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Abstract: In Biotechnology, the expression of recombinant proteins is a constantly growing field and 
different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional 
systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a 
good choice to express high levels of proteins, especially those with post-translational modifications. 
Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new bio-
factories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of re-
combinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been 
commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other 
hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are 
widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the ad-
vantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including en-
zymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharma-
ceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect lar-
vae as an alternative to produce commercial recombinant proteins. 
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INTRODUCTION 

 There is a fast growing demand for low cost processes to 
produce biologically active biomolecules, such as eukaryotic 
proteins, glycoproteins, peptides and lectins. In Biotechnol-
ogy, there are several systems currently available to express 
recombinant proteins. Bacteria, yeast and mammalian cells, 
followed by insect cell cultures, are commonly used as hosts 
to produce recombinant proteins in a short time [1, 2]. Insect 
cell systems, including the baculovirus expression system are 
broadly applied to produce proteins with biotechnological or 
pharmaceutical purposes. The system provides a post-
translational modification pattern similar to that of mammal-
ian cells when an eukaryotic environment is required [3]. 
The proteins expressed by this system are correctly folded 
and are usually biologically active [4]. In most cases, the 
insect cell lines Sf9, Sf21 or HiFive have been used as hosts. 
Nine products developed in the baculovirus-insect cell system 
have already been approved for human and veterinary use  
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[5]. However, the most important drawback of recombinant 
protein production in insect cell culture is its high cost at 
industrial scale because of the tissue-culture specialized fa-
cilities and reactors needed [6]. Besides, at industrial scale, 
the risk of contamination is rather high. According to Ver-
masvuori et al. HIV-1 Nef production using insect cell-based 
strategy was four times more expensive than in Escherichia 
coli [7]. Using directly live insect larvae as "biofactories" is 
a low-cost alternative to scale up the production of recombi-
nant proteins. This approach is very attractive and the manu-
facturing cost could be reduced up to four hundred times in 
contrast with insect cell cultures [8-11]. In this review, we 
describe the use of baculovirus expression system and insect 
larvae as biofactories to scale up recombinant protein ex-
pression. 

THE BACULOVIRUS EXPRESSION SYSTEM: GEN-
ERALITIES AND CONSTRUCTION  

 Baculoviruses are rod-shaped DNA viruses with double-
stranded circular genomes of 80-180 kbp in size. The Bacu-
loviridae family infects only arthropod populations, i.e., 
these types of viruses do not replicate in vertebrates, plants 
and microorganisms [12]. This makes the baculovirus ex-
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pression system safe for the development of recombinant 
proteins of human and veterinary application. 
 The baculovirus expression system has become a recog-
nized platform for the production of gene therapy vectors 
and vaccines in insect cell lines but also insect larvae can be 
used [3]. In biotechnology, two species are broadly applied 
as vectors to express recombinant proteins in insect larvae: 
Autographa californica multiple nucleopolyhedrovirus 
(AcMNPV), which is the most widely used baculovirus ex-
pression vector, especially in American and European coun-
tries and Bombyx mori nucleopolyhedrovirus (BmNPV), 
mainly adopted in China, India, Japan and other Asian coun-
tries. During the natural infection process, baculoviruses 
produce two viral phenotypes with specific biological prop-
erties: occlusion-derived virus (ODV) and budded virus 
(BV). ODVs enable the horizontal virus transmission from 
insect to insect through large (1-5 µm) structures called oc-
clusion bodies (OB) or polyhedra, within which the viruses 
are embedded. Polyhedra, that contaminate larval food, are 
ingested and ODVs are released in the alkaline environment, 
infecting the midgut columnar epithelial cells, the only sus-
ceptible cell type. After the first round of infection, the BVs 
produced by the ODV-infected midgut disseminate the infec-
tion from cell to cell within the host because all cell types are 
susceptible to this viral form. Based on this, insect larvae can 
be infected either by intrahemocelical injection of BV or 
orally with OB contained in the diet [13]. 
 Baculoviruses have two strong very late promoters: poly-
hedrin and p10. Both are commonly used to express foreign 
genes, because their products are non-essential for BV pro-
duction and virus propagation in the cell culture. It must be 
note that most recombinant baculoviruses are constructed 
traditionally by replacing the polyhedrin gene (polh) with 
that of interest. This kind of recombinant baculovirus is iden-
tified as polyhedrin-minus genotype (polh-) because of its 
incapacity to generate polyhedra and thus, its low effective-
ness to infect larvae by oral inoculation. Therefore, the ap-
plication of polh- recombinant baculoviruses is restricted to 
the intrahemocelical infection of BV [14, 15]. The construc-
tion of a polh- recombinant baculovirus is not achieved by 
direct cloning of the foreign gene because the baculovirus 
genome is very large to manipulate. So, the classical way of 
cloning is by recombination: homologous recombination or 
transposition. The homologous recombination event is car-
ried out inside the insect cells by cotransfection with the 
transfer vector that containing the foreing gene and the viral 
genome (Baculogold®, Pharmingen). On the other hand, the 
transposition event is carried out inside a bacterium by trans-
position between the transfer vector and a bacmid that con-
taining the complete baculovirus genome and then the insect 
cells are transfected with a bacmid purified from the bacte-
rial culture (Bac-to-Bac® system, Invitrogen). These two 
commercial systems for AcMNPV have been extensively 
reviewed [3, 5, 12]. The Bac-to-Bac®system was also devel-
oped for BmNPV by Motohashi et al. [16]. Once recombi-
nant baculovirus has been established (3 weeks), it is used to 
infect larvae to produce recombinant proteins.  
 Since oral infection using polyhedra is a simpler method 
than intrahemocelical infection when a large number of in-
sect larvae have to be infected, mainly at large-scale produc-

