mucolipidosis-causing genes. The nomen-
clature was changed for our TRPs to transient receptor
potential-canonical (TRPC) channels, for classic or canonical.
A seventh TRPC was found in YasuoMori’s laboratory 1 year
later (Okada et al., 1996 [54]).

Reinhold Penner is the discoverer of an inward Ca2+ cur-
rent activated at the same time as Ca2+ refilling starts of stores
that are being depleted (Hoth & Penner, 1992 [55]). He called
it the calcium release-activated current (Icrac). Icrac is the
electrophysiologic correlate to store-depletion activated or
store-operated Ca2+ entry (SOCE), hypothesized by him, us
and others, including Veit Flockerzi, to proceed through the
TRPC channels. Indeed, independent of our efforts,
Flockerzi’s laboratory cloned two TRPCs naming them
CCE1and CCE2 (now TRPC4 and TRPC5; Philipp et al,
1996; 1998 [56, 57]). Definitions change as new knowledge
accumulates and at present, Icrac channels are activated by
store depletion without apparent PLC activation, as occurs
when ER Ca2+ pumps are inhibited.

Though fulfilling many criteria, TRPCs are not the molec-
ular correlate to Icrac channels, ORAIs however are. ORAIs
of which there are three, were discovered in 2006 and are
tetra-spanning plasmamembrane proteins that form tetrameric
(Penna et al, 2008 [58]; Thompson & Shuttleworth, 2013
[59]) or hexameric (Hou et al., 2013 [60]) channels which
upon expression form Icrac channels, which TRPCs do not.

Two questions offered themselves: are TRPC channels ac-
tivated by store depletion? And, what do TRPCs do? These
are questions are what my laboratory has been addressing
during the last years, much in collaboration with investigators

studying phenotypes that develop in TRPC knock-out mice.
The results obtained and questions they generated will con-
clude my review.

Are TRPC channels activated by store depletion?

The answer is that one TRPC, TRPC1, is activated by store
depletion (Zitt et al., 1996 [61]; Zeng et al. 2008 [62]; Shi
et al., 2012 [63]). The connecting element between store
depletion and TRPC1 activation is STIM1, the ER Ca2+

sensor. The executing arm of STIM1 is its cytosolic C-
terminus. It is easier to develop the STIM1-TRPC1 inter-
action model by describing the current model that best
describes activation of the CRAC channel formed of ORAI
molecules.

STIM, ORAI, and their interactions (except
when noted STIM refers to STIM1 and ORAI refers
to ORAI1)

STIM is a single pass transmembrane molecule with a cy-
tosolic C-terminus. The ER portion has a classical double
EF-hand Ca2+-binding domain. Ca2+-occupied STIM is be-
lieved to be monodispersed. Upon dissociation of Ca2+ due
to store depletion, STIM molecules cluster and the clus-
tered C-termini “instruct” the assembly of the CRAC chan-
nel from ORAI dimers located in the plasma membrane
(PM). Junctional complexes form between ER and PM,
connected by clustered STIMs (Wu et al., 2006 [64]; Luik
et al., 2006 [65]). Ca2+ enters through the CRAC channel.
An approximately 100-aa-long region of STIM called crac-
activation domain (CAD) or STIM ORAI activation region
(SOAR) is the executing region of STIM responsible for
activating the CRAC channel made up of ORAI molecules.

ORAI is a tetra-spanning PM protein with cytosolic N- and
C-termini. ORAI’s N-terminus occludes access of SOAR to its
interaction site on ORAI’s C-terminus. To open the access to
SOAR, the C-terminus of STIM “pushes/pulls” the N-
terminus of ORAI out of the way.

Full length ORAI is not activated by the 100-aa-long
SOAR; ORAI without part of its N-terminus is activated by
SOAR (Yuan et al., 2009 [66]).

In a strict sense, only TRPC1 is activated by store deple-
tion. Akin to ORAI, the activation of TRPC1 occurs as a
consequence of two protein-protein interactions with the same
regions of STIM that are involved in activating ORAI: (1)
STIM1’s positively charged KK C-terminus interacts with a
negatively charged DD doublet located downstream of
TRPC1’s TRP box to gate channel opening (Zeng et al.,
2008 [62]; Kim et al., 2009 [67]) and (2) STIM1’s CAD/
SOAR sequence disrupts an inhibitory interaction between
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TRPC1’s N-terminal and C-terminal-coiled coil domains to
allow for the gating function of STIM1’s KK-terminus to pro-
ceed (Lee et al., 2014 [68]). An elegant recent study from Luis

Vaca’s laboratory showed that two molecules of SOAR are
required to activate what presumably is a tetrameric TRPC1
channel (Asanov et al., 2014 [69]).

