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Abstract. We characterize operators T = PQ (P, Q orthogonal projec-
tions in a Hilbert space H) which have a singular value decomposition.
A spatial characterizations is given: this condition occurs if and only
if there exist orthonormal bases {ψn} of R(P ) and {ξn} of R(Q) such
that 〈ξn, ψm〉 = 0 if n �= m. Also it is shown that this is equivalent
to A = P − Q being diagonalizable. Several examples are studied, re-
lating Toeplitz, Hankel and Wiener–Hopf operators to this condition.
We also examine the relationship with the differential geometry of the
Grassmann manifold of underlying the Hilbert space: if T = PQ has
a singular value decomposition, then the generic parts of P and Q are
joined by a minimal geodesic with diagonalizable exponent.
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1. Introduction

Let H be a Hilbert space, B(H) the space of bounded linear operators,
P(H) ⊂ B(H) the set of orthogonal projections. In what follows R(T ) de-
notes the range of T ∈ B(H) and N(T ) its nullspace. Given a closed subspace
S ⊂ H, the orthogonal projection onto S is denoted by PS . In this paper we
study part of the set P · P = {PQ : P,Q ∈ P(H)}, namely, the subset of
all T = PQ such that T ∗T = PQP is diagonalizable. Operators in P · P
are special cases of generalized Toeplitz operators as well as of Wiener–Hopf
operators. As we shall see in a section of examples, they give rise to classical
Toeplitz and Wiener–Hopf operators. Therefore this paper can be regarded
as the study of operators in these classes, having a diagonal structure.

Also this paper is a kind of sequel to [3,7] and [4], the first concerned
with the whole set P ·P, the other two with P ·P∩K(H), where K(H) denotes
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the ideal of compact operators acting in H. Compact operators T satisfy that
T ∗T is diagonalizable.

We shall say that T is S-decomposable if it has a singular value (or
Schmidt) decomposition [24],

T =
∑

n≥1

sn〈 , ξn〉ψn =
∑

n≥1

snψn ⊗ ξn, (1.1)

where {ξn : n ≥ 1} and {ψn : n ≥ 1} are orthonormal systems, and sn > 0.
In this case, {ψn}, {ξn} are orthonormal bases of R(T ), N(T )⊥, respectively
and Tξn = snψn, T ∗ψn = snξn, T ∗Tξn = s2

nξn, TT ∗ψn = s2
nψn for all n ≥ 1.

Clearly, T is S-decomposable if and only if T ∗T (equivalently TT ∗) is
diagonalizable, if and only if T ∗ is S-decomposable. Also it is clear that if
U, V are unitary operators, T is S-decomposable if and only if UTV is S-
decomposable.

This paper is devoted to the study of the operators T ∈ P ·P which are
S-decomposable.

Let us describe the contents of the paper. In Sect. 2 we prove that
T = PQ is S-decomposable if and only if there exist orthonormal bases {ξn} of
R(P ) and {ψn} of R(Q) such that 〈ξn, ψm〉 = 0 if n 	= m. We also prove that
T = PQ is S-decomposable if and only if A = P − Q is diagonalizable. This
result is based on a Theorem by Chandler Davis ([9], Theorem 6.1), which
characterizes operators which are the difference of two projections. A recent
treatment of these operators can be found in [2]. The S-decomposability of
PQ is equivalent to that of P (1 − Q), (1 − P )Q and (1 − P )(1 − Q). As
a corollary we prove that P − Q is diagonalizable if and only if P + Q is,
the eigenvalues ±λn of P − Q which are different from 0, 1 correspond with
the eigenvalues 1 ± (1 − λn)2, with the same multiplicity. Section 3 con-
tains several interesting classes of examples of S-decomposable operators in
P ·P. If H = L2(Rn) and I, J ⊂ R

n are Lebesgue measurable sets with finite
positive measure, define PIf = χIf and QJf = (PJ f̂ )̌, for f ∈ H. Here
χA denotes the characteristic function of A ⊂ R

n and ,̂ˇdenote the Fourier-
Plancherel transform and its inverse. The product PIQJ is a proper Wiener–
Hopf operator, is also known as a concentration operator, and its study is
related to mathematical formulations of the Heisenberg uncertainty principle.
The reader is referred to [10,12,19,25] for results concerning these products.
Under the conditions described above, PIQJ is a Hilbert–Schmidt opera-
tor, thus S-decomposable. This implies that also PI′QJ ′ is S-decomposable
(but non compact) when I ′ or J ′ have co-finite measure. It should be men-
tioned that the spectral description of PIQJ is no easy task (see [25] for
the case when I, J are intervals in R). Another interesting family of exam-
ples is obtained if H = L2(T) and H is decomposed as H = H+ ⊕ H−,
where H+ = H2(T). If ϕ, ψ are continuous functions with modulus one, put
P = 1 − PϕH+ and Q = PψH+ . Then PQ is a unitary operator times a
Hankel operator with continuous symbol, and therefore a compact operator
by a theorem by Hartman [16]. Then (1 − P )Q is a unitary operator times a
Toeplitz operator, and a non compact S-decomposable operator. On the other
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hand, using a result by Howland ([18], Theorem 9.2), one can find convenient
non-continuous ϕ, ψ such that PQ is not S-decomposable.

In Sect. 4 we prove that, for two closed subspaces S, T of H, the operator
T = PSPT is S-decomposable if and only if there exist isometries X,Y : �2 →
H with R(X) = S, R(Y ) = T such that X∗Y ∈ B(�2) is a diagonal matrix.

In Sect. 5 we characterize S-decomposability in terms of what we call
Davis’ symmetry V : given two projections P,Q, the decomposition H =
N(P + Q − 1) ⊕ N(P + Q − 1)⊥ reduces simultaneously P and Q. They act
non trivially on the second subspace H′ = N(P +Q−1)⊥. Denote by P ′ and
Q′ the restrictions of P and Q to this subspace. Then the isometric part in
the polar decomposition of P ′ + Q′ − 1 is a selfadjoint unitary operator V
which satisfies V P ′V = Q′, V Q′V = P ′. We relate these operator with the
differential geometry of the space P(H′) of projections in H′ (or Grassmann
manifold of H′). Specifically, with the unique short geodesic curve joining
P ′ and Q′ in P(H′). For instance, it is shown that PQ is S-decomposable if
and only if the velocity operator of the unique geodesic joining P ′ and Q′ is
diagonalizable.

In Sect. 5 it is shown that any contraction Γ ∈ B(H) is the 1, 1 entry of
a unitary operator times a product of projections acting in H × H.

2. Products and Differences of Projections

If T ∈ P · P, then T = PR(T )PN(T )⊥ . This is a result of T. Crimmins (un-
published; there is a proof in [23] Theorem 8). Moreover, Crimmins proved
that T ∈ B(H) belongs to P · P if and only if TT ∗T = T 2 [23]. However, the
factorization T = PR(T )PN(T )⊥ is one among many others. In [7], Theorem
3.7, it is proved that if T ∈ P · P, then T = PSPT if and only if

R(T ) ⊂ S , N(T )⊥ ⊂ T and (S � R(T )) ⊕ (T � N(T )⊥) ⊂ R(T )⊥ ∩ N(T ).

In [7], for any T ∈ P · P the set of all pairs (S, T ) of closed subspaces such
that T = PSPT is denoted by XT . Our first result is a characterization of
XT for S-decomposable T . The proof is essentially that of Theorem 4.1 in [4],
where T is supposed to be a compact element of P · P. We include a proof
for the reader’s convenience.

