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Abstract. We develop a parallel rejection algorithm to tackle the problem of low acceptance in Monte Carlo methods, and
apply it to the simulation of the hopping conduction in Coulomb glasses using Graphics Processing Units, for which we
also parallelize the update of local energies. In two dimensions, our parallel code achieves speedups of up to two orders of
magnitude in computing time over an equivalent serial code. We find numerical evidence of a scaling relation for the relaxation
of the conductivity at different temperatures.
Keywords: Monte Carlo algorithms, Hopping transport
PACS: 02.70.Tt, 71.23.Cq, 72.20.Ee

INTRODUCTION

A frequent limitation of Markov-chain Monte Carlo (MC) methods is low acceptance. In equilibrium MC this problem
can sometimes be circumvented with a clever choice of the MC moves, which can be chosen with a certain freedom as
long as the Markov chain converges to the probability distribution of interest. Such freedom is not allowed in kinetic
Monte Carlo (KMC), in which the MC moves are dictated by the physical dynamics to be simulated.

In this work we present a general “parallel rejection” (PR) algorithm to address the problem of low acceptance,
which is especially suitable for implementation on Graphics Processing Units (GPUs), easily available and inexpensive
platforms for massively parallel computing. We apply PR to the KMC simulation of the hopping conduction in
Coulomb glasses, which is notoriously plagued by very low acceptance in the variable-range hopping (VRH) regime.
For this particular application, PR can be seen as a parallelization of the “mixed” algorithm of Refs. [1, 2], which
can be further accelerated in GPUs by efficiently parallelizing the N local energy updates that, due to the long-range
interaction, are required after each elementary MC move in a system with N sites.

We implemented a GPU code using CUDA [3], exploiting both sources of parallelism. In the next section we
illustrate the PR idea in general, and later we apply it to the hopping dynamics of the Coulomb glass. We then present
our results for the lattice model in two dimensions, notably on the short-time relaxation of the conductivity. Finally,
we compare the performance of the GPU code with a serial implementation of the mixed algorithm.

PARALLEL REJECTION ALGORITHM

Let us consider a generic Markov chain specified by a proposal matrix Qαβ and an acceptance matrix Pαβ between
the configurations α,β of a certain system. The standard (serial) rejection algorithm to simulate such a chain consists
in iterating the following two steps: 1. Propose a move α → β , where α is the current configuration and β is chosen
with probability Qαβ ; 2. Accept the move with probability Pαβ and, if this is accepted, update the configuration to β .

The PR algorithm (see Ref.[4] for a similar idea) runs simultaneously on an ordered array of M parallel “threads”
(for example, GPU threads), iterating the following steps (k = 1, . . . ,M is the thread label):

1. Propose, independently from the other threads, a move α → βk, where α is the current configuration (common
to all threads) and βk is chosen with probability Qαβk .

2. Accept the move α → βk with probability Pαβk , independently from the other threads (without updating the
configuration).

3. If at least one thread has accepted a move, update the configuration to βq, where q is the lowest label among the
threads that have accepted a move.
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FIGURE 1. (a) Illustrative comparison of the “Parallel Rejection” scheme with the mathematically equivalent serial approach. In
both, proposed moves (squares) are drawn by sampling from the proposal probability. While in the serial approach (top) one move
is proposed each iteration, in the parallel approach (bottom) a block of M independent moves is proposed. For a given acceptance
rate, the first accepted move (red square) is found after m serial iterations, and after p parallel iterations. Other accepted moves
(blue square) that may appear in last parallel iteration are discarded. In this example M = 12, p = 2, q = 5. (b) Physical time (in
units of τ0) that we can simulate with the parallel KMC method in a 10 days run, as a function of temperature, for different systems
sizes. The dashed line is the characteristic time τ = b−1T−1 exp[(T0/T )1/2], with b−1 = 2.7,T0 = 6.2 according to Fig.3.