tion of proteins. Alternatives to construct recombinant bacu-
lovirus with ability to produce polyhedra (polyhedrin-plus 
genotype or polh+) have been explored. Je et al. generated 
the bacmids pBmGOZA and pAcGOZA that allow obtaining 
recombinant BmNPV and AcMNPVpolh+ viruses, respec-
tively. In this case, they introduced the gene of interest into 
the polyhedrin locus and polyhedrin gene was under the con-
trol of the p10 promoter [17, 18]. Romero et al. obtained the 
polyhedra-plus genotype (polh+) recombinant baculovirus 
using a bacmid for insect larvae infection. Then, they spread 
the polyhedral suspensions on the larval free-phenol diet and 
fed the larvae with contaminated diet [19]. On the other 
hand, Lopez et al. developed a new insect stable cell lines 
that express polyhedrin and able to occlude recombinant 
baculovirus by trans- complementation to achieve an oral 
inoculum for insect larvae [20].  

INSECT LARVAE SPECIES AND THEIR SUSCEPTI-
BILITY TO BACULOVIRUS INFECTION 

 The order Lepidoptera (butterflies and moths), the second 
largest order in the class Insecta, is a group of insects includ-
ing more than 100,000 described species. A lot of them are 
considered destructive plagues during their larval stage and 
affect important crops of economic interest. Spodoptera fru-
giperda, Spodoptera littoralis, Trichoplusia ni, Helicoverpa 
zea, Heliothis virescens and Rachiplusia nu are some of the 
lepidopteran species extensively distributed all around the 
world. All are permissive hosts to AcMNPV infection. Par-
ticularly, there is some industrial interest in the larvae of  
T. ni, the cabbage looper moth, because it is an excellent host 
for AcMNPV and has been extensively used to produce sev-
eral recombinant proteins in biotechnology [21, 22]. Nowa-
days, industrial-scale protein production in T. ni larvae is 
carried out by several companies (Chesapeake PERL, Sav-
age, MD, Sysmex, Japan, and ALGENEX, Spain). On the 
other hand, B. mori larvae have economic importance in silk 
production and for this reason this species has been domesti-
cated for thousands of years, usually cultivated on leaves of 
the mulberry (Morus alba). Also, it has become an eukary-
otic model system for scientific research. Although both the 
AcMNPV and BmNPV systems offer high level expression 
of genes of interest using larval hosts, the silkworm larva 
infected with recombinant BmNPV offers several additional 
advantages, i.e., it is easy to rear, it is large (120 mm long in 
the last stage) and easy to manipulate, it has a short life cycle 
(about 7 weeks), and it has its genetics and its biology well 
documented [23]. Silkworm pupae have also been used as 
bioreactors. Human granulocyte macrophage colony-
stimulating factor and artificial influenza virus-like particles 
have been produced in pupae [24, 25]. In contrast, other spe-
cies like S. frugiperda, H. zea, H. virescens and T. ni are also 
relatively easy to rear and produce similar or even more 
quantities per insect than B. mori. Additionally, the hemo-
lymph that content high lipid is the principal source to col-
lect the recombinant protein in B. mori. It makes more com-
plex the production process in comparison to this other spe-
cies in which the whole larva is processed for protein recov-
ery. 
 S. frugiperda, H. zea, H. virescens and T. ni have five or 
six larval stages depending on the temperature and food, 
reaching only 35-40 mm in length. All these species can be 
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reared under laboratory conditions, but while B. mori larvae 
in general are not susceptible to AcMNPV. S. frugiperda, S. 
littoralis, T. ni, H. zea, H. virescens and R. nu are not suscep-
tible to BmNPV. Recently, Park et al. have reported that 
some silkworm strains are highly-permissive to AcMNPV 
[26]. Although, all larvae are susceptible to intrahemocelical 
infection, different host species have demonstrated some 
degree of developmental resistance when the virus is admin-