Theorem 2.1. Let S, T ⊂ H be closed subspaces of H. Then T = PSPT is
S-decomposable if and only if there exist orthonormal bases {ψn : n ≥ 1} of
S, {ξn : n ≥ 1} of T such that 〈ξn, ψm〉 = 0 if n 	= m. In such case, the
numbers |〈ξn, ψn〉| are the singular values of T .

Proof. Suppose that {ψn}, {ξn} are orthonormal bases of S, T respectively,
such that

〈ψn, ξm〉 = 0 for n 	= m.

Therefore

PSPT =

⎛

⎝
∑

n≥1

〈 , ψn〉ψn

⎞

⎠

⎛

⎝
∑

m≥1

〈 , ξm〉ξm

⎞

⎠ =
∑

n≥1

〈ψn, ξn〉ψn ⊗ ξn.
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In order to get the Schmidt decomposition of PSPT , we only need to replace
〈ψn, ξn〉 by the appropriate sequence of positive numbers: write 〈ψn, ξn〉 =
eiθn |〈ψn, ξn〉| and replace ψn by ψ′

n = e−iθnψn. Then {ψ′
n} is still an or-

thonormal basis of S, and

〈ψ′
n, ξn〉 = |〈ψn, ξn〉| = sn

are the singular values in the decomposition

PSPT =
∑

n≥1

|〈ψn, ξn〉|ψ′
n ⊗ ξn.

This shows that PSPT is S-decomposable.
Conversely, if T = PSPT is S-decomposable it has a singular value

decomposition

T =
∑

n≥1

snψn ⊗ ξn

and it holds that T 2 = TT ∗T . Then

T ∗ =
∑

n≥1

sn〈 , ψn〉ξn , TT ∗T =
∑

n≥1

s3
n〈 , ξn〉ψn,

and

T 2 =
∑

n,m≥1

snsm〈ψn, ξn〉〈 , ξn〉ψn =
∑

n≥1

sn

⎛

⎝
∑

m≥1

〈 , sm〈ξn, ψm〉ξm

⎞

⎠ ψn.

Using TT ∗T = T 2 we get, for each n ≥ 1
∑

m≥1

snsm〈ξn, ψm〉ξm = s3
nξn.

Then 〈ξn, ψm〉 = 0 if n 	= m and sn = 〈ξn, ψn〉. Finally, we can extend the
orthonormal bases {ψn} of R(T ) and {ξn} of N(T )⊥ to orthonormal bases
of S and T . In fact, if ψ ∈ S � R(T ) and ξ ∈ T � N(T )⊥, then

〈ψ, ξ〉 = 0,

because

(S � R(T )) ⊕ (T � N(T )⊥) ⊂ R(T )⊥ ∩ N(T ). �

Next, we show that T = PQ is S-decomposable if and only if A = P −Q
is diagonalizable, and establish the relation between the singular values of
T and the eigenvalues of A. We present this equivalence as two separate
theorems, to avoid too long a statement.

Theorem 2.2. Suppose that T = PQ is S-decomposable with singular values
sn. Then A = P − Q is diagonalizable, with eigenvalues ±(1 − s2

n)1/2, n ≥ 1,
and maybe 0,−1 and 1.
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Proof. Put as above T =
∑

n≥1 snψn ⊗ ξn, with ξn ∈ R(Q) and ψn ∈ R(P ).
First note that sn ≤ s1 = ‖T‖ ≤ ‖P‖‖Q‖ ≤ 1. Moreover, s1 = 1 means
that Tξ1 = η1 and thus ‖P (Qξ1)‖ = 1 = ‖ξ1‖ ≥ ‖Qξ1‖ ≥ ‖P (Qξ1)‖, i.e.,
ξ1 ∈ R(Q) and Qξ1 = ξ1 ∈ R(P ). Then ξ1 = ψ1. The same happens for all
n such that sn = 1: the associated vectors ξn = ψn generate R(P ) ∩ R(Q).
Note that A = P − Q is trivial in this subspace.

Suppose that sk < 1. Apparently,

Aξk = Pξk − Qξk = PQξk − ξk = Tξk − ξk = skψk − ξk

and

Aψk = Pψk − Qψk = Pψk − QPψk = ψk − T ∗ψk = ψk − skξk.

Then

A2ξk = (1 − s2
k)ξk. A2ψk = (1 − sk)2ψk.

Since sk = |〈ξk, ψk〉| < 1 and ‖ξk‖ = ‖ψk‖ = 1, it follows that ξk, ψk span a
two-dimensional eigenspace for A2, with eigenvalue 1 − s2

k. Then

νk = ((1 − s2
k)1/2 − 1)ξk + skψk and ωk = (−(1 − s2

k)1/2 − 1)ξk + skψk

are orthogonal eigenvectors for A, with eigenvalues (1 − s2
k)1/2 and −(1 −

s2
k)1/2, respectively.

The orthogonal systems ξk and ψk can be extended to orthonormal
bases of R(P ) and R(Q), respectively (as in the proof of Theorem 2.1). On
the extension of the system ξk, i.e., R(P ) � R(T ), A = P − Q equals 1. On
the extension of ψk, R(Q) � N(T )⊥, A equals −1. Together, these extended
systems span R(P ) + R(Q), and here A is diagonalizable. On the orthogonal
complement of this subspace, namely N(P )⊥ ∩ N(Q)⊥, A is trivial. �

Remark 2.3. Note that, except for 1 and −1, the eigenvalues (1 − s2
k)1/2 and

−(1 − s2
k)1/2 of A have the same multiplicity. Also note that

N(A − 1) = R(P ) ∩ N(Q), N(A + 1) = N(P ) ∩ R(Q),

and N(A) = R(P ) ∩ R(Q) ⊕ N(P ) ∩ N(Q).

The above result has a converse. Davis [9] proved that operators A =
P − Q are characterized as follows: in the generic part of A, namely

H0 = {N(A) ⊕ N(A − 1) ⊕ N(A + 1)}⊥,

which reduces P,Q and A, if we denote P0 = P |H0 , Q0 = Q|H0 and

A0 = A|H0 = P0 − Q0,

there exists a symmetry V (V ∗ = V −1 = V ) such that V A = −AV and

P0 = PV =
1

2
{1 + A0 + V (1 − A2

0)
1/2} , Q0 = QV =

1

2
{1 − A0 + V (1 − A2

0)
1/2}.

V is characterized by these properties. With these notations we have:

Theorem 2.4. If A = P − Q is diagonalizable with (non zero) eigenvalues
±λn (0 < |λn| < 1) and ±1 , then T = PQ is S-decomposable with singular
values (1 − λ2

n)1/2 and 1.
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Proof. On the non generic parts N(A − 1) ⊕ N(A + 1), T equals zero. In
N(A) = R(P ) ∩ R(Q) ⊕ N(P ) ∩ N(Q), T is

1 ⊕ 0.

Thus PQ is diagonal (thus S-decomposable) in H⊥
0 . In H0, after straightfor-

ward computations (note that V commutes with A2
0) one has

P0Q0 = PV QV =
V

2
{V (1 − A2

0)
1/2 + 1 − A0}(1 − A2

0)
1/2.

