Schmidt Decomposable Products of Projections

Esteban Andruchow and Gustavo Corach

Abstract

We characterize operators $T=P Q(P, Q$ orthogonal projections in a Hilbert space \mathcal{H}) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases $\left\{\psi_{n}\right\}$ of $R(P)$ and $\left\{\xi_{n}\right\}$ of $R(Q)$ such that $\left\langle\xi_{n}, \psi_{m}\right\rangle=0$ if $n \neq m$. Also it is shown that this is equivalent to $A=P-Q$ being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener-Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if $T=P Q$ has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent. Mathematics Subject Classification. Primary 47A05, 47A68; Secondary 47B35, 47B75.

Keywords. Projections, Products of projections, Differences of projections.

1. Introduction

Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ the space of bounded linear operators, $\mathcal{P}(\mathcal{H}) \subset \mathcal{B}(\mathcal{H})$ the set of orthogonal projections. In what follows $R(T)$ denotes the range of $T \in \mathcal{B}(\mathcal{H})$ and $N(T)$ its nullspace. Given a closed subspace $\mathcal{S} \subset \mathcal{H}$, the orthogonal projection onto \mathcal{S} is denoted by $P_{\mathcal{S}}$. In this paper we study part of the set $\mathcal{P} \cdot \mathcal{P}=\{P Q: P, Q \in \mathcal{P}(\mathcal{H})\}$, namely, the subset of all $T=P Q$ such that $T^{*} T=P Q P$ is diagonalizable. Operators in $\mathcal{P} \cdot \mathcal{P}$ are special cases of generalized Toeplitz operators as well as of Wiener-Hopf operators. As we shall see in a section of examples, they give rise to classical Toeplitz and Wiener-Hopf operators. Therefore this paper can be regarded as the study of operators in these classes, having a diagonal structure.

Also this paper is a kind of sequel to [3,7] and [4], the first concerned with the whole set $\mathcal{P} \cdot \mathcal{P}$, the other two with $\mathcal{P} \cdot \mathcal{P} \cap \mathcal{K}(\mathcal{H})$, where $\mathcal{K}(\mathcal{H})$ denotes

[^0]Birkhäuser
the ideal of compact operators acting in \mathcal{H}. Compact operators T satisfy that $T^{*} T$ is diagonalizable.

We shall say that T is S -decomposable if it has a singular value (or Schmidt) decomposition [24],

$$
\begin{equation*}
T=\sum_{n \geq 1} s_{n}\left\langle\quad, \xi_{n}\right\rangle \psi_{n}=\sum_{n \geq 1} s_{n} \psi_{n} \otimes \xi_{n} \tag{1.1}
\end{equation*}
$$

where $\left\{\xi_{n}: n \geq 1\right\}$ and $\left\{\psi_{n}: n \geq 1\right\}$ are orthonormal systems, and $s_{n}>0$. In this case, $\left\{\psi_{n}\right\},\left\{\xi_{n}\right\}$ are orthonormal bases of $\overline{R(T)}, N(T)^{\perp}$, respectively and $T \xi_{n}=s_{n} \psi_{n}, T^{*} \psi_{n}=s_{n} \xi_{n}, T^{*} T \xi_{n}=s_{n}^{2} \xi_{n}, T T^{*} \psi_{n}=s_{n}^{2} \psi_{n}$ for all $n \geq 1$.

Clearly, T is S-decomposable if and only if $T^{*} T$ (equivalently $T T^{*}$) is diagonalizable, if and only if T^{*} is S -decomposable. Also it is clear that if U, V are unitary operators, T is S -decomposable if and only if $U T V$ is S decomposable.

This paper is devoted to the study of the operators $T \in \mathcal{P} \cdot \mathcal{P}$ which are S-decomposable.

Let us describe the contents of the paper. In Sect. 2 we prove that $T=P Q$ is S-decomposable if and only if there exist orthonormal bases $\left\{\xi_{n}\right\}$ of $R(P)$ and $\left\{\psi_{n}\right\}$ of $R(Q)$ such that $\left\langle\xi_{n}, \psi_{m}\right\rangle=0$ if $n \neq m$. We also prove that $T=P Q$ is S-decomposable if and only if $A=P-Q$ is diagonalizable. This result is based on a Theorem by Chandler Davis ([9], Theorem 6.1), which characterizes operators which are the difference of two projections. A recent treatment of these operators can be found in [2]. The S-decomposability of $P Q$ is equivalent to that of $P(1-Q),(1-P) Q$ and $(1-P)(1-Q)$. As a corollary we prove that $P-Q$ is diagonalizable if and only if $P+Q$ is, the eigenvalues $\pm \lambda_{n}$ of $P-Q$ which are different from 0,1 correspond with the eigenvalues $1 \pm\left(1-\lambda_{n}\right)^{2}$, with the same multiplicity. Section 3 contains several interesting classes of examples of S-decomposable operators in $\mathcal{P} \cdot \mathcal{P}$. If $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}\right)$ and $I, J \subset \mathbb{R}^{n}$ are Lebesgue measurable sets with finite positive measure, define $P_{I} f=\chi_{I} f$ and $Q_{J} f=\left(P_{J} \hat{f}\right)$, for $f \in \mathcal{H}$. Here χ_{A} denotes the characteristic function of $A \subset \mathbb{R}^{n}$ and ${ }^{\wedge},{ }^{\prime}$ denote the FourierPlancherel transform and its inverse. The product $P_{I} Q_{J}$ is a proper WienerHopf operator, is also known as a concentration operator, and its study is related to mathematical formulations of the Heisenberg uncertainty principle. The reader is referred to $[10,12,19,25]$ for results concerning these products. Under the conditions described above, $P_{I} Q_{J}$ is a Hilbert-Schmidt operator, thus S-decomposable. This implies that also $P_{I^{\prime}} Q_{J^{\prime}}$ is S-decomposable (but non compact) when I^{\prime} or J^{\prime} have co-finite measure. It should be mentioned that the spectral description of $P_{I} Q_{J}$ is no easy task (see [25] for the case when I, J are intervals in \mathbb{R}). Another interesting family of examples is obtained if $\mathcal{H}=L^{2}(\mathbb{T})$ and \mathcal{H} is decomposed as $\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$, where $\mathcal{H}_{+}=H^{2}(\mathbb{T})$. If φ, ψ are continuous functions with modulus one, put $P=1-P_{\varphi \mathcal{H}_{+}}$and $Q=P_{\psi \mathcal{H}_{+}}$. Then $P Q$ is a unitary operator times a Hankel operator with continuous symbol, and therefore a compact operator by a theorem by Hartman [16]. Then $(1-P) Q$ is a unitary operator times a Toeplitz operator, and a non compact S-decomposable operator. On the other
hand, using a result by Howland ([18], Theorem 9.2), one can find convenient non-continuous φ, ψ such that $P Q$ is not S-decomposable.

In Sect. 4 we prove that, for two closed subspaces \mathcal{S}, \mathcal{T} of \mathcal{H}, the operator $T=P_{\mathcal{S}} P_{\mathcal{T}}$ is S-decomposable if and only if there exist isometries $X, Y: \ell^{2} \rightarrow$ \mathcal{H} with $R(X)=\mathcal{S}, R(Y)=\mathcal{T}$ such that $X^{*} Y \in \mathcal{B}\left(\ell^{2}\right)$ is a diagonal matrix.

In Sect. 5 we characterize S-decomposability in terms of what we call Davis' symmetry V : given two projections P, Q, the decomposition $\mathcal{H}=$ $N(P+Q-1) \oplus N(P+Q-1)^{\perp}$ reduces simultaneously P and Q. They act non trivially on the second subspace $\mathcal{H}^{\prime}=N(P+Q-1)^{\perp}$. Denote by P^{\prime} and Q^{\prime} the restrictions of P and Q to this subspace. Then the isometric part in the polar decomposition of $P^{\prime}+Q^{\prime}-1$ is a selfadjoint unitary operator V which satisfies $V P^{\prime} V=Q^{\prime}, V Q^{\prime} V=P^{\prime}$. We relate these operator with the differential geometry of the space $\mathcal{P}\left(\mathcal{H}^{\prime}\right)$ of projections in \mathcal{H}^{\prime} (or Grassmann manifold of \mathcal{H}^{\prime}). Specifically, with the unique short geodesic curve joining P^{\prime} and Q^{\prime} in $\mathcal{P}\left(\mathcal{H}^{\prime}\right)$. For instance, it is shown that $P Q$ is S-decomposable if and only if the velocity operator of the unique geodesic joining P^{\prime} and Q^{\prime} is diagonalizable.

In Sect. 5 it is shown that any contraction $\Gamma \in \mathcal{B}(\mathcal{H})$ is the 1,1 entry of a unitary operator times a product of projections acting in $\mathcal{H} \times \mathcal{H}$.

2. Products and Differences of Projections

If $T \in \mathcal{P} \cdot \mathcal{P}$, then $T=P_{\overline{R(T)}} P_{N(T)^{\perp}}$. This is a result of T. Crimmins (unpublished; there is a proof in [23] Theorem 8). Moreover, Crimmins proved that $T \in \mathcal{B}(\mathcal{H})$ belongs to $\mathcal{P} \cdot \mathcal{P}$ if and only if $T T^{*} T=T^{2}$ [23]. However, the factorization $T=P_{\overline{R(T)}} P_{N(T) \perp}$ is one among many others. In [7], Theorem 3.7, it is proved that if $T \in \mathcal{P} \cdot \mathcal{P}$, then $T=P_{\mathcal{S}} P_{\mathcal{T}}$ if and only if

$$
\overline{R(T)} \subset \mathcal{S}, N(T)^{\perp} \subset \mathcal{T} \text { and }(\mathcal{S} \ominus \overline{R(T)}) \oplus\left(\mathcal{T} \ominus N(T)^{\perp}\right) \subset R(T)^{\perp} \cap N(T)
$$

In [7], for any $T \in \mathcal{P} \cdot \mathcal{P}$ the set of all pairs $(\mathcal{S}, \mathcal{T})$ of closed subspaces such that $T=P_{\mathcal{S}} P_{\mathcal{T}}$ is denoted by \mathcal{X}_{T}. Our first result is a characterization of \mathcal{X}_{T} for S-decomposable T. The proof is essentially that of Theorem 4.1 in [4], where T is supposed to be a compact element of $\mathcal{P} \cdot \mathcal{P}$. We include a proof for the reader's convenience.

Theorem 2.1. Let $\mathcal{S}, \mathcal{T} \subset \mathcal{H}$ be closed subspaces of \mathcal{H}. Then $T=P_{\mathcal{S}} P_{\mathcal{T}}$ is S-decomposable if and only if there exist orthonormal bases $\left\{\psi_{n}: n \geq 1\right\}$ of $\mathcal{S},\left\{\xi_{n}: n \geq 1\right\}$ of \mathcal{T} such that $\left\langle\xi_{n}, \psi_{m}\right\rangle=0$ if $n \neq m$. In such case, the numbers $\left|\left\langle\xi_{n}, \psi_{n}\right\rangle\right|$ are the singular values of T.