While the two algorithms above are mathematically equivalent (see Fig.1(a) for an illustration), the parallel version
is increasingly faster as the acceptance rate, A = 〈Pαβ 〉, decreases. If m and p are the number of iterations of the
serial and parallel algorithms, respectively, until a move is accepted, we can estimate the speedup of PR as 〈m〉/〈p〉
(neglecting parallelization overheads and differences in the computing time for one iteration in the parallel and serial
implementations). Since 〈m〉 = A−1 and 〈p〉 = 1/[1− (1−A)M], for A � 1 we have 〈p〉 ∼ (MA)−1 � 〈m〉, and thus
〈m〉/〈p〉 ∼ min(A−1,M). In principle, the optimal choice for M is thus M∗ = min(A−1,C), where C is the maximum
number of threads that can run simultaneously. In practice, in a GPU implementation it is possible (and recommended)
to use M larger than C, in which case the virtual parallel execution is efficiently handled by the hardware scheduling
system. The computing time can then remain sublinear in M even for M as large as 104. Thus, for many applications
the speedup of the PR algorithm on GPUs is essentially dictated by A−1, and can be very significant.

A popular alternative to the rejection algorithm in low-acceptance situations is the rejection-free BKL or Gillespie
algorithm [5]. This requires a computing time proportional to the average number z = 〈∑β θ (Qαβ Pαβ )〉 of configu-
rations that are accessible from a given configuration α . Thus, BKL is faster than serial rejection when z � A−1, but
slower than PR when (MA)−1 � z. Below we apply PR to the rejection part of the mixed algorithm of Ref. [1], which
combines the BKL and rejection algorithms for the simulation of phonon-assisted hopping conduction.

HOPPING CONDUCTION IN THE COULOMB GLASS

We consider the standard Coulomb glass model [6] described by the dimensionless Hamiltonian

H = ∑φini +
1
2 ∑

i�= j

(ni −ν)(n j −ν)

ri j
−E ∑

i
nixi, (1)

where ni = 0,1 (i = 1, . . . ,N), with ∑i ni = νN, are the electron occupation numbers of N sites in a D-dimensional
volume, ν is the filling factor, ri j is the Euclidean distance between sites i and j in units of the average spacing
a = (Volume/N)1/D, and E is an external electric field in the (negative) x direction. The random potentials φi
are sampled from the uniform distribution [−W,W ]. We consider only phonon-assisted single-electron hops, with
transition rates that can be approximated by

Γi j = τ−1
0 θi je−2ri j/ξ min[1,e−ΔHi j/kBT ] (2)

where T is the temperature, kB is the Boltzmann constant, θi j = δni,1δn j ,0, ξ is the electron localization length, and
τ0 is a microscopic time of order 10−12s, which will be our unit of time. The energy change after a hop i → j is
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FIGURE 2. Pseudo-equilibrium (a) and time-dependent (b) single-particle density of states for L = 512, as function of tempera-
ture and time respectively. Data in (b) corresponds to T = 0.04.

ΔHi j = ε j − εi−1/ri j −EΔxi j, where εi = φi +∑ j(n j −ν)/ri j are the single-particle energies and Δxi j = x j − xi is the
length of the hop along the field. The instantaneous conductivity is given by [1, 2]

σ(t) =
1

NE
dP(t)

dt
(3)

where P = ∑i nixi is the electric dipole moment, provided E is small enough to ensure a linear response.
In the naive serial KMC algorithm for simulating the dynamics in Eq.(2) a hop i → j is proposed by choosing i and

j uniformly at random among the N sites, and is accepted with probability τ0Γi j (thus, Qαβ = N−1(N −1)−1 ∑i j Θi j
αβ

and Pαβ = ∑i j τ0Θi j
αβ Γi j, where Θi j

αβ = 1 if α and β differ by the hop i → j and Θi j
αβ = 0 otherwise). The time is

incremented by Δt = 1 after N(N −1) proposals.
The above algorithm suffers from extremely low acceptance due to both the tunneling factor ΓT

i j = e−2ri j/ξ and
the thermal activation factor ΓA

i j = θi j min[1,exp(−ΔHi j/T )]. The mixed algorithm [2] exploits the factorization
τ0Γi j = ΓT

i jΓA
i j and the fact that ΓT

i j is configuration independent. The proposal matrix is now Qαβ = ∑i j Θi j
αβ ΓT

i j/Γ,
where Γ = ∑i ∑ j �=i ΓT

i j, and can be sampled without rejection (for example, using the “tower sampling” method [7]).
The acceptance matrix is Pαβ = ∑i j Θi j