Since A0 is diagonalizable, and there exists the symmetry V associated to P0

and Q0, which intertwines A0 with −A0, it follows that A0 is of the form

A0 =
∑

n≥1

λn(En − Fn),

where En, Fn (n ≥ 1) are pairwise orthogonal projections with dimR(En) =
dim R(Fn) = mn ≤ ∞. The eigenvalues λn of A0 are different from ±1,
because N(A0 ± 1) = {0}. Fix an orthonormal basis {νn

k : 1 ≤ k ≤ mn} for
R(En). The fact that V A = −AV implies that V maps (the λn-eigenspace)
R(En) onto (the −λn-eigenspace) R(Fn), and back. Then we can consider
for R(Fn) the orthonormal basis given by ωn

k = V νn
k . Thus also V ωn

k = νn
k .

Then

P0Q0ν
n
k =

1
2

(
1 − λ2

n

)
νn

k +
1
2
(1 − λn)

(
1 − λ2

n

)1/2
ωn

k

and

P0Q0ω
n
k =

1
2

(
1 − λ2

n

)
ωn

k +
1
2
(1 + λn)

(
1 − λ2

n

)1/2
νn

k .

It follows that the 2-dimensional subspace generated by (the orthonormal
vectors) νn

k and ωn
k is invariant for P0Q0. The matrix of P0Q0 restricted to

this subspace (in this basis) is

1
2

(
(1 − λ2

n) (1 + λn)(1 − λ2
n)1/2

(1 − λn)(1 − λ2
n)1/2 (1 − λ2

n)

)
,

whose singular values are 0 and (1−λ2
n)1/2. In the orthonormal basis {νn

k , ωn
k }

of H0 (paired in this fashion), the operator P0Q0 is block-diagonal, with 2×2
blocks. It follows that PQ is S-decomposable with singular values (1−λ2

n)1/2

and, eventually, 1. The singular value 1 occurs only if R(P )∩R(Q) 	= {0}. �

Remark 2.5. The multiplicity of (1−λ2
n)1/2 as a singular value of PQ is mn.

Remark 2.6. From the above results, which relate eigenvalues of P − Q and
singular values of PQ, it follows that if PQ is compact, and either P or Q have
infinite rank, then ‖P −Q‖ = 1. Indeed, if PQ is compact, the singular values
accumulate eventually at 0, and therefore the eigenvalues of A accumulate
at 1. However, this result holds with more generality. It is a simple exercise
that if p 	= q are non zero projections in a C∗-algebra such that pq = 0, then
‖p − q‖ = 1. Our case consists in reasoning in the Calkin algebra: p = π(P ),
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q = π(Q), where π : B(H) → B(H)/K(H) is the quotient homomorphism.
Then

1 ≤ ‖p − q‖ ≤ ‖P − Q‖ ≤ 1.

The following result will be useful to provide further examples. In a
special case (see Example 3 in Sect. 3), it was proven by Smith ([26], Th.
3.1).

Proposition 2.7. PQ is S-decomposable if and only if P (1 − Q) is S-decom-
posable (and therefore if and only if (1 − P )Q or (1 − P )(1 − Q) are S-
decomposable).

Proof. P (1 − Q) is S-decomposable if and only if P (1 − Q)P = P − PQP
is diagonalizable. This operator acts non trivially only in R(P ). Thus, it is
diagonalizable if and only if it is diagonalizable in R(P ). Adding 1−P (equal
to the identity in N(P )), one obtains that this latter fact is equivalent to
1 − PQP = 1 − P ⊕ P − PQP being diagonalizable in H = N(P ) ⊕ R(P ).
Clearly 1−PQP is diagonalizable if and only if PQP also is, i.e., if and only
if PQ is S-decomposable. �

As a direct consequence of this fact, one obtains the following corollary

Corollary 2.8. Let P,Q be projections. Then P − Q is diagonalizable if and
only if P + Q is diagonalizable. In that case, λn is an eigenvalue of P − Q
with 0 < |λn| < 1 if and only if 1 ± (1 − λn)2 is an eigenvalue of P + Q, with
the same multiplicity.

Proof. By the above results, λn = ±(1 − s2
n)1/2, where sn is a singular value

of PQ, or equivalently, s2
n is an eigenvalue of PQP . On the other hand, from

the proof of Proposition 2.7, the eigenvalues of

1 − PQP = 1 − P ⊕ PQ⊥P

are 1, and 1 − s2
n. Then again by Theorem 2.2, the eigenvalues of P − Q⊥ =

P+Q−1 are ±sn, and thus the eigenvalues of P+Q are 1±sn = 1±(1−λ2
n)1/2.

Since P − Q is a difference of projections, the eigenvalues +λ and −λ (when
0 < |λ| < 1) have the same multiplicity (see [2]), and by the above results,
these add up to the multiplicity of s = (1 − λ2)1/2 as a singular value of PQ.
This number clearly equals the multiplicity of (1 − s2)1/2 as a singular value
of PQ⊥. Note that P + Q − 1 = P − Q⊥ is also a difference of projections,
therefore the multiplicities of ±s = ±(1 − λ2)1/2 coincide (0 < s < 1). �

Remark 2.9. The multiplicity of 1 as an (eventual) eigenvalue of P − Q
is the dimension of R(P ) ∩ N(Q), the multiplicity of −1 is the dimension
of N(P ) ∩ R(Q), the sum of these multiplicities is the multiplicity of 0 in
P − Q⊥, or the multiplicity of 1 in P + Q. Similarly, the multiplicity of 0 in
P − Q equals the sum of the multiplicities of 0 and 2 in P + Q.

Remark 2.10. To study the examples in the next section, it will also be
useful to note that if P has infinite rank and PQ is compact, then P (1 − Q)
is S-decomposable but non compact.
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3. Examples

Example. Let I, J ⊂ R
n be Lebesgue-measurable sets of finite measure. Let

PI , QJ be the projections in L2(Rn, dx) given by

PIf = χIf and QJf =
(
χJ f̂

)
,̌

where χL denotes the characteristic function of the set L. Equivalently, de-
noting by UF the Fourier transform regarded as a unitary operator acting in
L2(Rn, dx), then

PI = MχI
and QJ = U∗

FMχJ
UF .

In [10] (Lemma 2) it is proven that PIQJ is a Hilbert–Schmidt operator.
See also [12]. Then T = PIQJ is S-decomposable (with square summable
singular values). These products play a relevant role in operator theoretic
formulations of the uncertainty principle [10,12].

In this case one has the spectral picture of A = PI − QJ . It is known
[12,19] that

N(PI) ∩ N(QJ ) = R(PI) ∩ N(QJ ) = N(PI) ∩ R(QJ) = {0}
and R(PI) ∩ R(QJ) is infinite dimensional. Thus N(A) = R(PI) ∩ R(QJ) is
infinite dimensional, N(A ± 1) = {0}, and the eigenvalues of A are of the
form ±(1 − s2

k)1/2, where the sequence sk belongs to �2(Z). In special cases,
e.g. I = [0, T ], J = [−Ω,Ω] intervals in R, the eigenfunctions are known and
the eigenvalues have multiplicity one [17].

If one relaxes the condition that the sets be of finite measure, PIQJ

ceases to be compact. Using Proposition 2.7, one obtains non compact exam-
ples: replacing the above conditions by |Rn\I| < ∞ or |Rn\J | < ∞ (see also
[26]), one obtains non-compact, S-decomposable products of projections.