istered orally. Resistance to larvae infection increase with 
age, and this is decisive to choose the infection route [19, 27- 
29]. H. zea and S. frugiperda larvae are resistant to oral in-
fection, however they are highly susceptible to infection with 
BVs injected into the hemocele. In contrast, H. virescens and 
R. nu have shown oral and intrahemocelical susceptibility 
[19, 20, 30, 31]. 
 Insect larvae other than B. mori are not widely exploited, 
mainly due to the lack of knowledge in rearing and maintain-
ing in laboratories [32]. B. mori is a very efficient host but it 
is mainly used in the silk industry. In contrast, R. nu, S. fru-
giperda and other lepidopteran species are plagues without 
any economic value. For this reason, it is interesting to ex-
plore these larvae as alternative hosts to produce recombi-
nant proteins.  

THE OPTIMIZATION OF THE PROTEIN PRODUC-
TION PROCESS IN LARVAE  

 The protein production process in larvae is a complex 
task, where one of the most important issues is the selection 
of the expression vector to be used. Another decision in-
cludes selecting larvae at the appropriate developmental 
stage. Larvae should be large enough to facilitate injection 
and yet not ready for pupae formation. Furthermore, insect 
protein synthesis capacity is optimal between the 4th and the 
5thinstars stages. 
 The time needed for recombinant protein expression 
should be monitored in each case because it may vary with 
each particular protein. To determine the expression level of 
the target protein, the larval extract is obtained by homog-
enization in a buffer that controls the melanization process 
[31]. Usually 3-5 days are required to reach the peak of pro-
tein expression. Once this optimization step is done and the 
protein quantified, the process can be linearly scaled up. The 
availability of automated rearing equipment and the fact that 
larvae are non-allergenic to human handlers make scale-up 
and mass production of recombinant proteins very attractive 
for commercial protein production. With an automated facil-
ity for mass rearing and controlled working conditions, it is 
possible to scale up to kilograms of protein-containing larvae 
per week. The yield of recombinant protein with post-
translational modifications can reach values in the range of 
micrograms or milligrams per larva. Analyzing the different 
hosts and their parameters is of great importance when 
choosing the expression system. Romero, et al. evaluated 
larvae reared at 24°C as biological factories to produce 
horseradish peroxidase isoenzyme C (HRPC), a protein used 
in important biotechnological fields such as diagnostics, bio-
catalysts and biosensors. They compared their potential as 
expression hosts by infection with recombinant baculovirus, 
either by injection of BV or by oral administration of poly-
hedral. Of the different larvae studied, those of S. frugiperda 

presented the best in HRPC expression (137 µg per g of lar-
vae) when intrahemocelically infected. Meanwhile, for oral 
infection, R. nu showed a high biotechnological yield of 
HRPC (110 µg per g of larvae) [14]. On the other hand, the 
same enzyme was expressed in yeast at a level of 0.1 mg l-1 

[33] and 41.3 mg l-1 in Sf9 cells, but the cost of enzyme pro-
duction was a hundred times more expensive than in the lar-
val system [34]. Furthermore, the viral replication rate and 
the larval susceptibility are influenced by the temperature so 
this effect was also studied on the expression of HRPC [14, 
35-37]. It has been observed that the HRPC expression in S. 
frugiperda and R. nu larvae increased 1.8 and 2.5-fold when 
the rearing temperature was increased from 24°C to 27°C 
[14]. On the other hand, when feline interferon alpha was 
expressed, the high temperature only accelerated the expres-
sion kinetics but had no influence on the yield [38]. There-
fore, parameters should be evaluated according to the re-
combinant protein to be produced. 