Proof. Suppose that $\left\{\psi_{n}\right\},\left\{\xi_{n}\right\}$ are orthonormal bases of \mathcal{S}, \mathcal{T} respectively, such that

$$
\left\langle\psi_{n}, \xi_{m}\right\rangle=0 \text { for } n \neq m
$$

Therefore

$$
P_{\mathcal{S}} P_{\mathcal{T}}=\left(\sum_{n \geq 1}\left\langle\quad, \psi_{n}\right\rangle \psi_{n}\right)\left(\sum_{m \geq 1}\left\langle\quad, \xi_{m}\right\rangle \xi_{m}\right)=\sum_{n \geq 1}\left\langle\psi_{n}, \xi_{n}\right\rangle \psi_{n} \otimes \xi_{n}
$$

In order to get the Schmidt decomposition of $P_{\mathcal{S}} P_{\mathcal{T}}$, we only need to replace $\left\langle\psi_{n}, \xi_{n}\right\rangle$ by the appropriate sequence of positive numbers: write $\left\langle\psi_{n}, \xi_{n}\right\rangle=$ $e^{i \theta_{n}}\left|\left\langle\psi_{n}, \xi_{n}\right\rangle\right|$ and replace ψ_{n} by $\psi_{n}^{\prime}=e^{-i \theta_{n}} \psi_{n}$. Then $\left\{\psi_{n}^{\prime}\right\}$ is still an orthonormal basis of \mathcal{S}, and

$$
\left\langle\psi_{n}^{\prime}, \xi_{n}\right\rangle=\left|\left\langle\psi_{n}, \xi_{n}\right\rangle\right|=s_{n}
$$

are the singular values in the decomposition

$$
P_{\mathcal{S}} P_{\mathcal{T}}=\sum_{n \geq 1}\left|\left\langle\psi_{n}, \xi_{n}\right\rangle\right| \psi_{n}^{\prime} \otimes \xi_{n}
$$

This shows that $P_{\mathcal{S}} P_{\mathcal{T}}$ is S -decomposable.
Conversely, if $T=P_{\mathcal{S}} P_{\mathcal{T}}$ is S -decomposable it has a singular value decomposition

$$
T=\sum_{n \geq 1} s_{n} \psi_{n} \otimes \xi_{n}
$$

and it holds that $T^{2}=T T^{*} T$. Then

$$
T^{*}=\sum_{n \geq 1} s_{n}\left\langle, \psi_{n}\right\rangle \xi_{n}, T T^{*} T=\sum_{n \geq 1} s_{n}^{3}\left\langle, \xi_{n}\right\rangle \psi_{n}
$$

and

$$
T^{2}=\sum_{n, m \geq 1} s_{n} s_{m}\left\langle\psi_{n}, \xi_{n}\right\rangle\left\langle, \xi_{n}\right\rangle \psi_{n}=\sum_{n \geq 1} s_{n}\left(\sum_{m \geq 1}\left\langle, s_{m}\left\langle\xi_{n}, \psi_{m}\right\rangle \xi_{m}\right) \psi_{n}\right.
$$

Using $T T^{*} T=T^{2}$ we get, for each $n \geq 1$

$$
\sum_{m \geq 1} s_{n} s_{m}\left\langle\xi_{n}, \psi_{m}\right\rangle \xi_{m}=s_{n}^{3} \xi_{n}
$$

Then $\left\langle\xi_{n}, \psi_{m}\right\rangle=0$ if $n \neq m$ and $s_{n}=\left\langle\xi_{n}, \psi_{n}\right\rangle$. Finally, we can extend the orthonormal bases $\left\{\psi_{n}\right\}$ of $\overline{R(T)}$ and $\left\{\xi_{n}\right\}$ of $N(T)^{\perp}$ to orthonormal bases of \mathcal{S} and \mathcal{T}. In fact, if $\psi \in \mathcal{S} \ominus \overline{R(T)}$ and $\xi \in \mathcal{T} \ominus N(T)^{\perp}$, then

$$
\langle\psi, \xi\rangle=0
$$

because

$$
(\mathcal{S} \ominus \overline{R(T)}) \oplus\left(\mathcal{T} \ominus N(T)^{\perp}\right) \subset R(T)^{\perp} \cap N(T)
$$

Next, we show that $T=P Q$ is S-decomposable if and only if $A=P-Q$ is diagonalizable, and establish the relation between the singular values of T and the eigenvalues of A. We present this equivalence as two separate theorems, to avoid too long a statement.

Theorem 2.2. Suppose that $T=P Q$ is S-decomposable with singular values s_{n}. Then $A=P-Q$ is diagonalizable, with eigenvalues $\pm\left(1-s_{n}^{2}\right)^{1 / 2}, n \geq 1$, and maybe $0,-1$ and 1 .

Proof. Put as above $T=\sum_{n \geq 1} s_{n} \psi_{n} \otimes \xi_{n}$, with $\xi_{n} \in R(Q)$ and $\psi_{n} \in R(P)$. First note that $s_{n} \leq s_{1}=\|\bar{T}\| \leq\|P\|\|Q\| \leq 1$. Moreover, $s_{1}=1$ means that $T \xi_{1}=\eta_{1}$ and thus $\left\|P\left(Q \xi_{1}\right)\right\|=1=\left\|\xi_{1}\right\| \geq\left\|Q \xi_{1}\right\| \geq\left\|P\left(Q \xi_{1}\right)\right\|$, i.e., $\xi_{1} \in R(Q)$ and $Q \xi_{1}=\xi_{1} \in R(P)$. Then $\xi_{1}=\psi_{1}$. The same happens for all n such that $s_{n}=1$: the associated vectors $\xi_{n}=\psi_{n}$ generate $R(P) \cap R(Q)$. Note that $A=P-Q$ is trivial in this subspace.

Suppose that $s_{k}<1$. Apparently,

$$
A \xi_{k}=P \xi_{k}-Q \xi_{k}=P Q \xi_{k}-\xi_{k}=T \xi_{k}-\xi_{k}=s_{k} \psi_{k}-\xi_{k}
$$

and

$$
A \psi_{k}=P \psi_{k}-Q \psi_{k}=P \psi_{k}-Q P \psi_{k}=\psi_{k}-T^{*} \psi_{k}=\psi_{k}-s_{k} \xi_{k}
$$

Then

$$
A^{2} \xi_{k}=\left(1-s_{k}^{2}\right) \xi_{k} . \quad A^{2} \psi_{k}=\left(1-s_{k}\right)^{2} \psi_{k}
$$

Since $s_{k}=\left|\left\langle\xi_{k}, \psi_{k}\right\rangle\right|<1$ and $\left\|\xi_{k}\right\|=\left\|\psi_{k}\right\|=1$, it follows that ξ_{k}, ψ_{k} span a two-dimensional eigenspace for A^{2}, with eigenvalue $1-s_{k}^{2}$. Then

$$
\nu_{k}=\left(\left(1-s_{k}^{2}\right)^{1 / 2}-1\right) \xi_{k}+s_{k} \psi_{k} \text { and } \omega_{k}=\left(-\left(1-s_{k}^{2}\right)^{1 / 2}-1\right) \xi_{k}+s_{k} \psi_{k}
$$

are orthogonal eigenvectors for A, with eigenvalues $\left(1-s_{k}^{2}\right)^{1 / 2}$ and $-(1-$ $\left.s_{k}^{2}\right)^{1 / 2}$, respectively.

The orthogonal systems ξ_{k} and ψ_{k} can be extended to orthonormal bases of $R(P)$ and $R(Q)$, respectively (as in the proof of Theorem 2.1). On the extension of the system ξ_{k}, i.e., $R(P) \ominus R(T), A=P-Q$ equals 1. On the extension of $\psi_{k}, R(Q) \ominus N(T)^{\perp}, A$ equals -1 . Together, these extended systems span $R(P)+R(Q)$, and here A is diagonalizable. On the orthogonal complement of this subspace, namely $N(P)^{\perp} \cap N(Q)^{\perp}, A$ is trivial.

Remark 2.3. Note that, except for 1 and -1 , the eigenvalues $\left(1-s_{k}^{2}\right)^{1 / 2}$ and $-\left(1-s_{k}^{2}\right)^{1 / 2}$ of A have the same multiplicity. Also note that

$$
N(A-1)=R(P) \cap N(Q), \quad N(A+1)=N(P) \cap R(Q)
$$

and $N(A)=R(P) \cap R(Q) \oplus N(P) \cap N(Q)$.
The above result has a converse. Davis [9] proved that operators $A=$ $P-Q$ are characterized as follows: in the generic part of A, namely

$$
\mathcal{H}_{0}=\{N(A) \oplus N(A-1) \oplus N(A+1)\}^{\perp}
$$

which reduces P, Q and A, if we denote $P_{0}=\left.P\right|_{\mathcal{H}_{0}}, Q_{0}=\left.Q\right|_{\mathcal{H}_{0}}$ and

$$
A_{0}=\left.A\right|_{\mathcal{H}_{0}}=P_{0}-Q_{0}
$$

there exists a symmetry $V\left(V^{*}=V^{-1}=V\right)$ such that $V A=-A V$ and $P_{0}=P_{V}=\frac{1}{2}\left\{1+A_{0}+V\left(1-A_{0}^{2}\right)^{1 / 2}\right\} \quad, \quad Q_{0}=Q_{V}=\frac{1}{2}\left\{1-A_{0}+V\left(1-A_{0}^{2}\right)^{1 / 2}\right\}$.
V is characterized by these properties. With these notations we have:
Theorem 2.4. If $A=P-Q$ is diagonalizable with (non zero) eigenvalues $\pm \lambda_{n} \quad\left(0<\left|\lambda_{n}\right|<1\right)$ and ± 1, then $T=P Q$ is S-decomposable with singular values $\left(1-\lambda_{n}^{2}\right)^{1 / 2}$ and 1 .

Proof. On the non generic parts $N(A-1) \oplus N(A+1), T$ equals zero. In $N(A)=R(P) \cap R(Q) \oplus N(P) \cap N(Q), T$ is

$$
1 \oplus 0
$$

Thus $P Q$ is diagonal (thus S-decomposable) in \mathcal{H}_{0}^{\perp}. In \mathcal{H}_{0}, after straightforward computations (note that V commutes with A_{0}^{2}) one has

$$
P_{0} Q_{0}=P_{V} Q_{V}=\frac{V}{2}\left\{V\left(1-A_{0}^{2}\right)^{1 / 2}+1-A_{0}\right\}\left(1-A_{0}^{2}\right)^{1 / 2}
$$

Since A_{0} is diagonalizable, and there exists the symmetry V associated to P_{0} and Q_{0}, which intertwines A_{0} with $-A_{0}$, it follows that A_{0} is of the form

$$
A_{0}=\sum_{n \geq 1} \lambda_{n}\left(E_{n}-F_{n}\right)
$$

where $E_{n}, F_{n}(n \geq 1)$ are pairwise orthogonal projections with $\operatorname{dim} R\left(E_{n}\right)=$ $\operatorname{dim} R\left(F_{n}\right)=m_{n} \leq \infty$. The eigenvalues λ_{n} of A_{0} are different from ± 1, because $N\left(A_{0} \pm 1\right)=\{0\}$. Fix an orthonormal basis $\left\{\nu_{k}^{n}: 1 \leq k \leq m_{n}\right\}$ for $R\left(E_{n}\right)$. The fact that $V A=-A V$ implies that V maps (the λ_{n}-eigenspace) $R\left(E_{n}\right)$ onto (the $-\lambda_{n}$-eigenspace) $R\left(F_{n}\right)$, and back. Then we can consider for $R\left(F_{n}\right)$ the orthonormal basis given by $\omega_{k}^{n}=V \nu_{k}^{n}$. Thus also $V \omega_{k}^{n}=\nu_{k}^{n}$. Then

$$
P_{0} Q_{0} \nu_{k}^{n}=\frac{1}{2}\left(1-\lambda_{n}^{2}\right) \nu_{k}^{n}+\frac{1}{2}\left(1-\lambda_{n}\right)\left(1-\lambda_{n}^{2}\right)^{1 / 2} \omega_{k}^{n}
$$

and

$$
P_{0} Q_{0} \omega_{k}^{n}=\frac{1}{2}\left(1-\lambda_{n}^{2}\right) \omega_{k}^{n}+\frac{1}{2}\left(1+\lambda_{n}\right)\left(1-\lambda_{n}^{2}\right)^{1 / 2} \nu_{k}^{n}
$$