Note also that, due to Theorem 2.1, in the above cases (i.e. both I and
J have finite or co-finite measure), the subspaces R(PI) = {f ∈ L2(Rn) :
f |Rn\I = 0} and R(QJ) = {g ∈ L2(Rn) : ĝ|Rn\J = 0} have orthonormal bases
{fn} and {gn}, respectively, which satisfy 〈fn, gm〉 = 0 if n 	= m.

We study more carefully the case

I = [0,+∞), J = [−1, 1],

not covered above. Straightforward computations (see [19], equation (49), p.
419; please note that Lenard denotes by Q,P what we here denote by PI , QJ ,
respectively) show that the operator PIQJ , acting in L2(0,+∞) is given by

PIQJPIf(x) =
1
π

∫ ∞

0

sinc(x − t)f(t)dt,

where sinc(t) =
{

sin(t)/t , if t 	= 0
1 , if t = 0 . Let us prove that PIQJPI is non com-

pact. For n ∈ N, let

en(x) =
{

e− 1
n xeix, if x ≥ 0

0 otherwise.
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Apparently en ∈ L2(R) and ‖en‖2
2 = n

2 . Note that

PIQJPI
en(x)
‖en‖2

=
√

2
π
√

n
{
∫ x

0

sinc(x − t)en(t)dt +
∫ ∞

x

sinc(x − t)en(t)dt}.

Changing variables v = x− t in the first integral and u = t−x in the second,
one obtains√

2
π
√

n
{en(x)

∫ x

0

sinc(v)en(−v)dv + en(x)
∫ ∞

0

sinc(u)en(u)du}.

The second integral, which we shall denote λn, can be computed. Denote by
L the usual Laplace transform. Then λn equals
∫ ∞

0

sinc(u)en(u)du =

∫ ∞

0

sinc(u)cos(u)e− u
n du + i

∫ ∞

0

sinc(u) sin(u)e− u
n du

= L(
sin(t)

t
cos(t))|t= 1

n
+ i L(

sin2(t)

t
)|t= 1

n
=

π

2
− arctan(

1

n
) + i

1

4
ln(1 + 4n2).

Let us denote by Fn(x) the left hand integral,

Fn(x) =
∫ x

o

sinc(t)en(−t)dt.

Lemma 3.1. With the current notations,
1

‖en‖2
‖PIQJPIen − en‖2 → 0, as n → ∞.

Proof. Compute

〈enFn, en〉 =
∫ ∞

0

en(x)Fn(x)ēn(x)dx =
∫ ∞

0

e− 2
n xFn(x)dx.

Integrating by parts, and using that (by means of the L’Hospital rule !), we
get

lim
x→+∞

Fn(x)
e

2
n x

= lim
x→∞

n

2
sinc(x)en(−x)

e
2
n x

=
n

2
lim

x→+∞

sinc(x)
e

1
n x

= 0,

and Fn(0) = 0. Then

〈enFn, en〉 =
n

2

∫ ∞

0

e− 2
n xF ′

n(x)dx =
n

2

∫ ∞

0

e− 2
n xsinc(x)e

1
n xe−ixdx

=
n

2

∫ ∞

0

e− 1
n xsinc(x) cos(x)dx − i

n

2

∫ ∞

0

e− 1
n xsinc(x) sin(x)dx,

which, by computations similar as above involving the Laplace transform,
equals

n

2

{
π

2
− arctan

(
1
n

)
− i

1
4
ln(1 + 4n2)

}
=

n

2
λ̄n.

Then

〈PIQJPIen, en〉 =
1
π

〈en(Fn + λn), en〉 =
1
π

{λn‖en‖2
2 + 〈Fnen, en〉}

=
1
π

{n

2
λn +

n

2
λ̄n

}
=

n

π
Re(λn) =

n

π

{
π

2
− arctan

(
1
n

)}
.
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Then

‖PIQJPIen − en‖2
2 = ‖PIQJPIen‖2

2 + ‖en‖2
2 − 2Re〈PIQJPIen, en〉

≤ 2‖en‖2
2 − 2

n

π

{
π

2
− arctan

(
1
n

)}
= 2

n

π
arctan

(
1
n

)
.

Therefore
1

‖en‖2
2

‖PIQJPIen − en‖2
2 ≤ 4

π
arctan

(
1
n

)
→ 0. �

Proposition 3.2. If I = [0,+∞) and J = [−1, 1], then PIQJPI is non com-
pact, with

‖PIQJPI‖ = ‖PIQJ‖ = 1 and ‖PI − QJ‖ = 1.

Proof. If PIQJPI were compact, there would exist a subsequence
fk = 1

‖enk
‖2

enk
such that PIQJPIfk is convergent. By the above lemma, this

would imply that the sequence fk is convergent. This is clearly not the case.
For instance,

〈fk, fk+1〉 =
1

‖enk
‖‖enk+1‖

〈enk
, enk+1〉 =

2

n
1/2
k n

1/2
k+1

∫ ∞

0

e
−( 1

nk
+ 1

nk+1
)x

dx

=
n

1/2
k n

1/2
k+1

nk + nk+1

which is less than 1
2 by the geometric-arithmetic inequality. This clearly im-

plies that the sequence of the unit vectors fk cannot be convergent.
The last assertions follow from the above lemma. �

Remark 3.3. Note that Example 3 above shows, in particular, that the
Volterra-like integral operator

Bf(x) =
∫ x

0

sinc(x − t)f(t)dt

is unbounded in L2(0,+∞) (though it is a Volterra operator on any finite
interval [0, r], thus compact with trivial spectrum in L2(0, r), for r < ∞).
Indeed, if it were bounded, then T = PIQJPI − B,

Tf(x) =
∫ ∞

x

sinc(x − t)f(t)dt

would be bounded. But the computations above show that the functions
en(x) = e(− 1

n +i)x are eigenfunctions for T , with unbounded eigenvalues λn.

Example. Let H = L2(T, dt) where T is the 1-torus, and consider the decom-
position

H = H− ⊕ H+,

where H+ is the Hardy space. Let ϕ,ψ be continuous functions in T with
|ϕ(eit)| = |ψ(eit)| = 1 for all t, and

P = P⊥
ϕH+

= 1 − PϕH+ , Q = PψH+ .
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Since ϕ and ψ are unimodular, the multiplication operators Mϕ, Mψ are
unitary in H and thus

PQ = MϕP−Mϕ̄ψP+Mψ̄.

Note that P−Mϕ̄ψ|H+ = H(ϕ̄ψ) is the Hankel operator with symbol ϕ̄ψ,
which is compact by Hartman’s theorem [16] (see also Theorem 5.5 in [20]).
Thus T = PQ is compact, and therefore S-decomposable.

Again using Proposition 2.7, one obtains non compact S-decomposable
examples. For instance, put now

P = PϕH+ , Q = PψH+ .

In this case

PQ = MϕP+Mϕ̄ψP+Mψ̄

is decomposable Thus the operator P+Mϕ̄ψP+ is non-compact and
S-decomposable in L2(T). Since it acts non trivially in H+, it follows that
the Toeplitz operator Tϕ̄ψ is S-decomposable in H+.