αβ ΓA
i j. After each proposal, t is incremented by a random Δt sampled from

p(Δt) = Γexp(−ΓΔt) [5]. Since the rejection now only comes from ΓA
i j, the acceptance rate is increased by a factor

∼ Nξ−D. Nevertheless, deep in the VRH regime, where T is only a few percent of the Coulomb energy, the acceptance
is still quite low (for the D = 2 lattice model we find A ≈ 0.03T for T ≤ 0.2). It becomes then advantageous to use
the PR strategy. This results in the following mixed PR algorithm running on M threads (k = 1, . . . ,M), which is
mathematically equivalent to the serial mixed algorithm and, therefore, to the naive KMC:

1. Propose (indendently from the other threads) a hop ik → jk by choosing (ik, jk) with probability ΓT
ik jk/Γ by

rejection-free sampling.
2. Accept the hop with probability ΓA

ik jk (even if accepted, do not execute the hop).
3. If at least one thread has accepted a hop then:

a. Execute the hop iq → jq, where q is the lowest label among the threads that have accepted a hop. Any
accepted hop in the other threads is discarded.

b. Update the dipole moment as ΔP = Δxiq jq and the local energies by adding 1/riq jq to εiq , −1/riq jq to ε jq , and
1/rl jq −1/rliq to εl for l �= iq, l �= jq.

c. Increment the time by a random Δt sampled from a Gaussian distribution of mean m/Γ and standard
deviation

√
m/Γ, where m = pM + q and p is the number of iterations since the previous executed hop.

We implemented the above algorithm in CUDA [3] for the case in which the sites belong to a lattice with toroidal
boundary conditions. In this case ΓT

i j only depends on ri j (thus Γ = N ∑i ΓT
i j) hence the “tower” is much smaller than
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FIGURE 3. (a) Inset: time evolution of the polarization starting from a random initial configuration at different temperatures for
L = 512. The steady-state conductivity σ0 = limt→∞(dP/dt)/(NE) is reached after a transient time τ ≈ 1/(T 2σ0). Main figure:
same data rescaled as a function of t/τ . In this figure we use a deterministic time increment Δt = m/Γ. Using a stochastic increment
does not produce any appreciable difference. (b) Fit to the Efros-Shklovskii law σ0 = bT−λ exp[−(T0/T )1/2] for λ = 1,2.

for the model with random sites [2]. At each iteration we need 3M random numbers (to choose ik, rik jk , and to accept
the hops), which requires a random number generator (RNG) able to generate a large number of uncorrelated random
sequences in parallel. The code uses functions of our own and the open-source libraries Thrust [8] (for generic parallel
transformations) and Philox from Random123 [9] (a GPU-suitable RNG). The code also exploits the “embarrassing
parallelism” of the local energy update: we distribute the update on N parallel threads, where the k-th thread updates
the local energy on lattice site k.

RESULTS FOR THE LATTICE MODEL IN TWO DIMENSIONS

We simulated two-dimensional square lattices with N = L2 sites, for L = 64,128,256,512,1024,2048, setting ν = 1/2,
ξ = 1, W = 1, and E = T/10. We use toroidal boundary conditions in both directions, and adopt the minimal image
convention for ri j and Δxi j. We do not allow hops larger than L/2 (in our simulations, the typical hopping length is
much shorter than L/2 anyway). To recover cgs units from the numerical data below, the dimensionless quantities
{H,T,t,E,P,σ} must be multiplied respectively by {e2/(κa),e2/(κakB),τ0,e/(κa2),ea,a3−Dκ/τ0}, where e is the
electron charge and κ is the dielectric constant of the lattice.