It follows that the 2-dimensional subspace generated by (the orthonormal vectors) ν_{k}^{n} and ω_{k}^{n} is invariant for $P_{0} Q_{0}$. The matrix of $P_{0} Q_{0}$ restricted to this subspace (in this basis) is

$$
\frac{1}{2}\left(\begin{array}{cc}
\left(1-\lambda_{n}^{2}\right) & \left(1+\lambda_{n}\right)\left(1-\lambda_{n}^{2}\right)^{1 / 2} \\
\left(1-\lambda_{n}\right)\left(1-\lambda_{n}^{2}\right)^{1 / 2} & \left(1-\lambda_{n}^{2}\right)
\end{array}\right)
$$

whose singular values are 0 and $\left(1-\lambda_{n}^{2}\right)^{1 / 2}$. In the orthonormal basis $\left\{\nu_{k}^{n}, \omega_{k}^{n}\right\}$ of \mathcal{H}_{0} (paired in this fashion), the operator $P_{0} Q_{0}$ is block-diagonal, with 2×2 blocks. It follows that $P Q$ is S -decomposable with singular values $\left(1-\lambda_{n}^{2}\right)^{1 / 2}$ and, eventually, 1. The singular value 1 occurs only if $R(P) \cap R(Q) \neq\{0\}$.

Remark 2.5. The multiplicity of $\left(1-\lambda_{n}^{2}\right)^{1 / 2}$ as a singular value of $P Q$ is m_{n}.
Remark 2.6. From the above results, which relate eigenvalues of $P-Q$ and singular values of $P Q$, it follows that if $P Q$ is compact, and either P or Q have infinite rank, then $\|P-Q\|=1$. Indeed, if $P Q$ is compact, the singular values accumulate eventually at 0 , and therefore the eigenvalues of A accumulate at 1 . However, this result holds with more generality. It is a simple exercise that if $p \neq q$ are non zero projections in a C^{*}-algebra such that $p q=0$, then $\|p-q\|=1$. Our case consists in reasoning in the Calkin algebra: $p=\pi(P)$,
$q=\pi(Q)$, where $\pi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$ is the quotient homomorphism. Then

$$
1 \leq\|p-q\| \leq\|P-Q\| \leq 1
$$

The following result will be useful to provide further examples. In a special case (see Example 3 in Sect. 3), it was proven by Smith ([26], Th. 3.1).

Proposition 2.7. $P Q$ is S-decomposable if and only if $P(1-Q)$ is S-decomposable (and therefore if and only if $(1-P) Q$ or $(1-P)(1-Q)$ are S decomposable).
Proof. $P(1-Q)$ is S-decomposable if and only if $P(1-Q) P=P-P Q P$ is diagonalizable. This operator acts non trivially only in $R(P)$. Thus, it is diagonalizable if and only if it is diagonalizable in $R(P)$. Adding $1-P$ (equal to the identity in $N(P)$), one obtains that this latter fact is equivalent to $1-P Q P=1-P \oplus P-P Q P$ being diagonalizable in $\mathcal{H}=N(P) \oplus R(P)$. Clearly $1-P Q P$ is diagonalizable if and only if $P Q P$ also is, i.e., if and only if $P Q$ is S -decomposable.

As a direct consequence of this fact, one obtains the following corollary
Corollary 2.8. Let P, Q be projections. Then $P-Q$ is diagonalizable if and only if $P+Q$ is diagonalizable. In that case, λ_{n} is an eigenvalue of $P-Q$ with $0<\left|\lambda_{n}\right|<1$ if and only if $1 \pm\left(1-\lambda_{n}\right)^{2}$ is an eigenvalue of $P+Q$, with the same multiplicity.
Proof. By the above results, $\lambda_{n}= \pm\left(1-s_{n}^{2}\right)^{1 / 2}$, where s_{n} is a singular value of $P Q$, or equivalently, s_{n}^{2} is an eigenvalue of $P Q P$. On the other hand, from the proof of Proposition 2.7, the eigenvalues of

$$
1-P Q P=1-P \oplus P Q^{\perp} P
$$

are 1, and $1-s_{n}^{2}$. Then again by Theorem 2.2, the eigenvalues of $P-Q^{\perp}=$ $P+Q-1$ are $\pm s_{n}$, and thus the eigenvalues of $P+Q$ are $1 \pm s_{n}=1 \pm\left(1-\lambda_{n}^{2}\right)^{1 / 2}$. Since $P-Q$ is a difference of projections, the eigenvalues $+\lambda$ and $-\lambda$ (when $0<|\lambda|<1$) have the same multiplicity (see [2]), and by the above results, these add up to the multiplicity of $s=\left(1-\lambda^{2}\right)^{1 / 2}$ as a singular value of $P Q$. This number clearly equals the multiplicity of $\left(1-s^{2}\right)^{1 / 2}$ as a singular value of $P Q^{\perp}$. Note that $P+Q-1=P-Q^{\perp}$ is also a difference of projections, therefore the multiplicities of $\pm s= \pm\left(1-\lambda^{2}\right)^{1 / 2}$ coincide $(0<s<1)$.

Remark 2.9. The multiplicity of 1 as an (eventual) eigenvalue of $P-Q$ is the dimension of $R(P) \cap N(Q)$, the multiplicity of -1 is the dimension of $N(P) \cap R(Q)$, the sum of these multiplicities is the multiplicity of 0 in $P-Q^{\perp}$, or the multiplicity of 1 in $P+Q$. Similarly, the multiplicity of 0 in $P-Q$ equals the sum of the multiplicities of 0 and 2 in $P+Q$.

Remark 2.10. To study the examples in the next section, it will also be useful to note that if P has infinite rank and $P Q$ is compact, then $P(1-Q)$ is S -decomposable but non compact.

E. Andruchow, G. Corach

3. Examples

Example. Let $I, J \subset \mathbb{R}^{n}$ be Lebesgue-measurable sets of finite measure. Let P_{I}, Q_{J} be the projections in $L^{2}\left(\mathbb{R}^{n}, d x\right)$ given by

$$
P_{I} f=\chi_{I} f \quad \text { and } \quad Q_{J} f=\left(\chi_{J} \hat{f}\right)
$$

where χ_{L} denotes the characteristic function of the set L. Equivalently, denoting by $U_{\mathcal{F}}$ the Fourier transform regarded as a unitary operator acting in $L^{2}\left(\mathbb{R}^{n}, d x\right)$, then

$$
P_{I}=M_{\chi_{I}} \text { and } Q_{J}=U_{\mathcal{F}}^{*} M_{\chi_{J}} U_{\mathcal{F}}
$$

In [10] (Lemma 2) it is proven that $P_{I} Q_{J}$ is a Hilbert-Schmidt operator. See also [12]. Then $T=P_{I} Q_{J}$ is S-decomposable (with square summable singular values). These products play a relevant role in operator theoretic formulations of the uncertainty principle $[10,12]$.

In this case one has the spectral picture of $A=P_{I}-Q_{J}$. It is known $[12,19]$ that

$$
N\left(P_{I}\right) \cap N\left(Q_{J}\right)=R\left(P_{I}\right) \cap N\left(Q_{J}\right)=N\left(P_{I}\right) \cap R\left(Q_{J}\right)=\{0\}
$$

and $R\left(P_{I}\right) \cap R\left(Q_{J}\right)$ is infinite dimensional. Thus $N(A)=R\left(P_{I}\right) \cap R\left(Q_{J}\right)$ is infinite dimensional, $N(A \pm 1)=\{0\}$, and the eigenvalues of A are of the form $\pm\left(1-s_{k}^{2}\right)^{1 / 2}$, where the sequence s_{k} belongs to $\ell^{2}(\mathbb{Z})$. In special cases, e.g. $I=[0, T], J=[-\Omega, \Omega]$ intervals in \mathbb{R}, the eigenfunctions are known and the eigenvalues have multiplicity one [17].

If one relaxes the condition that the sets be of finite measure, $P_{I} Q_{J}$ ceases to be compact. Using Proposition 2.7, one obtains non compact examples: replacing the above conditions by $\left|\mathbb{R}^{n} \backslash I\right|<\infty$ or $\left|\mathbb{R}^{n} \backslash J\right|<\infty$ (see also [26]), one obtains non-compact, S-decomposable products of projections.

Note also that, due to Theorem 2.1, in the above cases (i.e. both I and J have finite or co-finite measure), the subspaces $R\left(P_{I}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right)\right.$: $\left.\left.f\right|_{\mathbb{R}^{n} \backslash I}=0\right\}$ and $R\left(Q_{J}\right)=\left\{g \in L^{2}\left(\mathbb{R}^{n}\right):\left.\hat{g}\right|_{\mathbb{R}^{n} \backslash J}=0\right\}$ have orthonormal bases $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$, respectively, which satisfy $\left\langle f_{n}, g_{m}\right\rangle=0$ if $n \neq m$.

We study more carefully the case

$$
I=[0,+\infty), \quad J=[-1,1]
$$

not covered above. Straightforward computations (see [19], equation (49), p. 419; please note that Lenard denotes by Q, P what we here denote by P_{I}, Q_{J}, respectively) show that the operator $P_{I} Q_{J}$, acting in $L^{2}(0,+\infty)$ is given by

$$
P_{I} Q_{J} P_{I} f(x)=\frac{1}{\pi} \int_{0}^{\infty} \operatorname{sinc}(x-t) f(t) d t
$$

where $\operatorname{sinc}(t)=\left\{\begin{array}{l}\sin (t) / t, \quad \text { if } t \neq 0 \\ 1, \quad \text { if } t=0\end{array}\right.$. Let us prove that $P_{I} Q_{J} P_{I}$ is non compact. For $n \in \mathbb{N}$, let

$$
e_{n}(x)=\left\{\begin{array}{l}
e^{-\frac{1}{n} x} e^{i x}, \quad \text { if } x \geq 0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Apparently $e_{n} \in L^{2}(\mathbb{R})$ and $\left\|e_{n}\right\|_{2}^{2}=\frac{n}{2}$. Note that

$$
P_{I} Q_{J} P_{I} \frac{e_{n}(x)}{\left\|e_{n}\right\|_{2}}=\frac{\sqrt{2}}{\pi \sqrt{n}}\left\{\int_{0}^{x} \operatorname{sinc}(x-t) e_{n}(t) d t+\int_{x}^{\infty} \operatorname{sinc}(x-t) e_{n}(t) d t\right\}
$$

Changing variables $v=x-t$ in the first integral and $u=t-x$ in the second, one obtains

$$
\frac{\sqrt{2}}{\pi \sqrt{n}}\left\{e_{n}(x) \int_{0}^{x} \operatorname{sinc}(v) e_{n}(-v) d v+e_{n}(x) \int_{0}^{\infty} \operatorname{sinc}(u) e_{n}(u) d u\right\}
$$