On the other hand, using Theorem 2.2, it follows that

A = PϕH+ − PψH+

diagonalizable. Using standard facts on Toeplitz operators, one sees that
±1 are eigenvalues of A only if the winding numbers of ϕ and ψ do not
coincide. The other eigenvalues of A are ±(1 − s2

n)1/2, where sn are the
singular values of Tϕ̄ψ, and 0. Since this operator has closed range (being a
Fredholm operator), the eigenvalues do not accumulate at ±1. The nullspace
of A is infinite dimensional, it contains the subspace ϕψH+.

Again, using Theorem 2.1, one obtains that, with the above hypothesis
on ϕ and ψ, there exist orthonormal bases {fn} and {gn} of H+ such that
〈ϕfn, ψgm〉 = 0 if n 	= m.

In [18] (Theorem 5.2) Howland proved that if the function f on T is
C2 on the complement of a finite set {z1, . . . , zn} at which the lateral limits
f(z±

i ) and f ′(z±
i ) exist, and one defines the jump of f at z to be

j(z) = f(z+) − f(z−),

then the absolutely continuous part of the Hankel operator H(f) is unitarily
equivalent to

⊕n
i=1Mi,z

where Mi,z denotes the operator of multiplication by the variable z in
L2(− 1

2j(zi), 1
2j(zi)). In particular, this implies that if ϕ̄ψ is piecewise C2

with jumps as f above, then PQ can be decomposed as a finite direct sum
of operators, some of which are multiplication by the variable in L2 of an
interval. Clearly these operators are not S-decomposable. Then PQ is not
S-decomposable.

Example. Let H = L × S, B : S → L a bounded operator, and E = EB the
idempotent operator given by the matrix

E =
(

1L B
0 0

)
.
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Any idempotent in B(H) can be expanded in this form. In [1] the reader
can find a study of the properties of E in terms of those of B. Consider
P = PR(E) = PL and Q = PN(E) and T = PQ. Straightforward computations
show that R(E) = L and that

PN(E) = (1 − E)(1 − E − E∗)−1 =
(

BB∗(1 + BB∗)−1 −B(1 + B∗B)−1

−B∗(1 + BB∗)−1 (1 + B∗B)−1

)
.

Then

TT ∗ = PQP =
(

BB∗(1 + BB∗)−1 0
0 0

)
.

Apparently, T is S-decomposable if and only if BB∗(1+BB∗)−1 is diagonaliz-
able, which is equivalent to BB∗ being diagonalizable, or B S-decomposable.
Note also that T is compact if and only if B is compact.

If one applies Theorem 2.1 to this example, one obtains that B is S-
decomposable if and only if there exist orthonormal bases {(0, vn)} of {0} ×
L and {(wn, Bwn)} of the graph of B, such that 〈(0, vn), (wm, Bwm)〉 =
〈vn, Bwm〉 = 0 if n 	= m. This fact can be proved straightforwardly.

4. Moore–Penrose Pseudoinverses

Penrose [21] and Greville [13] proved that , for n × n square matrices, the
Moore-Penrose inverse of an idempotent matrix E is a product of orthogonal
projections. More precisely, it holds that

E† = PN(E)⊥PR(E).

Since for matrices (A†)† = A, Penrose-Greville theorem can be stated as
follows: an n × n matrix E is idempotent if and only if E† is a product of
two orthogonal projections. This result was extended to infinite dimensional
Hilbert space operators in [6] , provided that PQ is supposed to have closed
range. In the case that R(PQ) is not closed, there is still a similar char-
acterization, but one needs to define the Moore-Penrose inverse for certain
unbounded operators. The reader is referred to [7]. As in example 3, if E is
an idempotent operator, in terms of the decomposition H = R(E) ⊕ R(E)⊥,
one has

E =
(

1 B
0 0

)
,

where B : R(E)⊥ → R(E).
Combining the above facts and previous results we obtain the following:

Corollary 4.1. Let E ∈ B(H) be an idempotent operator. Then the following
are equivalent:

1. E is S-decomposable
2. B is S-decomposable
3. PN(E)⊥PR(E) is S-decomposable.
4. PN(E)PR(E) is S-decomposable.
5. PR(E) − PN(E) is diagonalizable.
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6. PR(E) + PN(E) is diagonalizable.
7. There exist orthonormal bases {ηn} of R(E) and {νn} of N(E) such

that 〈ηn, νm〉 = 0 if n 	= m.

Some of these conditions were proven in [1].

Remark 4.2. By a theorem by Buckholtz ([5], Theorem 1), since H is the
direct sum of R(E) and N(E), it follows that PR(E) − PN(E) is invertible for
every idempotent E, which in turn implies that PR(E) + PN(E) is invertible.
In fact, for any P,Q ∈ P(H), P −Q is invertible if and only if ‖PQ‖ < 1 and
‖(1−P )(1−Q)‖ < 1, while P +Q is invertible if and only if ‖(1−P )(1−Q)‖ <
1. In geometric terms, ‖PQ‖ is the cosine of the (Dixmier) angle between
R(P ) and (Q), and ‖(1−P )(1−Q)‖ is the cosine of the angle between N(P )
and N(Q). If H is the direct sum of R(P ) and R(Q), these angles coincide
and are not zero.

Finally, note that if T is S-decomposable with expansion

T =
∑

n≥1

sn〈 , ξn〉ψn,

then

T † =
∑

n≥1

1
sn

〈 , ψn〉ξn.

5. Isometries

Given a subspace S ⊂ H with a given orthonormal basis BS = {ξn : b ≥ 1},
an isometry is defined,

XBS : �2 → H, XBS ({xn}) =
∑

n≥1

xnξn,

whose range is S. Observe that, by definition, the set of all S-decomposable
operators in H can be described as

{XDY ∗ : X,Y isometries �2 →H, D ∈ B(�2) diagonal with positive entries}.

The condition of bi-orthogonality of Theorem 2.1 can be written in terms of
the corresponding isometries.

Proposition 5.1. Let S, T be closed subspaces of H. Then T = PSPT is S-
decomposable if and only if there exist isometries X,Y : �2 → H, with range
S and T , respectively, such that

X∗Y ∈ B(�2)

is a diagonal matrix.

Proof. Suppose that T is decomposable, then by Theorem (2.1), there exist
orthonormal bases BS = {ξk : k ≥ 1} and BT = {ψn : n ≥ 1} of S and T
such that 〈ξn, ψk〉 = 0 if n 	= k. Consider the isometries

X = XBS and Y = XBT .
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Then

X∗Y ({xn}) = {〈ψn, ξn〉xn},

i.e. X∗Y is a diagonal matrix whose entries are 〈ψn, ξn〉.
Conversely, suppose that X,Y : �2 → H are isometries with R(X) = S

and R(Y ) = T , such that X∗Y is a diagonal matrix. Denote by {en : n ≥ 1}
the canonical basis of �2. Then ξn = X(en) and ψk = Y (ek) form orthonormal
bases of S and T . Moreover

〈ξn, ψk〉 = 〈X(en), Y (ek)〉 = 〈en,X∗Y (ek)〉 = 0 if n 	= k. �

6. Davis’ Symmetry

Let P,Q be projections, and consider

H′ = {R(P ) ∩ N(Q) ⊕ N(P ) ∩ R(Q)}⊥.