To validate the code, we start by analyzing the single-particle density of states, defined as the normalized histogram
g(ε,T ) = ∑k δΔε(ε − εk), for a given binning size Δε . In Fig.2(a) we show g(ε,T ) in the steady state for different
temperatures and L = 512. As shown in the inset, in the Coulomb gap region the data can be rescaled as g(ε,T ) =
T f (ε/T ), and are well fitted by g(ε,T ) = c|ε| for small |ε|, with c = 0.62. The prefactor is consistent with the
theoretical estimate [6] c = 2/π but is larger than the estimate c = 0.40 obtained with the parallel tempering MC
algorithm [10], which allows many-electron rearrangements and thus can reach lower energies then the single-particle
KMC, even if the latter seems to have reached a steady state, as shown in Fig.2(b)).

Next, we analyze the conductivity. The inset of Fig.3(a) shows how, starting from a random configuration, after a
transient time the polarization grows linearly in time, and a stationary conductivity can be estimated as σ0 = P/(NEt)
for large t. Further relaxation of the conductivity at larger times cannot be discarded, but should be neglibible for time
scales a few times larger than the transient time. Our data for σ0(T ), shown in Fig.3(b), agree with Ref.[1] up to a
factor two. The data are well fitted by the Efros-Shklovskii law σ0 = bT−λ exp[−(T0/T )1/2] assuming λ = 1, which
gives T0 = 6.2,b = 2.7. However, the choice λ = 2 fits equally well the data for T < 0.25, giving T0 = 9.3,b = 1.7. As
shown in the main figure, the time evolution of P(t) at different temperatures can be collapsed very well onto a single
curve by rescaling the time with a characteristic transient time τ ∼ (σ0T 2)−1. This suggests a scaling relation

σ(t,T ) = σ0(T ) f (tσo(T )T 2) . (4)
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FIGURE 4. Computing time [ms] per executed hop for the serial and parallel codes in three different CPU+GPU platforms.
We benchmark a fair serial single CPU core implementation against our parallel GPU implementation (with the same CPU core
as host), both with double precision floating point operations. (a) Temperature dependence of the average rejection time (WR) for
L = 256. (b) Size dependence of the average update time (WU ) of the N = L2 local energies. The insets show the speedup of the
GPU over the CPU implementation. While the speedup starts to saturate with L in (b), it is still strongly growing with 1/T in (a).

We checked that finite-size effects on P(t) are negligible. The proportionality of τ to σ−1
0 is to be expected [2, 11],

since the typical hopping time of the current-carrying hops is ∼ exp[(T0/T )1/2]. A discussion of the significance of the
factor T 2 (both in τ and, possibly, in the Efros-Shklovskii law) is outside the scope of this paper, but we note that using
the scaling variable t/(σ0T ) we obtain a much worse data collapse (not shown). It is interesting to compare Eq.(4)
with the scaling σ(ω ,T ) = σ0(T ) f (ω/T σ0(T )) for the low-frequency ac conductivity found in Ref.[12].

CODE PERFORMANCE

In this section we compare the performance of our parallel GPU code with that of a serial CPU implementation of
the mixed algorithm. In both cases, the wall-clock computing time required to execute a hop is the sum of two main
contributions: the rejection time, WR, spent proposing and rejecting hops until one is accepted, and the update time,
WU , spent updating the N local energies after a hop is executed. As discussed earlier, aside from hardware-related
corrections we expect WR ∝ A−1 logL for the CPU code and WR ∝ (AM)−1 logL for the GPU code running on M
threads, where the acceptance A increases with the temperature and the logL factor comes from the tower-sampling.
WU is independent of the temperature and the configuration, and we expect WU ∝ L2. In the parallel implementation,
nevertheless, this will hold only at large enough L (when the hardware occupancy saturates), while at smaller sizes the
scaling will be sublinear in L2, and even constant for very small sizes. In the Coulomb glass, most excitations active
at low T are dipoles (short electron-hole pairs). In 2D the density of states of dipoles at low energy is constant, which
implies A ∝ T in the steady state (indeed we find A ≈ 0.03T ). Hence, the overall computing time will be dominated
by WR for temperatures below a certain threshold that decreases with L as logL/L2, and by WU above the threshold.