Table 2 Thirty-two reports on roles of TRPC channels deduced (mostly from phenotypes)
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The final word, as to what the molecular makeup of a
store operated channel may be, is still to be written, as, for
example, the store-depletion activated TRPC1 appears to
require presence of ORAI (Kim et al., 2009 [67]) and, as
my laboratory has published, there are functional interac-
tions between several TRPCs and ORAI, such as TRPC-
dependent enhancement of thapsigargin-activated Ca2+ en-
try by ORAI (Liao et al., 2007 [70]) and silencing in rest-
ing cells of spontaneous activity of overexpressed TRPC3
and TRPC6 by ORAI (Liao et al., 2008 [71]; reviewed in
Liao et al., 2014 [72]).

We asked ourselves whether ORAI could form CRAC
channels independent of a TRPC, as ORAI had not been
expressed in a cell devoid of TRPCs (all mammalian cells
express at least two, most express three, and many express
four and some even five TRPCs) and store depletion acti-
vates not only ORAI channels but also TRPC1. One ap-
proach to convince the world and ourselves as to whether
ORAI channels can operate independently of a TRPC was
to generate a TRPC-null cell line. Initiated in 2008, using
five TRPC KO alleles from my laboratory and those of
Catherine Dulac at Harvard (TRPC2 KO) and Veit
Flockwrzi and Marc Freichel at the University of the Saar-
land (TRPC4 KO), we combined by breeding the KO al-
leles. To my utmost surprise, 5 years later, in May 2013, a
female live TRPC-null mouse was born in our animal care
facility in North Carolina: a HeptaKO (Fig. 5). It was pos-
sible to expand this line and generate embryonic fibro-
blasts. TRPC-null fibroblast generates an unaltered Tg-
induced store operated Ca2+ entry (unpublished). Thus,
one part of the question has been answered: ORAI chan-
nels can operate in the absence of TRPCs. Whether TRPCs
can operate in the absence of an ORAI is open for
discussion.

What do TRPCs do?

TRPCs turned out to have an amazing array of roles in both
health and disease. These roles vary for the individual TRPCs.
Among them are as follows:

– TRPC1 intervenes in cardiac hypertrophy development
– TRPC6 is both proinflammatory and required for wound

healing;
– TRPC3 plays roles in macrophage’s efferocytosic activity

and pathologic endothelial cell remodeling;
– Two TRPCs are responsible for endothelium-dependent

vascular smooth muscle relaxation: TRPC4 is required
for formation of endothelium-derived relaxing factor
(EDRF) or NO, TRPC3 is critical for development of
endothelium-derived hyperpolarization (EDH);

– TRPC3 is also required for Purkinje cell’s slow excitatory
postsynaptic currents (sEPSCs), for sound transduction
and auditory neurotransmission;

– TRPC5 plays a critical role in development of plateau
potentials in CA1 neurons of the hippocampus;

– TRPC7 intervenes in initiation of epileptic seizures;
– TRPC6 and TRPC7 are required for intrinsically photo-

sensitive retinal ganglion cells (ipRGC) to generate an
action potential in response to day/night signaling by
melanopsin; and

– TRPC2 is the transduction channel in vomeronasal sen-
sory neurons

Table 2 is an expanded list of phenotypes found in TRPC
knockout mice.

Given the multiple roles inferred from single and double
TRPC knockout studies (Table 2), one cannot but wonder
how is it possible that the hepta knockout not only lives but
strives? These and other questions remain for future studies
to be answered. Figure 6 depicts our current understanding
of signal transduction by G proteins as applied to
phosphoinositide mobilizing Gq/11-coupled GPCRs and
the resulting activation of Ca influx by ORAI and TRPC
channels. My closing statement: the molecular nature of
and interplay among none of the elements shown in the
figure were known 50 years ago.

Fig. 6 Signal transduction by G proteins, activation of PLCβ by Gq-
coupled GPCRs, and Ca2+ entries that ensue. PLCβ-generated signals
activate TRPCs by DAG and as yet undefined signal(s), and trigger Ca2+
release from stores by IP3; store depletion activates STIM which in turn
both, assembles ORAI-based CRAC channels from ORAI dimers, and
activates TRPC1 (and possibly others). Na+ entering through TRPCs
activated by PLCβ signal(s) drives reverse mode exchange of the Na+-
Ca2+ Exchanger (NCX) causing more Ca2+ to enter. Activation of
TRPCs also causes membrane depolarization to varying degrees
depending on cellular context and may activate voltage-gated ion
channels of the cell under consideration. In a cardiomyocyte, this would
activate voltage gated L-type Ca2+ channels. Ca2+ entering through Orai
and Ca2+ entering through TRPC may activate different cellular
functions (Cheng et al. 2011 [106]. The direct regulation of TRPCs by
ORAI dimers is proposed
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