This subspace reduces P and Q, denote by P ′ = P |H′ and Q′ = Q|H′ , as
operators acting in H′. Note that

N(P + Q − 1) = N(P − (1 − Q)) = R(P ) ∩ N(Q) ⊕ N(P ) ∩ R(Q),

and thus S′ = P ′ + Q′ − 1 is a selfadjoint operator with trivial kernel (and
thus dense range) in H′. Let

S′ = V |S′|
be the polar decomposition. It follows that V is a selfadjoint unitary operator,
i.e., a symmetry. The fact that

S′P ′ = Q′P ′ = Q′S′ (also S′Q′ = P ′Q′ = P ′S′)

implies that the symmetry V intertwines P ′ and Q′:

V P ′V = Q′, V Q′V = P ′.

Also one recovers P ′ and Q′ in terms of V and the difference A = P ′ − Q′,
by means of the formulas of the previous section:

P ′ = PV , Q′ = QV .

These facts were proved by Chandler Davis in [9]. Then T = PQ, in the
decomposition H = H′⊥ ⊕ H′ is given by

T = 0 ⊕ V Q′V Q′ = 0 ⊕ P ′V P ′V.

The following result is a straightforward consequence of Theorem 2.1:

Proposition 6.1. T = PQ is S-decomposable if and only Q′V Q′ is diago-
nalizable (equivalently: P ′V P ′ is diagonalizable). If {ξn} is an orthonormal
system of eigenvectors for Q′V Q′, then 〈V ξn, ξk〉 = 0 if n 	= k.

Proof. If Q′V Q′ =
∑

n≥1 λn〈 , ξn〉ξn, then

P ′Q′ = V Q′V Q′ =
∑

n≥1

λn〈 , ξn〉V ξn,

and thus the orthonormal systems {ξn} and {V ξn} are bi-orthogonal. �
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Remark 6.2. Suppose that

P ′Q′ = V Q′V Q′ =
∑

n≥1

sn〈 , ξn〉ψn.

Then

Q′V Q′ =
∑

n≥1

sn〈 , ξn〉V ψn =
∑

n≥1

sn〈 , V ψn〉ξn.

In particular, if all the singular values have multiplicity 1, then V ψn = ±ξn.

Davis’ symmetry is related to the metric geometry of the set P(H) of
projections in H (also called Grassmannian manifold of H). If one measures
the length of a continuous piecewise smooth curve p(t) ∈ P(H), t ∈ I, by
means of

�(p) =
∫

I

‖ d

dt
p(t)‖dt,

it was shown ([8,22]) that curves in P(H) of the form

P (t) = eitXPe−itX

for X∗ = X with ‖X‖ ≤ π/2, such that X is P -codiagonal (i.e PXP =
P⊥XP⊥ = 0) have minimal length along their paths for |t| ≤ 1. That is,
any curve joining a pair of projections in this path cannot be shorter that
the part of P (t) which joins these projections. Given two projections P,Q,
in [2] it was shown that there exists a unique X (X∗ = X, ‖X‖ ≤ π/2, X is
P -codiagonal) such that eiXPe−iX = Q if and only if

N(P + Q − 1) = {0}.

Let us denote X = XP,Q if such is the case. Also in [2] it was shown that V
and XP,Q are related by

V = eiXP,Q(2P − 1). (6.1)

Note that since (always in the case N(P + Q − 1) = {0}) ‖XP,Q‖ ≤ π/2,
XP,Q is obtained from V by means of the usual log function:

XP,Q = −i log(V (2P − 1)).

Define the geodesic distance d(P,Q) in P(H) as

d(P,Q) = inf{�(p) : p joins P and Q in P(H)},

Porta and Recht proved in [22] that

d(P,Q) = ‖XP,Q‖. (6.2)

Remark 6.3. Formula (6.1) has a geometric interpretation. The fact that
XP,Q is P -codiagonal, is equivalent to saying that XP,Q and 2P − 1 anti-
commute, it follows that eitXP,Q(2P − 1) = (2P − 1)e−itXP,Q . Then, in par-
ticular V = e

i
2XP,Q(2P − 1)e− i

2XP,Q , or equivalently

1
2
(1 + V ) = e

i
2XP,QPe− i

2XP,Q .
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In other words, the projection 1
2 (1+V ) (onto the eigenspace where the sym-

metry V acts as the identity) is the midpoint of the geodesic P (t) joining P
and Q.

Corollary 6.4. Let P,Q be projections and, as above, P ′, Q′ the respective
reductions to N(P + Q − 1)⊥, and let V be Davis’ symmetry induced by
these. Then

P ′V P ′ = P ′eXP ′,Q′ P ′ and Q′V Q′ = Q′e−XP ′,Q′ Q′.

Thus PQ is S-decomposable if and only if P ′eXP ′,Q′ P ′ is diagonalizable.

Proof. Since V = eiXP ′,Q′ (2P ′ − 1), then

P ′V P ′ = P ′eiXP ′,Q′ (2P ′ − 1)P ′ = P ′eiXP ′,Q′ P ′.

By Proposition 6.1, PQ is S-decomposable if and only if P ′V P ′ is diag-
onalizable. Similarly, V = P ′eiXP ′,Q′ = e−iXP ′,Q′ Q′, and thus Q′V Q′ =
Q′e−XP ′,Q′ Q′. �
Remark 6.5. Since Q′ = eiXP ′,Q′ P ′e−iXP ′,Q′ (2P ′ − 1)P ′, it also follows that

P ′eiXP ′,Q′ P ′ = P ′Q′e−iXP ′,Q′ = e−iXP ′,Q′ Q′P ′

and

Q′e−iXP ′,Q′ Q′ = Q′P ′eiXP ′,Q′ = eiXP ′,Q′ P ′Q′.

Remark 6.6. If the matrix of XP ′,Q′ in terms of P ′ is given by

XP ′,Q′ =
(

0 Z
Z∗ 0

)
,

then

P ′V P ′ = P ′eiXP ′,Q′ P ′ =
(

cos(|Z∗|) 0
0 cos(|Z|)

)
.

From this last remark, it follows that

Theorem 6.7. PQ is S-decomposable if and only if Z is S-decomposable, if
and only if XP ′,Q′ is diagonalizable.

Proof.

X2
P ′,Q′ =

(
ZZ∗ 0

0 Z∗Z

)
,

Thus XP ′,Q′ is diagonalizable if and only if Z is S-decomposable. Indeed, if
Z is S-decomposable,

Z =
∑

n≥1

sn〈 , vn〉wn, Z∗ =
∑

n≥1

sn〈 , wn〉vn.

Note that {vn} span R(P ′) and {wn} span R(P ′)⊥, therefore, they are pair-
wise orthogonal systems of vectors. Then

XP ′,Q′vn = snwn and XP ′,Q′wn = snvn.

For each fixed n, the two dimensional space generated by vn and wn reduces
XP ′,Q′ . As in a previous argument, XP ′,Q′ can be diagonalized in each of
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these spaces, providing a diagonalization of the whole operator XP ′,Q′ . The
converse statement is apparent. �

Finally, let us further exploit formula (6.1).