 Changes in the expression baculovirus vector can be im-
plemented to achieve higher levels of expression. For in-
stance, Gong et al. reported an important increase in insect 
cell expression level of the cholera toxin subunit B-insulin 
by included the PPHS element in the coding sequence [39]. 
This element also allowed increasing HRPC yield up to 1.8-
times in R. nu larvae due to the PPHS acted as a useful en-
hancer [14]. 

TRANSGENIC LARVAE TO MODIFY INSECT GLY-
COSYLATION PATTERN 

 Insect larvae are a low cost alternative to produce pro-
teins of pharmaceutical interest that often require mammal-
ian-like post-translational modification [3]. Mammalian gly-
coproteins produced in insects are often biologically active. 
However, insect cells generate simpler N-glycans than 
mammals [5] .Native protein produced by mammalian cells 
is of complex-type, terminally galactosylated or sialylated. 
However, the structure of N-glycans in insect recombinant 
glycoproteins is paucimannose and the cells are unable to 
add terminal galactose and sialic acid residues [40]. There-
fore, the recombinant glycoproteins produced in the bacu-
lovirus expression system are less stable in blood than native 
mammalian glycoproteins [41]. To solve this limitation, sev-
eral strategies have been implemented, such as transgenic 
insect cell lines that stably express mammalian glycosylation 
enzymes or co-expressing these enzymes and the foreign 
gene [5]. These technologies would bring about the expres-
sion of recombinant protein with mammalian-type N-glycans 
in insect larvae. For instance, the method to generate trans-
genic silkworm is to inject the PiggyBac-Transposon with a 
target construct into eggs [4]. In transgenic silkworm, some 
pharmaceutical recombinant proteins have already been ex-
pressed successfully in the silk gland and produced in co-
coons with a level of one to few hundred µg per mg of co-
coon weight [42]. Human collagen [43], feline interferon 
[44] and mouse monoclonal antibody [45] have been pro-
duced using this system. Therefore, insect larvae expression 
system would be use for the production of mammaliam gly-
coproteins, if the enzyme glycosylation pathway is enhanced 
[3]. 
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THE BACULOVIRUS SYSTEM IN INSECT LARVAE 
AS AN ALTERNATIVE PLATFORM FOR PHARMA-
CEUTICAL PROTEIN EXPRESSION 

 Insect larvae as “Biofactoies” are used as a low-cost al-
ternative for protein production. The use of larvae was pio-
neered [46]. Nowadays, two commercial recombinant pro-
teins for veterinary use are produced in B. mori by Toray 
Ind. Inc. (Tokyo, Japan): Intercat, a drug composed of feline 
interferon, and Interdog, a drug composed of canine inter-
feron gamma. Also, feline interferon is currently marketed in 
Europe under the name Virbagen Omega (Virbac).  
 The list of biopharmaceutical recombinant proteins pro-
duced in this system, especially in the last years, is endless. 
Many enzymes [19, 31, 47, 48], antibodies [49-53], vaccines 
[11, 54-60], diagnostic proteins [21, 61-66], hormones [67, 
68], lectins [69], and cytokines [38, 70-74] have been effi-
ciently expressed in insect larvae with good yield using re-
combinant baculoviruses as vectors. Some of the proteins of 
biomedical importance expressed in larvae infected with 
BmNPV or AcMNPV are well summarized in works [3, 4, 
9]. Tables 1 and 2 provides a summary of relevant biophar-
maceutical recombinant proteins expressed in insect larvae 
infected with recombinant AcMNPV and BmNPV respec-
tively. 
 For example, mouse anti-botulinum antibody fragment 
(Fab) has been expressed in T. ni larvae with a total yield of 
1.1 µg per g of larvae [52]. Similar results have been ob-
tained with antigen protein-based virus-like particles (VLPs). 
Deo et al. described the expression of Rous sarcoma VLPs in 