The second integral, which we shall denote λ_{n}, can be computed. Denote by \mathbb{L} the usual Laplace transform. Then λ_{n} equals

$$
\begin{aligned}
& \int_{0}^{\infty} \operatorname{sinc}(u) e_{n}(u) d u=\int_{0}^{\infty} \operatorname{sinc}(u) \cos (u) e^{-\frac{u}{n}} d u+i \int_{0}^{\infty} \operatorname{sinc}(u) \sin (u) e^{-\frac{u}{n}} d u \\
& \quad=\left.\mathbb{L}\left(\frac{\sin (t)}{t} \cos (t)\right)\right|_{t=\frac{1}{n}}+\left.i \mathbb{L}\left(\frac{\sin ^{2}(t)}{t}\right)\right|_{t=\frac{1}{n}}=\frac{\pi}{2}-\arctan \left(\frac{1}{n}\right)+i \frac{1}{4} \ln \left(1+4 n^{2}\right) .
\end{aligned}
$$

Let us denote by $F_{n}(x)$ the left hand integral,

$$
F_{n}(x)=\int_{o}^{x} \operatorname{sinc}(t) e_{n}(-t) d t
$$

Lemma 3.1. With the current notations,

$$
\frac{1}{\left\|e_{n}\right\|_{2}}\left\|P_{I} Q_{J} P_{I} e_{n}-e_{n}\right\|_{2} \rightarrow 0, \text { as } \quad n \rightarrow \infty
$$

Proof. Compute

$$
\left\langle e_{n} F_{n}, e_{n}\right\rangle=\int_{0}^{\infty} e_{n}(x) F_{n}(x) \bar{e}_{n}(x) d x=\int_{0}^{\infty} e^{-\frac{2}{n} x} F_{n}(x) d x
$$

Integrating by parts, and using that (by means of the L'Hospital rule !), we get

$$
\lim _{x \rightarrow+\infty} \frac{F_{n}(x)}{e^{\frac{2}{n} x}}=\lim _{x \rightarrow \infty} \frac{n}{2} \frac{\operatorname{sinc}(x) e_{n}(-x)}{e^{\frac{2}{n} x}}=\frac{n}{2} \lim _{x \rightarrow+\infty} \frac{\operatorname{sinc}(x)}{e^{\frac{1}{n} x}}=0
$$

and $F_{n}(0)=0$. Then

$$
\begin{gathered}
\left\langle e_{n} F_{n}, e_{n}\right\rangle=\frac{n}{2} \int_{0}^{\infty} e^{-\frac{2}{n} x} F_{n}^{\prime}(x) d x=\frac{n}{2} \int_{0}^{\infty} e^{-\frac{2}{n} x} \operatorname{sinc}(x) e^{\frac{1}{n} x} e^{-i x} d x \\
\quad=\frac{n}{2} \int_{0}^{\infty} e^{-\frac{1}{n} x} \operatorname{sinc}(x) \cos (x) d x-i \frac{n}{2} \int_{0}^{\infty} e^{-\frac{1}{n} x} \operatorname{sinc}(x) \sin (x) d x
\end{gathered}
$$

which, by computations similar as above involving the Laplace transform, equals

$$
\frac{n}{2}\left\{\frac{\pi}{2}-\arctan \left(\frac{1}{n}\right)-i \frac{1}{4} \ln \left(1+4 n^{2}\right)\right\}=\frac{n}{2} \bar{\lambda}_{n}
$$

Then

$$
\begin{aligned}
& \left\langle P_{I} Q_{J} P_{I} e_{n}, e_{n}\right\rangle=\frac{1}{\pi}\left\langle e_{n}\left(F_{n}+\lambda_{n}\right), e_{n}\right\rangle=\frac{1}{\pi}\left\{\lambda_{n}\left\|e_{n}\right\|_{2}^{2}+\left\langle F_{n} e_{n}, e_{n}\right\rangle\right\} \\
& \quad=\frac{1}{\pi}\left\{\frac{n}{2} \lambda_{n}+\frac{n}{2} \bar{\lambda}_{n}\right\}=\frac{n}{\pi} \operatorname{Re}\left(\lambda_{n}\right)=\frac{n}{\pi}\left\{\frac{\pi}{2}-\arctan \left(\frac{1}{n}\right)\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|P_{I} Q_{J} P_{I} e_{n}-e_{n}\right\|_{2}^{2}=\left\|P_{I} Q_{J} P_{I} e_{n}\right\|_{2}^{2}+\left\|e_{n}\right\|_{2}^{2}-2 \operatorname{Re}\left\langle P_{I} Q_{J} P_{I} e_{n}, e_{n}\right\rangle \\
& \quad \leq 2\left\|e_{n}\right\|_{2}^{2}-2 \frac{n}{\pi}\left\{\frac{\pi}{2}-\arctan \left(\frac{1}{n}\right)\right\}=2 \frac{n}{\pi} \arctan \left(\frac{1}{n}\right)
\end{aligned}
$$

Therefore

$$
\frac{1}{\left\|e_{n}\right\|_{2}^{2}}\left\|P_{I} Q_{J} P_{I} e_{n}-e_{n}\right\|_{2}^{2} \leq \frac{4}{\pi} \arctan \left(\frac{1}{n}\right) \rightarrow 0
$$

Proposition 3.2. If $I=[0,+\infty)$ and $J=[-1,1]$, then $P_{I} Q_{J} P_{I}$ is non compact, with

$$
\left\|P_{I} Q_{J} P_{I}\right\|=\left\|P_{I} Q_{J}\right\|=1 \quad \text { and } \quad\left\|P_{I}-Q_{J}\right\|=1
$$

Proof. If $P_{I} Q_{J} P_{I}$ were compact, there would exist a subsequence
$f_{k}=\frac{1}{\| e_{n_{k} \|_{2}}} e_{n_{k}}$ such that $P_{I} Q_{J} P_{I} f_{k}$ is convergent. By the above lemma, this would imply that the sequence f_{k} is convergent. This is clearly not the case. For instance,

$$
\begin{aligned}
\left\langle f_{k}, f_{k+1}\right\rangle & =\frac{1}{\left\|e_{n_{k}}\right\|\left\|e_{n_{k+1}}\right\|}\left\langle e_{n_{k}}, e_{n_{k+1}}\right\rangle=\frac{2}{n_{k}^{1 / 2} n_{k+1}^{1 / 2}} \int_{0}^{\infty} e^{-\left(\frac{1}{n_{k}}+\frac{1}{n_{k+1}}\right) x} d x \\
& =\frac{n_{k}^{1 / 2} n_{k+1}^{1 / 2}}{n_{k}+n_{k+1}}
\end{aligned}
$$

which is less than $\frac{1}{2}$ by the geometric-arithmetic inequality. This clearly implies that the sequence of the unit vectors f_{k} cannot be convergent.

The last assertions follow from the above lemma.
Remark 3.3. Note that Example 3 above shows, in particular, that the Volterra-like integral operator

$$
B f(x)=\int_{0}^{x} \operatorname{sinc}(x-t) f(t) d t
$$

is unbounded in $L^{2}(0,+\infty)$ (though it is a Volterra operator on any finite interval $[0, r]$, thus compact with trivial spectrum in $L^{2}(0, r)$, for $\left.r<\infty\right)$. Indeed, if it were bounded, then $T=P_{I} Q_{J} P_{I}-B$,

$$
T f(x)=\int_{x}^{\infty} \operatorname{sinc}(x-t) f(t) d t
$$

would be bounded. But the computations above show that the functions $e_{n}(x)=e^{\left(-\frac{1}{n}+i\right) x}$ are eigenfunctions for T, with unbounded eigenvalues λ_{n}.
Example. Let $\mathcal{H}=L^{2}(\mathbb{T}, d t)$ where \mathbb{T} is the 1 -torus, and consider the decomposition

$$
\mathcal{H}=\mathcal{H}_{-} \oplus \mathcal{H}_{+}
$$

where \mathcal{H}_{+}is the Hardy space. Let φ, ψ be continuous functions in \mathbb{T} with $\left|\varphi\left(e^{i t}\right)\right|=\left|\psi\left(e^{i t}\right)\right|=1$ for all t, and

$$
P=P_{\varphi \mathcal{H}_{+}}^{\perp}=1-P_{\varphi \mathcal{H}_{+}}, \quad Q=P_{\psi \mathcal{H}_{+}}
$$

Since φ and ψ are unimodular, the multiplication operators M_{φ}, M_{ψ} are unitary in \mathcal{H} and thus

$$
P Q=M_{\varphi} P_{-} M_{\bar{\varphi} \psi} P_{+} M_{\bar{\psi}}
$$

Note that $\left.P_{-} M_{\bar{\varphi} \psi}\right|_{\mathcal{H}_{+}}=H(\bar{\varphi} \psi)$ is the Hankel operator with symbol $\bar{\varphi} \psi$, which is compact by Hartman's theorem [16] (see also Theorem 5.5 in [20]). Thus $T=P Q$ is compact, and therefore S-decomposable.

Again using Proposition 2.7, one obtains non compact S-decomposable examples. For instance, put now

$$
P=P_{\varphi \mathcal{H}_{+}}, \quad Q=P_{\psi \mathcal{H}_{+}} .
$$

In this case

$$
P Q=M_{\varphi} P_{+} M_{\bar{\varphi} \psi} P_{+} M_{\bar{\psi}}
$$

is decomposable Thus the operator $P_{+} M_{\bar{\varphi} \psi} P_{+}$is non-compact and S-decomposable in $L^{2}(\mathbb{T})$. Since it acts non trivially in \mathcal{H}_{+}, it follows that the Toeplitz operator $T_{\bar{\varphi} \psi}$ is S-decomposable in \mathcal{H}_{+}.

On the other hand, using Theorem 2.2, it follows that

$$
A=P_{\varphi \mathcal{H}_{+}}-P_{\psi \mathcal{H}_{+}}
$$

diagonalizable. Using standard facts on Toeplitz operators, one sees that ± 1 are eigenvalues of A only if the winding numbers of φ and ψ do not coincide. The other eigenvalues of A are $\pm\left(1-s_{n}^{2}\right)^{1 / 2}$, where s_{n} are the singular values of $T_{\bar{\varphi} \psi}$, and 0 . Since this operator has closed range (being a Fredholm operator), the eigenvalues do not accumulate at ± 1. The nullspace of A is infinite dimensional, it contains the subspace $\varphi \psi \mathcal{H}_{+}$.

Again, using Theorem 2.1, one obtains that, with the above hypothesis on φ and ψ, there exist orthonormal bases $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ of \mathcal{H}_{+}such that $\left\langle\varphi f_{n}, \psi g_{m}\right\rangle=0$ if $n \neq m$.

In [18] (Theorem 5.2) Howland proved that if the function f on \mathbb{T} is C^{2} on the complement of a finite set $\left\{z_{1}, \ldots, z_{n}\right\}$ at which the lateral limits $f\left(z_{i}^{ \pm}\right)$and $f^{\prime}\left(z_{i}^{ \pm}\right)$exist, and one defines the jump of f at z to be

$$
j(z)=f\left(z^{+}\right)-f\left(z^{-}\right)
$$

then the absolutely continuous part of the Hankel operator $H(f)$ is unitarily equivalent to

$$
\oplus_{i=1}^{n} M_{i, z}
$$

where $M_{i, z}$ denotes the operator of multiplication by the variable z in $L^{2}\left(-\frac{1}{2} j\left(z_{i}\right), \frac{1}{2} j\left(z_{i}\right)\right)$. In particular, this implies that if $\bar{\varphi} \psi$ is piecewise C^{2} with jumps as f above, then $P Q$ can be decomposed as a finite direct sum of operators, some of which are multiplication by the variable in L^{2} of an interval. Clearly these operators are not S -decomposable. Then $P Q$ is not S-decomposable.