Corollary 6.8. If A′ = P ′ − Q′, then

eiXP ′,Q′ = V A′ + (1 − A′2)1/2. (6.3)

Proof. In N(P + Q − 1)⊥, P ′ = PV = 1
2{1 + A′ + V (1 − A′2)1/2}, thus

eiXP ′,Q′ = V (2P ′ − 1) = V {A′ + V (1 − A′2)1/2} = V A′ + (1 − A′2)1/2. �

In particular, if PQ is S-decomposable, with singular values of simple multi-
plicity, one has the following

Theorem 6.9. Let PQ be S-decomposable, P ′Q′ =
∑

n≥1 sn〈 , ξn〉ψn, with
sn of multiplicity 1. Then XP ′,Q′ is diagonalized as follows

XP ′Q′ =
∑

n≥1

i log(sn + i(1 − s2n)1/2)ηn ⊗ ηn + i log(sn − i(1 − s2n)1/2))ζn ⊗ ζn,

where

ηn =
1√
2
νn − i√

2
ωn and ζn =

1√
2
νn +

i√
2
ωn,

and (as in the proof of Theorem 2.2)

νn = ((1 − s2
n)1/2 − 1)ξn + snψn and ωn = (−(1 − s2

n)1/2 − 1)ξn + snψn.

Proof. If PQ is S-decomposable, considering the decomposition of

PQ|N(P+Q−1)⊥ = P ′Q′,

in the proof of Theorem 2.2,

A′ =
∑

n≥1

(1 − s2
n)νn ⊗ νn − (1 − s2

n)1/2ωn ⊗ ωn,

for νn, ωn described above. Then

(1 − A′2)1/2 =
∑

n≥1

snνn ⊗ νn + snωn ⊗ ωn.

Recall that V A = −AV , or equivalently, V AV = −A (see remarks before
Theorem 2.4). Note that in N(P + Q − 1)⊥ we have erased the eigenvalues
±1 from A. Then, using Theorem 2.2, the fact that the singular values of
P ′Q′ have simple multiplicity implies that the (non zero) eigenvalues of A′

have single multiplicity. These two assertions imply that

V νn ⊗ V νn = V (νn ⊗ νn)V = ωn ⊗ ωn.

Thus, in the diagonalization of A′, we may replace ξn, ψn by scalar multiples
(of modulus one) in order that

V νn = ωn and V ωn = νn.

Then

V A′ =
∑

n≥1

(1 − s2
n)1/2ωn ⊗ νn − (1 − s2

n)1/2νn ⊗ ωn.
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Thus, by the formula in the above Corollary,

eiXP ′,Q′ = V A′ + (1 − A′2)1/2 =
∑

n≥1

(1 − s2
n)1/2ωn ⊗ νn − (1 − s2

n)1/2νn ⊗ ωn + snνn ⊗ νn + snωn ⊗ ωn.

Note that this is a block diagonal operator, with 2 × 2 blocks, given by the
subspaces generated by the (orthonormal) vectors νn and ωn for each n. Each
block, in this basis, is given by

(
sn −(1 − s2

n)1/2

(1 − s2
n)1/2 sn

)
,

whose eigenvalues are sn+i(1−s2
n)1/2 and sn−i(1−s2

n)1/2, with (orthonormal)
eigenvectors

ηn =
1√
2
νn − i√

2
ωn and ζn =

1√
2
νn +

i√
2
ωn,

respectively, and the proof follows. �

Note that since 0 < sn, the logarithms of these eigenvalues have modulus
smaller than π/2, a fact predicted by the condition ‖XP ′,Q′‖ ≤ π/2.

Example. Let us review the examples in Sect. 3:
1. For I, J ⊂ R

n of finite Lebesgue measure, it is known (see [12,19]) that

N(PI + QJ − 1) = {0}.

Thus P ′
I = PI and Q′

J = QJ . It is also known (see for instance [17])
that in the particular case when I and J are intervals, the singular
values of of PIQJ have multiplicity one. Moreover the functions ψn and
ξn are known to be the prolate spheroidal functions, for precise I and
J (intervals in R) [17]. It follows that one can compute explicitely the
eigenvectors of XPI ,QJ

for such intervals I, J .
2. As in Example 3, consider H = L2(T) and

P = PϕH+ , Q = PψH+ ,

for ϕ,ψ continuous functions in T, of modulus 1. If ϕ and ψ have the
same winding number, then

N(P + Q − 1) = ϕH+ ∩ (ψH+)⊥ ⊕ (ϕH+)⊥ ∩ ψH+ = {0}.

We sketch a proof of this fact. It relies on basic facts on Toeplitz oper-
ators (see for instance [11]). If h ∈ L∞(T), denote by Th the Toeplitz
operator with symbol h. First note that the restriction of the multipli-
cation operator

Mψ|N(Tϕ̄ψ) : N(Tϕ̄ψ) → H⊥
ϕ ∩ Hψ

is an isomorphism, and similarly N(Tϕψ̄) is isomorphic to Hϕ ∩ H⊥
ψ .

Thus N(P + Q − 1) is trivial if and only if both Tϕ̄ψ and Tϕψ̄ have
trivial nullspace.
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Since ϕ̄ψ is invertible in C(T), Tϕ̄ψ is a Fredholm operator. Its
index is

w(ϕ̄ψ) = w(ψ) − w(ϕ).

If the winding numbers coincide, the index is zero and thus Tϕ̄ψ is
invertible, and in particular N(Tϕ̄ψ) is trivial. The other nullspace is
dealt analogously.

3. As in example 3, let H = L×S and B : S → L a bounded operator, P =
PR(E) = PL and Q = PN(E) and T = PQ. Elementary computations
show that

N(P + Q − 1) = R(B)⊥ × {0} ⊕ {0} × N(B).

Thus this nullspace is trivial if and only if B has trivial nullspace and
dense range. Suppose that this is the case. Also it is straightforward to
verify that

P + Q − 1 =
(

BB∗(1 + BB∗)−1 −B(1 + B∗B)−1

−B∗(1 + BB∗)−1 −B∗B(1 + B∗B)−1

)
.

and that

(P + Q − 1)2 =
(

BB∗(1 + BB∗)−1 0
0 B∗B(1 + B∗B)−1

)
.

Then

|P + Q − 1| =
(

(BB∗)1/2(1 + BB∗)−1/2 0
0 (B∗B)1/2(1 + B∗B)−1/2

)
.

Thus V = (P + Q − 1)|P + Q − 1|−1 equals
(

|B∗|(1 + |B∗|2)−1/2 −B|B|−1(1 + |B|2)−1/2

−B∗|B∗|−1(1 + |B∗|2)−1/2 −|B|(1 + |B|2)−1/2

)
.

This computation is apparent if B (and thus |P + Q − 1|) is invertible,
but also makes sense when B has trivial nullspace and dense range. If
B = W |B| = |B∗|W are the polar decompositions of B, one has

V =
(

|B∗|(1 + |B∗|2)−1/2 −W (1 + |B|2)−1/2

−W (1 + |B∗|2)−1/2 −|B|(1 + |B|2)1/2

)

where W (1 + |B∗|2)−1/2 can be replaced by (1 + |B|2)−1/2W ∗.
Therefore

eiXP,Q = V (2P − 1) =
(

|B∗|(1 + |B∗|2)−1/2 W (1 + |B|2)−1/2

−W (1 + |B∗|2)−1/2 |B|(1 + |B|2)1/2

)

Suppose now that B is S-decomposable, B =
∑

n≥1 sn〈 , en〉fn, where
since B has trivial nullspace and dense range. Here {en} and {fn} are
orthonormal bases of S and L, respectively. Then

|B| =
∑

n≥1

snen ⊗ en, |B∗| =
∑

n≥1

snfn ⊗ fn,

and W is a unitary operator (W : S → L), with Wen = fn. Let
ξn = (en, 0), ψn = (0, fn). Then {ξn, ψn} span a reducing subspace
of T = PQ, P = PR(E), Q = PN(E), and in view of the above formulas,



E. Andruchow, G. Corach

also reducing for V and XP,Q. Elementary computations show that the
matrix of eiXP,Q in the basis of this reducing subspace is

1
(1 + s2

n)1/2

(
sn 1
−1 sn

)
.