silkworm larvae. The yield of the VLPs was approximately 
8.2-fold higher than that obtained in stable cell lines [60]. 
High levels of recombinant wheat germ agglutinin have been 
obtained in R. nu, where yields reached 346.6 µg per g of 
larvae. Moreover, Urtasun et al developed a simpler purifica-
tion process to purify this protein based on aqueous two-
phase system coupled to affinity chromatography using chi-
tosan mini-spheres [69]. Feline interferon alpha has been 
expressed in R. nu larvae with a yield of 116 µg g larvae or 
3.7× 106 U per ml and in S. frugiperda larvae 22 µg per g of 
larvae or 1.1× 106 U per ml [38]. Feline interferon and canine 
interferon have also been expressed in B. mori larvae with a 
yield of 1.2 x108 U per ml of body fluid [70] and 528 µg per 
larvae [71] respectively. The high yield of Influenza A H1N1 
neuraminidase obtained in R. nu larvae (1.2 mg per g of lar-
vae) results in a very attractive cost-effective alternative to 
conventional cell culture-based methods for the expression 
of this important influenza antigen [59]. Dojima et al. have 
expressed antibodies in whole insects at a range of g of puri-
fied Fab/kg of larvae [73].  
 All these results indicate that insect larvae are an attrac-
tive platform for application in vaccine development.  

EXTRACTION AND PURIFICATION OF RECOMBI-
NANT PROTEINS 

 The downstream processing of recombinant proteins pro-
duced in insect larvae has not been deeply studied. The di-
versity of proteins which have been produced in insect larvae 
is so great that the development of standard methods becomes

Table 1. Biopharmaceutical proteins expressed in R. nu, S. frugiperda and T. ni larvae infected with recombinant AcMNPV. 

Proteins Host Expression level References 

Horseradish peroxidase isoenzyme C R. nu 480 µg per g larvae [19] 

Feline interferon-α R. nu 116 µg per g larvae [38] 

Neuraminidase (strain H1N1) R. nu 1.2 mg per g larvae [59] 

Germ agglutinin R. nu 346.6 µg per g larvae [69] 

Horseradish peroxidase izoenzyme C S. frugiperda 315 µg per g larvae [19] 

Feline interferon-α S. frugiperda  22 µg per g larvae [38] 

Rabbit haemorrhagic disease virus capsid protein T. ni 2 mg per larvae [11] 

Human adenosine deaminase T. ni 8-9 mg/22 larvae [47] 

Human II phospholipase A2 T. ni 800 µg per ml haemolymph [48] 

Recombinant single chain antibody against MHC Class II DR molecule epitope T. ni 2.8-3.2 mg per g of larvae [50] 

Glycoprotein G of viral haemorrhagic septicemia virus T. ni 0.3 mg per larva [53] 

Human papillomavirus-like particles T. ni 18-21 mg per g larvae [56] 

Hemagglutinin (strain H1N1) T. ni 113 µg per larvae [57] 

Human epidermal growth factor T. ni 9.1 mg per g larvae [72] 

Human fibroblast growth factor-2 T. ni 2.6 mg per g larvae [72] 

Human keratinocyte growth factor-1 T. ni 3 mg per g larvae [72] 
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Table 2. Biopharmaceutical proteins expressed in B. mori pupae and larvae infected with recombinant BmNPV. 

Protein Expression Level References 

Human interferon-alpha 0.3 mg/15 larvae (after purification) [23] 

Granulocyte macrophage colony stimulating factor 100 µg per pupa [24] 

Virus-like particle from H5 hemagglutinin  2,000 µg per pupa [25] 

Human type III procollagen 70 µg per pupa [43] 

Feline interferon 1-5 mg per pupa [44] 

Mouse monoclonal antibody 139 -319 ng/0.1 mg cocoon [45] 

Mouse interleukin-3 0.5 mg per larvae [46] 

Human hepatitis B virus surface antigen 750 µg per larva and 690 µg per pupa [55] 