Example. Let $\mathcal{H}=\mathcal{L} \times \mathcal{S}, B: \mathcal{S} \rightarrow \mathcal{L}$ a bounded operator, and $E=E_{B}$ the idempotent operator given by the matrix

$$
E=\left(\begin{array}{cc}
1_{\mathcal{L}} & B \\
0 & 0
\end{array}\right)
$$

Any idempotent in $\mathcal{B}(\mathcal{H})$ can be expanded in this form. In [1] the reader can find a study of the properties of E in terms of those of B. Consider $P=P_{R(E)}=P_{\mathcal{L}}$ and $Q=P_{N(E)}$ and $T=P Q$. Straightforward computations show that $R(E)=\mathcal{L}$ and that

$$
P_{N(E)}=(1-E)\left(1-E-E^{*}\right)^{-1}=\left(\begin{array}{cc}
B B^{*}\left(1+B B^{*}\right)^{-1} & -B\left(1+B^{*} B\right)^{-1} \\
-B^{*}\left(1+B B^{*}\right)^{-1} & \left(1+B^{*} B\right)^{-1}
\end{array}\right)
$$

Then

$$
T T^{*}=P Q P=\left(\begin{array}{cc}
B B^{*}\left(1+B B^{*}\right)^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

Apparently, T is S-decomposable if and only if $B B^{*}\left(1+B B^{*}\right)^{-1}$ is diagonalizable, which is equivalent to $B B^{*}$ being diagonalizable, or B S-decomposable. Note also that T is compact if and only if B is compact.

If one applies Theorem 2.1 to this example, one obtains that B is S decomposable if and only if there exist orthonormal bases $\left\{\left(0, v_{n}\right)\right\}$ of $\{0\} \times$ \mathcal{L} and $\left\{\left(w_{n}, B w_{n}\right)\right\}$ of the graph of B, such that $\left\langle\left(0, v_{n}\right),\left(w_{m}, B w_{m}\right)\right\rangle=$ $\left\langle v_{n}, B w_{m}\right\rangle=0$ if $n \neq m$. This fact can be proved straightforwardly.

4. Moore-Penrose Pseudoinverses

Penrose [21] and Greville [13] proved that, for $n \times n$ square matrices, the Moore-Penrose inverse of an idempotent matrix E is a product of orthogonal projections. More precisely, it holds that

$$
E^{\dagger}=P_{N(E)^{\perp}} P_{R(E)}
$$

Since for matrices $\left(A^{\dagger}\right)^{\dagger}=A$, Penrose-Greville theorem can be stated as follows: an $n \times n$ matrix E is idempotent if and only if E^{\dagger} is a product of two orthogonal projections. This result was extended to infinite dimensional Hilbert space operators in [6], provided that $P Q$ is supposed to have closed range. In the case that $R(P Q)$ is not closed, there is still a similar characterization, but one needs to define the Moore-Penrose inverse for certain unbounded operators. The reader is referred to [7]. As in example 3, if E is an idempotent operator, in terms of the decomposition $\mathcal{H}=R(E) \oplus R(E)^{\perp}$, one has

$$
E=\left(\begin{array}{ll}
1 & B \\
0 & 0
\end{array}\right)
$$

where $B: R(E)^{\perp} \rightarrow R(E)$.
Combining the above facts and previous results we obtain the following:
Corollary 4.1. Let $E \in \mathcal{B}(\mathcal{H})$ be an idempotent operator. Then the following are equivalent:

1. E is S-decomposable
2. B is S-decomposable
3. $P_{N(E) \perp} P_{R(E)}$ is S-decomposable.
4. $P_{N(E)} P_{R(E)}$ is S-decomposable.
5. $P_{R(E)}-P_{N(E)}$ is diagonalizable.
6. $P_{R(E)}+P_{N(E)}$ is diagonalizable.
7. There exist orthonormal bases $\left\{\eta_{n}\right\}$ of $R(E)$ and $\left\{\nu_{n}\right\}$ of $N(E)$ such that $\left\langle\eta_{n}, \nu_{m}\right\rangle=0$ if $n \neq m$.
Some of these conditions were proven in [1].
Remark 4.2. By a theorem by Buckholtz ([5], Theorem 1), since \mathcal{H} is the direct sum of $R(E)$ and $N(E)$, it follows that $P_{R(E)}-P_{N(E)}$ is invertible for every idempotent E, which in turn implies that $P_{R(E)}+P_{N(E)}$ is invertible. In fact, for any $P, Q \in \mathcal{P}(\mathcal{H}), P-Q$ is invertible if and only if $\|P Q\|<1$ and $\|(1-P)(1-Q)\|<1$, while $P+Q$ is invertible if and only if $\|(1-P)(1-Q)\|<$ 1. In geometric terms, $\|P Q\|$ is the cosine of the (Dixmier) angle between $R(P)$ and (Q), and $\|(1-P)(1-Q)\|$ is the cosine of the angle between $N(P)$ and $N(Q)$. If \mathcal{H} is the direct sum of $R(P)$ and $R(Q)$, these angles coincide and are not zero.

Finally, note that if T is S -decomposable with expansion

$$
T=\sum_{n \geq 1} s_{n}\left\langle\quad, \xi_{n}\right\rangle \psi_{n}
$$

then

$$
T^{\dagger}=\sum_{n \geq 1} \frac{1}{s_{n}}\left\langle\quad, \psi_{n}\right\rangle \xi_{n}
$$

5. Isometries

Given a subspace $\mathcal{S} \subset \mathcal{H}$ with a given orthonormal basis $\mathbf{B}_{\mathcal{S}}=\left\{\xi_{n}: b \geq 1\right\}$, an isometry is defined,

$$
X_{\mathbf{B}_{\mathcal{S}}}: \ell^{2} \rightarrow \mathcal{H}, \quad X_{\mathbf{B}_{\mathcal{S}}}\left(\left\{x_{n}\right\}\right)=\sum_{n \geq 1} x_{n} \xi_{n}
$$

whose range is \mathcal{S}. Observe that, by definition, the set of all S-decomposable operators in \mathcal{H} can be described as $\left\{X D Y^{*}: X, Y\right.$ isometries $\ell^{2} \rightarrow \mathcal{H}, D \in \mathcal{B}\left(\ell^{2}\right)$ diagonal with positive entries $\}$. The condition of bi-orthogonality of Theorem 2.1 can be written in terms of the corresponding isometries.

Proposition 5.1. Let \mathcal{S}, \mathcal{T} be closed subspaces of \mathcal{H}. Then $T=P_{\mathcal{S}} P_{\mathcal{T}}$ is S decomposable if and only if there exist isometries $X, Y: \ell^{2} \rightarrow \mathcal{H}$, with range \mathcal{S} and \mathcal{T}, respectively, such that

$$
X^{*} Y \in \mathcal{B}\left(\ell^{2}\right)
$$

is a diagonal matrix.
Proof. Suppose that T is decomposable, then by Theorem (2.1), there exist orthonormal bases $\mathbf{B}_{\mathcal{S}}=\left\{\xi_{k}: k \geq 1\right\}$ and $\mathbf{B}_{\mathcal{T}}=\left\{\psi_{n}: n \geq 1\right\}$ of \mathcal{S} and \mathcal{T} such that $\left\langle\xi_{n}, \psi_{k}\right\rangle=0$ if $n \neq k$. Consider the isometries

$$
X=X_{\mathbf{B}_{\mathcal{S}}} \quad \text { and } \quad Y=X_{\mathbf{B}_{\mathcal{T}}}
$$

Then

$$
X^{*} Y\left(\left\{x_{n}\right\}\right)=\left\{\left\langle\psi_{n}, \xi_{n}\right\rangle x_{n}\right\}
$$

i.e. $X^{*} Y$ is a diagonal matrix whose entries are $\left\langle\psi_{n}, \xi_{n}\right\rangle$.

Conversely, suppose that $X, Y: \ell^{2} \rightarrow \mathcal{H}$ are isometries with $R(X)=\mathcal{S}$ and $R(Y)=\mathcal{T}$, such that $X^{*} Y$ is a diagonal matrix. Denote by $\left\{e_{n}: n \geq 1\right\}$ the canonical basis of ℓ^{2}. Then $\xi_{n}=X\left(e_{n}\right)$ and $\psi_{k}=Y\left(e_{k}\right)$ form orthonormal bases of \mathcal{S} and \mathcal{T}. Moreover

$$
\left\langle\xi_{n}, \psi_{k}\right\rangle=\left\langle X\left(e_{n}\right), Y\left(e_{k}\right)\right\rangle=\left\langle e_{n}, X^{*} Y\left(e_{k}\right)\right\rangle=0 \text { if } n \neq k .
$$

6. Davis' Symmetry

Let P, Q be projections, and consider

$$
\mathcal{H}^{\prime}=\{R(P) \cap N(Q) \oplus N(P) \cap R(Q)\}^{\perp}
$$

This subspace reduces P and Q, denote by $P^{\prime}=\left.P\right|_{\mathcal{H}^{\prime}}$ and $Q^{\prime}=\left.Q\right|_{\mathcal{H}^{\prime}}$, as operators acting in \mathcal{H}^{\prime}. Note that

$$
N(P+Q-1)=N(P-(1-Q))=R(P) \cap N(Q) \oplus N(P) \cap R(Q)
$$

and thus $S^{\prime}=P^{\prime}+Q^{\prime}-1$ is a selfadjoint operator with trivial kernel (and thus dense range) in \mathcal{H}^{\prime}. Let

$$
S^{\prime}=V\left|S^{\prime}\right|
$$

be the polar decomposition. It follows that V is a selfadjoint unitary operator, i.e., a symmetry. The fact that

$$
S^{\prime} P^{\prime}=Q^{\prime} P^{\prime}=Q^{\prime} S^{\prime} \quad\left(\text { also } S^{\prime} Q^{\prime}=P^{\prime} Q^{\prime}=P^{\prime} S^{\prime}\right)
$$

implies that the symmetry V intertwines P^{\prime} and Q^{\prime} :

$$
V P^{\prime} V=Q^{\prime}, V Q^{\prime} V=P^{\prime}
$$

Also one recovers P^{\prime} and Q^{\prime} in terms of V and the difference $A=P^{\prime}-Q^{\prime}$, by means of the formulas of the previous section:

$$
P^{\prime}=P_{V}, \quad Q^{\prime}=Q_{V}
$$

These facts were proved by Chandler Davis in [9]. Then $T=P Q$, in the decomposition $\mathcal{H}=\mathcal{H}^{\prime \perp} \oplus \mathcal{H}^{\prime}$ is given by

$$
T=0 \oplus V Q^{\prime} V Q^{\prime}=0 \oplus P^{\prime} V P^{\prime} V
$$

The following result is a straightforward consequence of Theorem 2.1:
Proposition 6.1. $T=P Q$ is S-decomposable if and only $Q^{\prime} V Q^{\prime}$ is diagonalizable (equivalently: $P^{\prime} V P^{\prime}$ is diagonalizable). If $\left\{\xi_{n}\right\}$ is an orthonormal system of eigenvectors for $Q^{\prime} V Q^{\prime}$, then $\left\langle V \xi_{n}, \xi_{k}\right\rangle=0$ if $n \neq k$.
Proof. If $Q^{\prime} V Q^{\prime}=\sum_{n \geq 1} \lambda_{n}\left\langle, \xi_{n}\right\rangle \xi_{n}$, then

$$
P^{\prime} Q^{\prime}=V Q^{\prime} V Q^{\prime}=\sum_{n \geq 1} \lambda_{n}\left\langle\quad, \xi_{n}\right\rangle V \xi_{n}
$$

and thus the orthonormal systems $\left\{\xi_{n}\right\}$ and $\left\{V \xi_{n}\right\}$ are bi-orthogonal.