To see how well the above estimates hold in practice, in Fig.4(a) we show the temperature dependence of WR for the
CPU and GPU codes in the steady state for L = 256 (the dependence on L is very weak). For the CPU code, we see
roughly WR ∝ 1/T , as expected. For the GPU code we used a number of threads close to the optimal value M∗ ≈ A−1.
Hence, at moderate temperatures where M∗ is not too large, WR ∝ (M∗A)−1 is almost independent of T , as expected.
At very low T , M∗ is large enough to saturate the maximum number of concurrent threads and thus WR increases with
1/T , although less than linearly since the GPU can still save time by hiding memory latency. Therefore, the relative
performance of the GPU vs the CPU codes, shown in the inset, is consistent with the expected linear behavior in 1/T .

In Fig.4(b) we compare the size dependence of WU for the GPU and CPU implementations. As expected, for the
CPU we observe WU ∝ L2 while for the GPU, using L2 threads, WU is almost constant for small L and grows for
large L. Interestingly, the increase is still sublinear even when L2 is several times larger than the number of physical
cores, due to the efficient internal thread scheduling. Consequently the speedup, which is already substantial even for
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relatively small sizes, increases with L and exceeds two orders of magnitude at L = 2048, without quite saturating yet.
The overall computing time per executed hop of the GPU code is basically the sum of WR and WU . For example, for

the platform CPU3+GPU3 (see Fig.4 for details) the overall time ranges from 0.1 ms (L=64) to 1.04 ms (L=2048) at
T = 0.05, representing speedups of 1.7x to 179x respect to the serial code, and 0.27 ms (L=64) to 1.23 ms (L=2048)
at T = 0.001, representing speedups of 15x to 157x. Nevertheless, note that these speedup factors depend on the
particular serial implementation and hardware.

In order to see in what regime of T and L the GPU code may be useful in practice, it is illustrative to estimate the
physical time we can simulate in, say, a ten-day run. While this time is independent of T for the CPU code, according
to the previous discussion it scales as 1/T for the GPU code for low enough T . This is confirmed in Fig.1(b), where
we also show the transient time τ = 1/(σ0T 2) for the establishment of a steady-state conductivity. Clearly, since τ
grows much faster than the speedup as T decreases, even the GPU code cannot reach the steady state at very low T .
At the temperatures at which we can reach the steady state, the typical hopping length r ∼ (ξ/4)(T0/T )1/2 is less
than ten lattice spacings. Hence, for the purpose of measuring the conductivity it is preferable to average over many
samples at intermediate L, rather than a few samples at large L. Large samples, for which the GPU code is significantly
advantageous, might be useful for studying the large-scale geometry of the conducting paths, for instance.

It is worth noting that the GPU code should be significantly more advantageous in 3D than in 2D, because (i) N
increases more rapidly with L, and (ii) both T0 and the dipole density of states of dipoles are smaller in 3D, so in the
VRH regime the acceptance rate is even lower. It is also straightforward to incorporate multiple-electron hops in our
GPU code. Since these hops have even lower acceptance rate, we expect the speedup to be substantial.

CONCLUSIONS

We have presented a novel parallel KMC technique for simulating the Coulomb glass hopping conduction. It allows
to simulate larger systems and longer times than its serial counterpart, with speedups over 100x for relatively large
system sizes in two dimensions. This might be helpful for studying features involving larger length-scales. In 2D, we
find that the short-time relaxation of the conductivity at different temperatures is well described by a single scaling
curve. Finally, our current implementation can be easily extended to higher dimensions, multiple occupation, and
multi-electron hops. For these extensions we can expect an even larger speedup with respect to the mathematically
equivalent serial implementation. The code is available to download, modify and use under GNU GPL 3.0 at [13].
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