Hemagglutinin (strain H5N1) 500 µg/30 larvae [58] 

RSV-gag virus like particle 384 mg/10 larvae (after purification) [60] 

Human parathyroid hormone 70 mg per L of haemolymph [67] 

Human growth hormone 20-50 µg per larva [68] 

Feline interferon 1.2x108 U per ml of haemolymph [70] 

Canine interferon alpha 528 µg per larva [71] 

Bovine interferon-τ 4.55 mg/ 100 larvae [74] 

 

  
Fig. (1). The production process of recombinant protein in insect larvae. The production process of recombinant protein in insect larvae 
involves a first step in insect cells and a second step in larvae. Step 1 in insect cell: The gene of interest is incorporated into the baculovirus 
genome (Bac-to-Bac®, Baculogold®, pAcGOZA, pBmGOZA). The construction of the recombinant baculovirus and preparation the virus 
stock takes 3 weeks. If the virus is pol+ genotype, polyhedra is purified from insect cell; however, if the virus is pol- genotype, the super-
natant is harvested to infect insect larvae. Step 2 in Insect larvae: After the viral stock is ready, the process to produce and purified recombi-
nant protein from larvae takes only 1 week. Larvae are infected by oral infection (Virus pol+) or intrahemocelically (Virus pol-) with recom-
binant baculovirus. Larvae can be reared under laboratory conditions and fed on a diet at 23–25 ºC in a 70% humidified chamber, with a 16:8 
photoperiod (L:D). After 3-5 days, larvae are harvested and homogenized. Finally, the recombinant protein (enzyme, antibody, diagnostic 
protein, lectin, hormone, cytokine, vaccine) is purified using standard techniques.  
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difficult. The choice of a specific downstream strategy is 
based on the scale of operation, localization of the target 
protein and the expression yield. The aim of the downstream 
step is to separate contaminant proteins present in the host, 
viral proteins, DNA and viral particles. One of main difficul-
ties is the high activity of proteases that may degrade the 
recombinant protein during larval sacrifice by homogeniza-
tion. The product quantity and quality is strongly influenced 
by the time of harvest. As the viral cycle progresses, cells 
lyses and a significant amount of intracellular proteases and 
glycosidases appear in the homogenate. The first step is to 
achieve a clarified homogenate of insect larvae. This step is 
generally achieved by centrifugation or filtration to separate 
tissues and remove lipids. The clarified solution should have 
a yellow-green color. Besides, it is important to inhibit the 
melanization process during disruption to avoid protein 
yield loss because this interferes with the purification proc-
ess [75].  

 The procedure to purify recombinant proteins from insect 
larvae is similar to those commonly used to proteins from 
other organisms according to standard techniques [5]. Ion 
exchange and affinity chromatography have demonstrated to 
be efficient to purify different proteins from larval extracts 
[14, 38, 74]. In general, proteins are fused to histidine tags 
and then purified by ion-metal affinity chromatography. Bio-
technology industry demands fast, efficient and inexpensive 
downstream processes for the recovery and purification of 
important proteins. However, insect larvae extracts brings 
about some drawbacks, as example, the regeneration of the 
chromatographic matrices is complicated and their half-life 
decreases considerably due to the complexity. 

 Some low-cost alternatives for the purification procedure, 
such as aqueous two-phase systems and chitosan mini-
spheres, are being implemented [69, 76]. However, the puri-
fication system selected will depend on the physicochemical 
characteristics of the recombinant protein and its contami-
nants. 

CONCLUSION 

 Biopharmaceuticals represent the fastest growing sector 
of the global pharmaceutical industry, driven by a rapid and 
successful manufacture of recombinant protein-based drugs. 
To fulfill the demand, it is crucial to increase the throughput 
of expression systems and purification processes.  

 Insect larvae infected with baculoviruses can serve as 
natural biofactories to synthesize proteins of interest in vivo. 
Fig. (1) summarizes the whole process to produce recombi-
nant protein in insect larvae. The high yield of protein re-
ported in homogenates harvested from 3-5 days post-
infection at very low production costs makes biofactories a 
very attractive alternative to traditional hosts like yeast or 
mammalian cells. However, further efforts must be made to 
improve the downstream processing of recombinant proteins. 
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