Remark 6.2. Suppose that

$$
P^{\prime} Q^{\prime}=V Q^{\prime} V Q^{\prime}=\sum_{n \geq 1} s_{n}\left\langle\quad, \xi_{n}\right\rangle \psi_{n} .
$$

Then

$$
Q^{\prime} V Q^{\prime}=\sum_{n \geq 1} s_{n}\left\langle\quad, \xi_{n}\right\rangle V \psi_{n}=\sum_{n \geq 1} s_{n}\left\langle\quad, V \psi_{n}\right\rangle \xi_{n}
$$

In particular, if all the singular values have multiplicity 1 , then $V \psi_{n}= \pm \xi_{n}$.
Davis' symmetry is related to the metric geometry of the set $\mathcal{P}(\mathcal{H})$ of projections in \mathcal{H} (also called Grassmannian manifold of \mathcal{H}). If one measures the length of a continuous piecewise smooth curve $p(t) \in \mathcal{P}(\mathcal{H}), t \in I$, by means of

$$
\ell(p)=\int_{I}\left\|\frac{d}{d t} p(t)\right\| d t
$$

it was shown $([8,22])$ that curves in $\mathcal{P}(\mathcal{H})$ of the form

$$
P(t)=e^{i t X} P e^{-i t X}
$$

for $X^{*}=X$ with $\|X\| \leq \pi / 2$, such that X is P-codiagonal (i.e $P X P=$ $P^{\perp} X P^{\perp}=0$) have minimal length along their paths for $|t| \leq 1$. That is, any curve joining a pair of projections in this path cannot be shorter that the part of $P(t)$ which joins these projections. Given two projections P, Q, in [2] it was shown that there exists a unique $X\left(X^{*}=X,\|X\| \leq \pi / 2, X\right.$ is P-codiagonal) such that $e^{i X} P e^{-i X}=Q$ if and only if

$$
N(P+Q-1)=\{0\}
$$

Let us denote $X=X_{P, Q}$ if such is the case. Also in [2] it was shown that V and $X_{P, Q}$ are related by

$$
\begin{equation*}
V=e^{i X_{P, Q}}(2 P-1) \tag{6.1}
\end{equation*}
$$

Note that since (always in the case $N(P+Q-1)=\{0\}$) $\left\|X_{P, Q}\right\| \leq \pi / 2$, $X_{P, Q}$ is obtained from V by means of the usual log function:

$$
X_{P, Q}=-i \log (V(2 P-1))
$$

Define the geodesic distance $d(P, Q)$ in $\mathcal{P}(\mathcal{H})$ as

$$
d(P, Q)=\inf \{\ell(p): p \text { joins } P \text { and } Q \text { in } \mathcal{P}(\mathcal{H})\}
$$

Porta and Recht proved in [22] that

$$
\begin{equation*}
d(P, Q)=\left\|X_{P, Q}\right\| \tag{6.2}
\end{equation*}
$$

Remark 6.3. Formula (6.1) has a geometric interpretation. The fact that $X_{P, Q}$ is P-codiagonal, is equivalent to saying that $X_{P, Q}$ and $2 P-1$ anticommute, it follows that $e^{i t X_{P, Q}}(2 P-1)=(2 P-1) e^{-i t X_{P, Q}}$. Then, in particular $V=e^{\frac{i}{2} X_{P, Q}}(2 P-1) e^{-\frac{i}{2} X_{P, Q}}$, or equivalently

$$
\frac{1}{2}(1+V)=e^{\frac{i}{2} X_{P, Q}} P e^{-\frac{i}{2} X_{P, Q}}
$$

In other words, the projection $\frac{1}{2}(1+V)$ (onto the eigenspace where the symmetry V acts as the identity) is the midpoint of the geodesic $P(t)$ joining P and Q.
Corollary 6.4. Let P, Q be projections and, as above, P^{\prime}, Q^{\prime} the respective reductions to $N(P+Q-1)^{\perp}$, and let V be Davis' symmetry induced by these. Then

$$
P^{\prime} V P^{\prime}=P^{\prime} e^{X_{P^{\prime}, Q^{\prime}} P^{\prime}} \quad \text { and } \quad Q^{\prime} V Q^{\prime}=Q^{\prime} e^{-X_{P^{\prime}, Q^{\prime}}} Q^{\prime}
$$

Thus $P Q$ is S-decomposable if and only if $P^{\prime} e^{X_{P^{\prime}}, Q^{\prime}} P^{\prime}$ is diagonalizable.
Proof. Since $V=e^{i X_{P^{\prime}, Q^{\prime}}\left(2 P^{\prime}-1\right) \text {, then }}$

$$
P^{\prime} V P^{\prime}=P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}}\left(2 P^{\prime}-1\right) P^{\prime}=P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}} P^{\prime}}}
$$

By Proposition 6.1, $P Q$ is S-decomposable if and only if $P^{\prime} V P^{\prime}$ is diagonalizable. Similarly, $V=P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}}}=e^{-i X_{P^{\prime}, Q^{\prime}} Q^{\prime}}$, and thus $Q^{\prime} V Q^{\prime}=$ $Q^{\prime} e^{-X_{P^{\prime}, Q^{\prime}} Q^{\prime} \text {. } . ~ . ~ . ~}$
Remark 6.5. Since $Q^{\prime}=e^{i X_{P^{\prime}, Q^{\prime}} P^{\prime}} e^{-i X_{P^{\prime}, Q^{\prime}}\left(2 P^{\prime}-1\right) P^{\prime}}$, it also follows that

$$
P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}} P^{\prime}}=P^{\prime} Q^{\prime} e^{-i X_{P^{\prime}, Q^{\prime}}}=e^{-i X_{P^{\prime}, Q^{\prime}} Q^{\prime} P^{\prime}}
$$

and

$$
Q^{\prime} e^{-i X_{P^{\prime}, Q^{\prime}}} Q^{\prime}=Q^{\prime} P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}}}=e^{i X_{P^{\prime}, Q^{\prime}} P^{\prime}} Q^{\prime}
$$

Remark 6.6. If the matrix of $X_{P^{\prime}, Q^{\prime}}$ in terms of P^{\prime} is given by

$$
X_{P^{\prime}, Q^{\prime}}=\left(\begin{array}{cc}
0 & Z \\
Z^{*} & 0
\end{array}\right)
$$

then

$$
P^{\prime} V P^{\prime}=P^{\prime} e^{i X_{P^{\prime}, Q^{\prime}} P^{\prime}}=\left(\begin{array}{cc}
\cos \left(\left|Z^{*}\right|\right) & 0 \\
0 & \cos (|Z|)
\end{array}\right)
$$

From this last remark, it follows that
Theorem 6.7. $P Q$ is S-decomposable if and only if Z is S-decomposable, if and only if $X_{P^{\prime}, Q^{\prime}}$ is diagonalizable.

Proof.

$$
X_{P^{\prime}, Q^{\prime}}^{2}=\left(\begin{array}{cc}
Z Z^{*} & 0 \\
0 & Z^{*} Z
\end{array}\right)
$$

Thus $X_{P^{\prime}, Q^{\prime}}$ is diagonalizable if and only if Z is S -decomposable. Indeed, if Z is S-decomposable,

$$
Z=\sum_{n \geq 1} s_{n}\left\langle, v_{n}\right\rangle w_{n}, Z^{*}=\sum_{n \geq 1} s_{n}\left\langle, w_{n}\right\rangle v_{n}
$$

Note that $\left\{v_{n}\right\}$ span $R\left(P^{\prime}\right)$ and $\left\{w_{n}\right\}$ span $R\left(P^{\prime}\right)^{\perp}$, therefore, they are pairwise orthogonal systems of vectors. Then

$$
X_{P^{\prime}, Q^{\prime}} v_{n}=s_{n} w_{n} \quad \text { and } \quad X_{P^{\prime}, Q^{\prime}} w_{n}=s_{n} v_{n}
$$

For each fixed n, the two dimensional space generated by v_{n} and w_{n} reduces $X_{P^{\prime}, Q^{\prime}}$. As in a previous argument, $X_{P^{\prime}, Q^{\prime}}$ can be diagonalized in each of
these spaces, providing a diagonalization of the whole operator $X_{P^{\prime}, Q^{\prime}}$. The converse statement is apparent.

Finally, let us further exploit formula (6.1).
Corollary 6.8. If $A^{\prime}=P^{\prime}-Q^{\prime}$, then

$$
\begin{equation*}
e^{i X_{P^{\prime}, Q^{\prime}}}=V A^{\prime}+\left(1-A^{\prime 2}\right)^{1 / 2} \tag{6.3}
\end{equation*}
$$

Proof. In $N(P+Q-1)^{\perp}, P^{\prime}=P_{V}=\frac{1}{2}\left\{1+A^{\prime}+V\left(1-A^{\prime 2}\right)^{1 / 2}\right\}$, thus

$$
e^{i X_{P^{\prime}, Q^{\prime}}}=V\left(2 P^{\prime}-1\right)=V\left\{A^{\prime}+V\left(1-A^{\prime 2}\right)^{1 / 2}\right\}=V A^{\prime}+\left(1-A^{\prime 2}\right)^{1 / 2}
$$

In particular, if $P Q$ is S -decomposable, with singular values of simple multiplicity, one has the following
Theorem 6.9. Let $P Q$ be S-decomposable, $P^{\prime} Q^{\prime}=\sum_{n>1} s_{n}\left\langle\quad, \xi_{n}\right\rangle \psi_{n}$, with s_{n} of multiplicity 1. Then $X_{P^{\prime}, Q^{\prime}}$ is diagonalized as follows
$\left.X_{P^{\prime} Q^{\prime}}=\sum_{n \geq 1} i \log \left(s_{n}+i\left(1-s_{n}^{2}\right)^{1 / 2}\right) \eta_{n} \otimes \eta_{n}+i \log \left(s_{n}-i\left(1-s_{n}^{2}\right)^{1 / 2}\right)\right) \zeta_{n} \otimes \zeta_{n}$, where

$$
\eta_{n}=\frac{1}{\sqrt{2}} \nu_{n}-\frac{i}{\sqrt{2}} \omega_{n} \quad \text { and } \quad \zeta_{n}=\frac{1}{\sqrt{2}} \nu_{n}+\frac{i}{\sqrt{2}} \omega_{n}
$$

and (as in the proof of Theorem 2.2)
$\nu_{n}=\left(\left(1-s_{n}^{2}\right)^{1 / 2}-1\right) \xi_{n}+s_{n} \psi_{n} \quad$ and $\quad \omega_{n}=\left(-\left(1-s_{n}^{2}\right)^{1 / 2}-1\right) \xi_{n}+s_{n} \psi_{n}$.
Proof. If $P Q$ is S-decomposable, considering the decomposition of

$$
\left.P Q\right|_{N(P+Q-1)^{\perp}}=P^{\prime} Q^{\prime}
$$

in the proof of Theorem 2.2,

$$
A^{\prime}=\sum_{n \geq 1}\left(1-s_{n}^{2}\right) \nu_{n} \otimes \nu_{n}-\left(1-s_{n}^{2}\right)^{1 / 2} \omega_{n} \otimes \omega_{n}
$$

for ν_{n}, ω_{n} described above. Then

$$
\left(1-A^{\prime 2}\right)^{1 / 2}=\sum_{n \geq 1} s_{n} \nu_{n} \otimes \nu_{n}+s_{n} \omega_{n} \otimes \omega_{n}
$$