Let θn be defined by cos(θn) = sn

(1+s2
n)1/2 and sin(θn) = 1

(1+s2
n)1/2 (or

equivalently, since sn > 0: tan(θn) = 1
sn

), then the matrix of XP,Q in
this reducing subspace is

(
0 −iθn

iθn 0

)
.

Recall [2] that if P and Q are projections such that N(P + Q − 1) =
{0}, there exists a unique exponent XP,Q with d(P,Q) = ‖XP,Q‖. In
particular, one has the following consequence:

Corollary 6.10. Let B : S → L with trivial nullspace and dense range, and E
as in Example 3.
(a) If B is invertible, then the geodesic dictance between PR(E) and PN(E)

is

d(PR(E), PN(E)) = arctan(‖B−1‖) < π/2.

(b) If B is non invertible (i.e. B−1 is unbounded), then

d(PR(E), PN(E)) = π/2.

Proof. Suppose that B is S-decomposable. If B is invertible, sn ∈
(‖B−1‖−1, ‖B‖), and if B is non invertible there exists a decreasing subse-
quence snk

of singular values of B, such that snk
→ 0. Thus the claims follow

from the previous computations.
Suppose now B arbitrary. Clearly |B| can be approximated by positive

invertible operators Ak with finite spectrum, in particular, diagonalizable.
If B = W |B|, then Bk = WAk approximate B (as in 6.10.3). Since B has
trivial nullspace and dense range, W is a unitary operator. Then Bk are S-
decomposable, with finite singular values (increasingly ordered) sk,i, 1 ≤ i ≤
nk. Note that P = PR(E) and Q = PN(E) are continuous functions of B.
Denote by Ek, Pk = PR(Ek) and Qk = PN(Ek) the operators acting in L × S
which correspond to Bk. Then

d(Pk, Qk) → d(P,Q).

From the previous case, d(Pk, Qk) = tan−1( 1
sk,1

). If B is invertible, 1
sk,1

→
‖B−1‖. Otherwise, 1

sk,1
→ ∞. �

Remark 6.11. As mentioned in the beginning of Sect. 2, if T = PQ, there
may exist many factorizations, and there exists a canonical factorization

T = PR(T )PN(T )⊥ .

It holds the following minimality property: for any ξ ∈ H, and any other
factorization T = PQ, one has

‖PR(T )ξ − PN(T )⊥ξ‖ ≤ ‖Pξ − Qξ‖.
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In [3] it was shown that in example 1 the factorization T = PIQJ is canonical.
In example 3 suppose that B : S → L has trivial nullspace and dense

range. Elementary computations show that for T = PR(E)PN(E),

N(T ) = R(E∗) and N(T ∗) = N(B∗) × S = {0} × S.

Then R(T ) = R(E) and N(T ) = N(E), and this decomposition is canonical.
Also in [3], it was shown that R(PI) + R(QJ) is a closed proper di-

rect sum, therefore PIQJ is a different example from PR(E)PN(E), for which
R(E) + N(E) is the whole space.

7. Dilations of Contractions

Let Γ be a contraction in a Hilbert space H0. P.R. Halmos showed in [14],
that Γ is the upper left corner of a unitary operator U acting in H0 × H0,
namely

U =
(

Γ (1 − ΓΓ∗)1/2

(1 − Γ∗Γ)1/2 −Γ∗

)
.

If

P = PΓ =
(

1 0
0 0

)

and

Q = QΓ = U∗PU =
(

Γ∗Γ Γ∗(1 − ΓΓ∗)1/2

(1 − ΓΓ∗)1/2Γ 1 − ΓΓ∗

)

then (
Γ 0
0 0

)
= UQΓPΓ,

i.e. Γ factors as a unitary operator times a product of projections, on a
bigger space. Apparently, Γ is S-decomposable in H if and only if QP is
decomposable in H × H

Moreover, if

Γ =
∑

n≥1

sn〈 , ξn〉ψn,

then

QP =
∑

n≥1

sn〈 ,

(
ξn

0

)
〉
(

snξn

(1 − s2
n)1/2ψn

)
.

Remark 7.1. Straightforward computations show that

(P + Q − 1)2 =
(

Γ∗Γ 0
0 ΓΓ∗

)
,

and thus

|P + Q − 1| =
(

(Γ∗Γ)1/2 0
0 (ΓΓ∗)1/2

)
.
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Suppose that N(Γ) = N(Γ∗) = {0} (i.e., P + Q − 1 has trivial nullspace and
dense range). If Γ = W |Γ| = |Γ∗|W are the polar decompositions (with W a
unitary operator), then

V =
(

|Γ| W ∗(1 − ΓΓ∗)1/2

(1 − ΓΓ∗)1/2W −|Γ∗|

)

and

eiXP,Q =
(

|Γ| −W ∗(1 − ΓΓ∗)1/2

(1 − ΓΓ∗)1/2W |Γ∗|

)
.

With similar computations as in example 3, one sees that if Γ is S-decomposa-
ble with singular values 0 < sn ≤ 1, then the spectrum of XP,Q is {±θn :
cos(θn) = sn}. With an argument as in Corollary 6.10, one has:

Corollary 7.2. Let Γ be a contraction in H0 with trivial nullspace and dense
range, and PΓ, QΓ the above projections in H0 × H0.

1. If Γ is invertible, then

d(PΓ, QΓ) = cos−1(‖Γ−1‖−1).

2. If Γ is non invertible, then

d(PΓ, QΓ) = π/2.
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Harmonic Analysis, pp. 22–388 Birkhäuser Boston, Inc., Boston, MA, (2005).
ISBN: 0-8176-4276-5

[18] Howland, J.S.: Spectral theory of selfadjoint Hankel matrices. Michigan Math.
J. 33(2), 145–153 (1986)

[19] Lenard, A.: The numerical range of a pair of projections. J. Funct. Anal. 10,
410–423 (1972)

[20] Peller, V. V.: An excursion into the theory of Hankel operators. Holomorphic
spaces (Berkeley, CA, 1995), 65–120, Math. Sci. Res. Inst. Publ., 33. Cambridge
University Press, Cambridge (1998)

[21] Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51,
406–413 (1955)

[22] Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc.
Am. Math. Soc. 100(3), 464–466 (1987)

[23] Radjavi, H., Williams, J.P.: Products of self-adjoint operators. Michigan Math.
J. 16, 177–185 (1969)

[24] Schmidt, E.: Zür Theorie der linearen und nichtlinearen Integralgleichungen.
I Teil. Entwicklung willkurlichen Funktionen nach System vorgeschriebener.
Math. Ann. 63, 161–174 (1907)

[25] Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis
and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

[26] Smith, M.: The spectral theory of Toeplitz operators applied to approximation
problems in Hilbert spaces. Constr. Approx. 22(1), 47–65 (2005)

Esteban Andruchow(B)

Instituto de Ciencias
Universidad Nacional de General Sarmiento
J.M. Gutierrez 1150
1613 Los Polvorines
Argentina

e-mail: eandruch@ungs.edu.ar



E. Andruchow, G. Corach

Esteban Andruchow and Gustavo Corach
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