Recall that $V A=-A V$, or equivalently, $V A V=-A$ (see remarks before Theorem 2.4). Note that in $N(P+Q-1)^{\perp}$ we have erased the eigenvalues ± 1 from A. Then, using Theorem 2.2, the fact that the singular values of $P^{\prime} Q^{\prime}$ have simple multiplicity implies that the (non zero) eigenvalues of A^{\prime} have single multiplicity. These two assertions imply that

$$
V \nu_{n} \otimes V \nu_{n}=V\left(\nu_{n} \otimes \nu_{n}\right) V=\omega_{n} \otimes \omega_{n}
$$

Thus, in the diagonalization of A^{\prime}, we may replace ξ_{n}, ψ_{n} by scalar multiples (of modulus one) in order that

$$
V \nu_{n}=\omega_{n} \quad \text { and } \quad V \omega_{n}=\nu_{n}
$$

Then

$$
V A^{\prime}=\sum_{n \geq 1}\left(1-s_{n}^{2}\right)^{1 / 2} \omega_{n} \otimes \nu_{n}-\left(1-s_{n}^{2}\right)^{1 / 2} \nu_{n} \otimes \omega_{n}
$$

Thus, by the formula in the above Corollary,

$$
\begin{aligned}
& e^{i X_{P^{\prime}, Q^{\prime}}}=V A^{\prime}+\left(1-A^{\prime 2}\right)^{1 / 2}= \\
& \quad \sum_{n \geq 1}\left(1-s_{n}^{2}\right)^{1 / 2} \omega_{n} \otimes \nu_{n}-\left(1-s_{n}^{2}\right)^{1 / 2} \nu_{n} \otimes \omega_{n}+s_{n} \nu_{n} \otimes \nu_{n}+s_{n} \omega_{n} \otimes \omega_{n}
\end{aligned}
$$

Note that this is a block diagonal operator, with 2×2 blocks, given by the subspaces generated by the (orthonormal) vectors ν_{n} and ω_{n} for each n. Each block, in this basis, is given by

$$
\left(\begin{array}{cc}
s_{n} & -\left(1-s_{n}^{2}\right)^{1 / 2} \\
\left(1-s_{n}^{2}\right)^{1 / 2} & s_{n}
\end{array}\right)
$$

whose eigenvalues are $s_{n}+i\left(1-s_{n}^{2}\right)^{1 / 2}$ and $s_{n}-i\left(1-s_{n}^{2}\right)^{1 / 2}$, with (orthonormal) eigenvectors

$$
\eta_{n}=\frac{1}{\sqrt{2}} \nu_{n}-\frac{i}{\sqrt{2}} \omega_{n} \quad \text { and } \quad \zeta_{n}=\frac{1}{\sqrt{2}} \nu_{n}+\frac{i}{\sqrt{2}} \omega_{n}
$$

respectively, and the proof follows.
Note that since $0<s_{n}$, the logarithms of these eigenvalues have modulus smaller than $\pi / 2$, a fact predicted by the condition $\left\|X_{P^{\prime}, Q^{\prime}}\right\| \leq \pi / 2$.

Example. Let us review the examples in Sect. 3:

1. For $I, J \subset \mathbb{R}^{n}$ of finite Lebesgue measure, it is known (see $[12,19]$) that

$$
N\left(P_{I}+Q_{J}-1\right)=\{0\}
$$

Thus $P_{I}^{\prime}=P_{I}$ and $Q_{J}^{\prime}=Q_{J}$. It is also known (see for instance [17]) that in the particular case when I and J are intervals, the singular values of of $P_{I} Q_{J}$ have multiplicity one. Moreover the functions ψ_{n} and ξ_{n} are known to be the prolate spheroidal functions, for precise I and J (intervals in \mathbb{R}) [17]. It follows that one can compute explicitely the eigenvectors of $X_{P_{I}, Q_{J}}$ for such intervals I, J.
2. As in Example 3, consider $\mathcal{H}=L^{2}(\mathbb{T})$ and

$$
P=P_{\varphi \mathcal{H}_{+}}, \quad Q=P_{\psi \mathcal{H}_{+}}
$$

for φ, ψ continuous functions in \mathbb{T}, of modulus 1 . If φ and ψ have the same winding number, then

$$
N(P+Q-1)=\varphi \mathcal{H}_{+} \cap\left(\psi \mathcal{H}_{+}\right)^{\perp} \oplus\left(\varphi \mathcal{H}_{+}\right)^{\perp} \cap \psi \mathcal{H}_{+}=\{0\}
$$

We sketch a proof of this fact. It relies on basic facts on Toeplitz operators (see for instance [11]). If $h \in L^{\infty}(\mathbb{T})$, denote by T_{h} the Toeplitz operator with symbol h. First note that the restriction of the multiplication operator

$$
\left.M_{\psi}\right|_{N\left(T_{\bar{\varphi} \psi}\right)}: N\left(T_{\bar{\varphi} \psi}\right) \rightarrow \mathcal{H}_{\varphi}^{\perp} \cap \mathcal{H}_{\psi}
$$

is an isomorphism, and similarly $N\left(T_{\varphi \bar{\psi}}\right)$ is isomorphic to $\mathcal{H}_{\varphi} \cap \mathcal{H}_{\psi}^{\perp}$. Thus $N(P+Q-1)$ is trivial if and only if both $T_{\bar{\varphi} \psi}$ and $T_{\varphi \bar{\psi}}$ have trivial nullspace.

Since $\bar{\varphi} \psi$ is invertible in $C(\mathbb{T}), T_{\bar{\varphi} \psi}$ is a Fredholm operator. Its index is

$$
w(\bar{\varphi} \psi)=w(\psi)-w(\varphi) .
$$

If the winding numbers coincide, the index is zero and thus $T_{\bar{\varphi} \psi}$ is invertible, and in particular $N\left(T_{\bar{\varphi} \psi}\right)$ is trivial. The other nullspace is dealt analogously.
3. As in example 3 , let $\mathcal{H}=\mathcal{L} \times \mathcal{S}$ and $B: \mathcal{S} \rightarrow \mathcal{L}$ a bounded operator, $P=$ $P_{R(E)}=P_{\mathcal{L}}$ and $Q=P_{N(E)}$ and $T=P Q$. Elementary computations show that

$$
N(P+Q-1)=R(B)^{\perp} \times\{0\} \oplus\{0\} \times N(B) .
$$

Thus this nullspace is trivial if and only if B has trivial nullspace and dense range. Suppose that this is the case. Also it is straightforward to verify that

$$
P+Q-1=\left(\begin{array}{cc}
B B^{*}\left(1+B B^{*}\right)^{-1} & -B\left(1+B^{*} B\right)^{-1} \\
-B^{*}\left(1+B B^{*}\right)^{-1} & -B^{*} B\left(1+B^{*} B\right)^{-1}
\end{array}\right) .
$$

and that

$$
(P+Q-1)^{2}=\left(\begin{array}{cc}
B B^{*}\left(1+B B^{*}\right)^{-1} & 0 \\
0 & B^{*} B\left(1+B^{*} B\right)^{-1}
\end{array}\right) .
$$

Then
$|P+Q-1|=\left(\begin{array}{cc}\left(B B^{*}\right)^{1 / 2}\left(1+B B^{*}\right)^{-1 / 2} & 0 \\ 0 & \left(B^{*} B\right)^{1 / 2}\left(1+B^{*} B\right)^{-1 / 2}\end{array}\right)$.
Thus $V=(P+Q-1)|P+Q-1|^{-1}$ equals

$$
\left(\begin{array}{cc}
\left|B^{*}\right|\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & -B|B|^{-1}\left(1+|B|^{2}\right)^{-1 / 2} \\
-B^{*}\left|B^{*}\right|^{-1}\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & -|B|\left(1+|B|^{2}\right)^{-1 / 2}
\end{array}\right) \text {. }
$$

This computation is apparent if B (and thus $|P+Q-1|$) is invertible, but also makes sense when B has trivial nullspace and dense range. If $B=W|B|=\left|B^{*}\right| W$ are the polar decompositions of B, one has

$$
V=\left(\begin{array}{ll}
\left|B^{*}\right|\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & -W\left(1+|B|^{2}\right)^{-1 / 2} \\
-W\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & -|B|\left(1+|B|^{2}\right)^{1 / 2}
\end{array}\right)
$$

where $W\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2}$ can be replaced by $\left(1+|B|^{2}\right)^{-1 / 2} W^{*}$.
Therefore
$e^{i X_{P, Q}}=V(2 P-1)=\left(\begin{array}{ll}\left|B^{*}\right|\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & W\left(1+|B|^{2}\right)^{-1 / 2} \\ -W\left(1+\left|B^{*}\right|^{2}\right)^{-1 / 2} & |B|\left(1+|B|^{2}\right)^{1 / 2}\end{array}\right)$
Suppose now that B is S -decomposable, $B=\sum_{n \geq 1} s_{n}\left\langle, e_{n}\right\rangle f_{n}$, where since B has trivial nullspace and dense range. Here $\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$ are orthonormal bases of \mathcal{S} and \mathcal{L}, respectively. Then

$$
|B|=\sum_{n \geq 1} s_{n} e_{n} \otimes e_{n}, \quad\left|B^{*}\right|=\sum_{n \geq 1} s_{n} f_{n} \otimes f_{n},
$$

and W is a unitary operator $(W: \mathcal{S} \rightarrow \mathcal{L})$, with $W e_{n}=f_{n}$. Let $\xi_{n}=\left(e_{n}, 0\right), \psi_{n}=\left(0, f_{n}\right)$. Then $\left\{\xi_{n}, \psi_{n}\right\}$ span a reducing subspace of $T=P Q, P=P_{R(E)}, Q=P_{N(E)}$, and in view of the above formulas,

E. Andruchow, G. Corach

also reducing for V and $X_{P, Q}$. Elementary computations show that the matrix of $e^{i X_{P, Q}}$ in the basis of this reducing subspace is

$$
\frac{1}{\left(1+s_{n}^{2}\right)^{1 / 2}}\left(\begin{array}{cc}
s_{n} & 1 \\
-1 & s_{n}
\end{array}\right)
$$

Let θ_{n} be defined by $\cos \left(\theta_{n}\right)=\frac{s_{n}}{\left(1+s_{n}^{2}\right)^{1 / 2}}$ and $\sin \left(\theta_{n}\right)=\frac{1}{\left(1+s_{n}^{2}\right)^{1 / 2}}$ (or equivalently, since $\left.s_{n}>0: \tan \left(\theta_{n}\right)=\frac{1}{s_{n}}\right)$, then the matrix of $X_{P, Q}$ in this reducing subspace is

$$
\left(\begin{array}{cc}
0 & -i \theta_{n} \\
i \theta_{n} & 0
\end{array}\right)
$$

Recall [2] that if P and Q are projections such that $N(P+Q-1)=$ $\{0\}$, there exists a unique exponent $X_{P, Q}$ with $d(P, Q)=\left\|X_{P, Q}\right\|$. In particular, one has the following consequence:
Corollary 6.10. Let $B: \mathcal{S} \rightarrow \mathcal{L}$ with trivial nullspace and dense range, and E as in Example 3.
(a) If B is invertible, then the geodesic dictance between $P_{R(E)}$ and $P_{N(E)}$ is

$$
d\left(P_{R(E)}, P_{N(E)}\right)=\arctan \left(\left\|B^{-1}\right\|\right)<\pi / 2
$$

(b) If B is non invertible (i.e. B^{-1} is unbounded), then

$$
d\left(P_{R(E)}, P_{N(E)}\right)=\pi / 2
$$

Proof. Suppose that B is S-decomposable. If B is invertible, $s_{n} \in$ $\left(\left\|B^{-1}\right\|^{-1},\|B\|\right)$, and if B is non invertible there exists a decreasing subsequence $s_{n_{k}}$ of singular values of B, such that $s_{n_{k}} \rightarrow 0$. Thus the claims follow from the previous computations.

Suppose now B arbitrary. Clearly $|B|$ can be approximated by positive invertible operators A_{k} with finite spectrum, in particular, diagonalizable. If $B=W|B|$, then $B_{k}=W A_{k}$ approximate B (as in 6.10.3). Since B has trivial nullspace and dense range, W is a unitary operator. Then B_{k} are Sdecomposable, with finite singular values (increasingly ordered) $s_{k, i}, 1 \leq i \leq$ n_{k}. Note that $P=P_{R(E)}$ and $Q=P_{N(E)}$ are continuous functions of B. Denote by $E_{k}, P_{k}=P_{R\left(E_{k}\right)}$ and $Q_{k}=P_{N\left(E_{k}\right)}$ the operators acting in $\mathcal{L} \times \mathcal{S}$ which correspond to B_{k}. Then

$$
d\left(P_{k}, Q_{k}\right) \rightarrow d(P, Q)
$$

From the previous case, $d\left(P_{k}, Q_{k}\right)=\tan ^{-1}\left(\frac{1}{s_{k, 1}}\right)$. If B is invertible, $\frac{1}{s_{k, 1}} \rightarrow$ $\left\|B^{-1}\right\|$. Otherwise, $\frac{1}{s_{k, 1}} \rightarrow \infty$.

Remark 6.11. As mentioned in the beginning of Sect. 2, if $T=P Q$, there may exist many factorizations, and there exists a canonical factorization

$$
T=P_{\overline{R(T)}} P_{N(T)^{\perp}}
$$

It holds the following minimality property: for any $\xi \in \mathcal{H}$, and any other factorization $T=P Q$, one has

$$
\left\|P_{\overline{R(T)}} \xi-P_{N(T)^{\perp}} \xi\right\| \leq\|P \xi-Q \xi\|
$$

In [3] it was shown that in example 1 the factorization $T=P_{I} Q_{J}$ is canonical.
In example 3 suppose that $B: \mathcal{S} \rightarrow \mathcal{L}$ has trivial nullspace and dense range. Elementary computations show that for $T=P_{R(E)} P_{N(E)}$,

$$
N(T)=R\left(E^{*}\right) \text { and } N\left(T^{*}\right)=N\left(B^{*}\right) \times \mathcal{S}=\{0\} \times \mathcal{S}
$$

Then $\overline{R(T)}=R(E)$ and $N(T)=N(E)$, and this decomposition is canonical.
Also in [3], it was shown that $R\left(P_{I}\right)+R\left(Q_{J}\right)$ is a closed proper direct sum, therefore $P_{I} Q_{J}$ is a different example from $P_{R(E)} P_{N(E)}$, for which $R(E)+N(E)$ is the whole space.

7. Dilations of Contractions

Let Γ be a contraction in a Hilbert space \mathcal{H}_{0}. P.R. Halmos showed in [14], that Γ is the upper left corner of a unitary operator U acting in $\mathcal{H}_{0} \times \mathcal{H}_{0}$, namely

$$
U=\left(\begin{array}{cc}
\Gamma & \left(1-\Gamma \Gamma^{*}\right)^{1 / 2} \\
\left(1-\Gamma^{*} \Gamma\right)^{1 / 2} & -\Gamma^{*}
\end{array}\right) .
$$

If

$$
P=P_{\Gamma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
Q=Q_{\Gamma}=U^{*} P U=\left(\begin{array}{cc}
\Gamma^{*} \Gamma & \Gamma^{*}\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} \\
\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} \Gamma & 1-\Gamma \Gamma^{*}
\end{array}\right)
$$

then

$$
\left(\begin{array}{ll}
\Gamma & 0 \\
0 & 0
\end{array}\right)=U Q_{\Gamma} P_{\Gamma},
$$

i.e. Γ factors as a unitary operator times a product of projections, on a bigger space. Apparently, Γ is S -decomposable in \mathcal{H} if and only if $Q P$ is decomposable in $\mathcal{H} \times \mathcal{H}$

Moreover, if

$$
\Gamma=\sum_{n \geq 1} s_{n}\left\langle\quad, \xi_{n}\right\rangle \psi_{n}
$$

then

$$
Q P=\sum_{n \geq 1} s_{n}\left\langle\quad,\binom{\xi_{n}}{0}\right\rangle\binom{ s_{n} \xi_{n}}{\left(1-s_{n}^{2}\right)^{1 / 2} \psi_{n}} .
$$

Remark 7.1. Straightforward computations show that

$$
(P+Q-1)^{2}=\left(\begin{array}{cc}
\Gamma^{*} \Gamma & 0 \\
0 & \Gamma \Gamma^{*}
\end{array}\right)
$$

and thus

$$
|P+Q-1|=\left(\begin{array}{cc}
\left(\Gamma^{*} \Gamma\right)^{1 / 2} & 0 \\
0 & \left(\Gamma \Gamma^{*}\right)^{1 / 2}
\end{array}\right) .
$$

Suppose that $N(\Gamma)=N\left(\Gamma^{*}\right)=\{0\}$ (i.e., $P+Q-1$ has trivial nullspace and dense range). If $\Gamma=W|\Gamma|=\left|\Gamma^{*}\right| W$ are the polar decompositions (with W a unitary operator), then

$$
V=\left(\begin{array}{cc}
|\Gamma| & W^{*}\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} \\
\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} W & -\left|\Gamma^{*}\right|
\end{array}\right)
$$

and

$$
e^{i X_{P, Q}}=\left(\begin{array}{cc}
|\Gamma| & -W^{*}\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} \\
\left(1-\Gamma \Gamma^{*}\right)^{1 / 2} W & \left|\Gamma^{*}\right|
\end{array}\right)
$$

With similar computations as in example 3, one sees that if Γ is S-decomposable with singular values $0<s_{n} \leq 1$, then the spectrum of $X_{P, Q}$ is $\left\{ \pm \theta_{n}\right.$: $\left.\cos \left(\theta_{n}\right)=s_{n}\right\}$. With an argument as in Corollary 6.10, one has:

Corollary 7.2. Let Γ be a contraction in \mathcal{H}_{0} with trivial nullspace and dense range, and P_{Γ}, Q_{Γ} the above projections in $\mathcal{H}_{0} \times \mathcal{H}_{0}$.

1. If Γ is invertible, then

$$
d\left(P_{\Gamma}, Q_{\Gamma}\right)=\cos ^{-1}\left(\left\|\Gamma^{-1}\right\|^{-1}\right)
$$

2. If Γ is non invertible, then

$$
d\left(P_{\Gamma}, Q_{\Gamma}\right)=\pi / 2
$$

References

[1] Andruchow, E.: Classes of idempotents in Hilbert space. Complex Anal. Oper. Theory 10(6), 1383-1409 (2016)
[2] Andruchow, E.: Operators which are the difference of two projections. J. Math. Anal. Appl. 420(2), 1634-1653 (2014)
[3] Andruchow, E., Corach, G.: Uncertainty principle and geometry of the infinite Grassmann manifold. arXiv:1701.03733
[4] Andruchow, E., Corach, G.: Essentially orthogonal subspaces, J. Oper. Theory (to appear). arXiv:1701.03737
[5] Buckholtz, D.: Hilbert space idempotents and involutions. Proc. Am. Math. Soc. 128, 1415-1418 (2000)
[6] Corach, G., Maestripieri, A.: Polar decomposition of oblique projections. Linear Algebra Appl. 433, 511-519 (2010)
[7] Corach, G., Maestripieri, A.: Products of orthogonal projections and polar decompositions. Linear Algebra Appl. 434(6), 1594-1609 (2011)
[8] Corach, G., Porta, H., Recht, L.: The geometry of spaces of projections algebras. Adv. Math. 101(1), 59-77 (1993)
[9] Davis, C.: Separation of two linear subspaces. Acta Sci. Math. Szeged 19, 172187 (1958)
[10] Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906-931 (1989)
[11] Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Graduate Texts in Mathematics, 179, 2nd edn. Springer-Verlag, New York (1998)
[12] Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207-238 (1997)
[13] Greville, T.N.E.: Solutions of the matrix equation $X A X=X$, and relations between oblique and orthogonal projectors. SIAM J. Appl. Math. 26, 828-832 (1974)
[14] Halmos, P.R.: Normal dilations and extensions of operators. Summa Brasil. Math. 2, 125-134 (1950)
[15] Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381-389 (1969)
[16] Hartman, P.: On completely continuous Hankel matrices. Proc. Am. Math. Soc. 9, 862-866 (1958)
[17] Hogan, J. A., Lakey, J. D.: Time-frequency and time-scale methods. Adaptive decompositions, uncertainty principles, and sampling. Applied and Numerical Harmonic Analysis, pp. 22-388 Birkhäuser Boston, Inc., Boston, MA, (2005). ISBN: 0-8176-4276-5
[18] Howland, J.S.: Spectral theory of selfadjoint Hankel matrices. Michigan Math. J. 33(2), 145-153 (1986)
[19] Lenard, A.: The numerical range of a pair of projections. J. Funct. Anal. 10, 410-423 (1972)
[20] Peller, V. V.: An excursion into the theory of Hankel operators. Holomorphic spaces (Berkeley, CA, 1995), 65-120, Math. Sci. Res. Inst. Publ., 33. Cambridge University Press, Cambridge (1998)
[21] Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406-413 (1955)
[22] Porta, H., Recht, L.: Minimality of geodesics in Grassmann manifolds. Proc. Am. Math. Soc. 100(3), 464-466 (1987)
[23] Radjavi, H., Williams, J.P.: Products of self-adjoint operators. Michigan Math. J. 16, 177-185 (1969)
[24] Schmidt, E.: Zür Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkurlichen Funktionen nach System vorgeschriebener. Math. Ann. 63, 161-174 (1907)
[25] Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43-63 (1961)
[26] Smith, M.: The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces. Constr. Approx. 22(1), 47-65 (2005)

Esteban Andruchow (\boxtimes)
Instituto de Ciencias
Universidad Nacional de General Sarmiento
J.M. Gutierrez 1150
1613 Los Polvorines
Argentina
e-mail: eandruch@ungs.edu.ar

E. Andruchow, G. Corach

Esteban Andruchow and Gustavo Corach
Instituto Argentino de Matemática "Alberto P. Calderón"-CONICET
Saavedra 15
1083 Buenos Aires
Argentina
Gustavo Corach
Depto. de Matemática, Facultad de Ingeniería
Universidad de Buenos Aires
1063 Buenos Aires
Argentina
email: gcorach@fi.uba.ar

Received: June 15, 2017.
Revised: August 31, 2017.

[^0]: This work was completed with the support PIP 0757 (CONICET) and PICT 1776 (ANPCyT).

