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How Many Endobains Are There?*
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Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP
molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the par-
ticipation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently in-
hibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in
neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activ-
ity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility
as well as renal sodium excretion. The present article reviews the progress in disclosing putative
ouabain-like substances, examines their denomination according to different research teams, tis-
sue or biological fluid sources, extraction and purification, assays, biological properties and
chemical and biophysical features. When data is available, comparison with ouabain itself is
mentioned. Likewise, their potential action in normal physiology as well as in experimental and
human pathology is summarized.
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chemical and mechanical manifestations of a single
system (1), which is essential in normal cell cycle, in
preventing cell membrane osmotic rupture as well as in
nervous system differentiation (3). Likewise, modula-
tion of such enzyme activity is crucial for maintaining
normal blood pressure and cardiovascular contractility
as well as renal sodium excretion.

Among Na+, K+-ATPase inhibitors, the alkaloid
ouabain has proven both potent and selective, exerting
pharmacological effects in several tissues, mainly heart
and kidney (4).

The purpose of this overview was to summarize
the progress performed by research teams engaged 
in the search for ouabain-like endogenous factors.
Since previous reviews have dealt with the subject up
to the beginning of the last decade (5,6), special em-
phasis was devoted to more recent findings. Research
performed to date, particularly as regards to factor
source, biological actions and chemical structure of
endogenous substances that may act as ligands for the

INTRODUCTION

Oxidative metabolism is very active in brain,
where large amounts of chemical energy as ATP mol-
ecules are consumed, mostly required to maintain cel-
lular Na+/K+ gradients (1), which are involved in nerve
impulse propagation, in neurotransmitter release and
cation homeostasis in the nervous system. Na+ extru-
sion from the cells requires its movement against a con-
centration gradient and electric potential, through an
ATP-dependent mechanism, the sodium pump. Sodium
pump and enzyme Na+, K+-ATPase (EC 3.6.1.3) (2) are



cardiac glycoside binding site of the sodium pump
(Na+, K+-ATPase) is reviewed. Since information pro-
vided herein is far from exhaustive, the reader should
resort to individual articles for further details.

DENOMINATION

Endogenous ouabain-like substances have been
termed: endogenous digitalis-like factor (6–9) EDLF;
digoxin- and ouabain-like immunoactivity, DLIA (10);
endogenous digoxin-like immunoreactive factor, DLIF
(11); digoxin-like immunoreactive substances, DLIS
(12); endogenous digitalis-like factor, DLF (13); just
“ouabain” between quotes (14,15); endogenous
ouabain-like factor, endobain E (16,17); endogenous
“ouabain”, EO (18); uremic plasma factor, F1 (19); hy-
pothalamic and pituitary inhibitor factor, HHIF (20);
hypothalamic inhibitory factor, HIF (21); ouabain-
displacing compound, ODC (8); ouabain-like factors,
OLF (22,23); ouabain-like substance, OLS (24);
sodium-potassium pump inhibitor, SPI (25) and two
inhibitors termed A and B (26). The suggested term
endobain(27) is employed herein as a collective word
to include the various endogenous ouabain-like sub-
stances.

NA+, K+-ATPase MODIFIERS

Sodium pump or Na+, K+-ATPase activity requires
ATP supply and activating cations, Na+ and K+, which
are also considered as substrates. Among a wide spec-
trum of diverse substances, fatty acids (28,29), vanadate
(30), as well as peptide molecules including insulin
(31), hystidil-proline diketopiperazine (32), calcitonin
(33), angiotensin 1—7 (34) and neurotensin (35) have
proven enzyme modulators. As far as neurotransmitter
substances are concerned, evidence indicates that some
are able to modify Na+, K+-ATPase activity (see 3,36),
particularly catecholamines norepinephrine and dopa-
mine, which modify synaptosomal membrane Na+, K+-
ATPase activity, behaving as enzyme inhibitors or stim-
ulators according to the absence or presence of a brain
soluble fraction during enzyme assay (37, see 38).

FACTOR SOURCES

Diverse studies have led to the isolation of sodium
pump inhibitors from several tissues and biological flu-
ids. From the central nervous system, studies were car-

ried out in whole brain (14,39–42), cerebral cortex
(16,37,43); hypothalamus (15,20,23,41,44–46), mid-
brain (21), medulla (15), and also from pituitary gland
(20,23). Besides, factors were isolated from adrenal
gland (14,26) and lens (47).

As regards biological fluids, active substances
have been isolated from cerebrospinal fluid (48,49),
plasma (11,18,19,23–25,46,50–55), urine (8,12,22,56)
and peritoneal dialysate (57).

EXTRACTION AND PURIFICATION

As a first step, isolation procedures imply tissue ho-
mogenization in organic solvents or water. Some of the
procedures start with acid acetone extraction (39–42,44)
followed by gel filtration in Sephadex G-10 and desalt-
ing (39) or G-25 and ion-exchange chromatography
(42,44). Another procedure starts with cerebral cortex
homogenization in water followed successively by gel
filtration in Sephadex G-10, Sephadex G-50 and anionic
exchange HPLC (16,43).

From bovine adrenal gland, two sodium pump 
inhibitors were purified after extraction in methanol
followed by acetone or chloroform; in either case, pro-
cedures imply ultrafiltration and several RP-HPLC
runs (26).

Several authors have resorted to RP-HPLC for the
purification of endogenous ouabain-like substances
from serum (19) and urine (8,18), after TLC (56) or gel
chromatography steps (22).

An approach employed for endobain purification
from biological fluids implies affinity chromatography
in which the ligand is an antibody (antiserum) to a car-
diac glycoside, followed by one or more HPLC or RP-
HPLC runs (12).

ASSAYS

In order to characterize endobain function, biolog-
ical assays are performed at several levels, including
whole tissue, and in cellular and subcellular prepara-
tions: in the whole animal to assess blood pressure (58)
and diuresis (8,59); in chopped tissue for neurotrans-
mitter release (60) and phosphoinosite hydrolysis (61);
in whole cells (erythrocyte) for 86Rb uptake (12,39,53,
62,63); and in cell-free systems for enzyme determina-
tion (16,23,37, 40–44,53,54) or 3H-ouabain-binding
(16, 39–42,44,64) in particulate membrane prepara-
tions. In the last case, results indicate direct action of
enzyme modulators on respective receptors, regardless
of ionic gradient participation.
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Another approach implies immunoassays which
may achieve high sensitivity and specificity, employ-
ing commercially available radioimmunoassay kits or
self-produced anti-ouabain antisera. Substances cross-
reacting with antibodies against ouabain (6,10,23,65),
digoxin (10,11), digitoxin (see 6) and marinobufagenin
(26) have been described.

Biophysical assays include: mass spectrometry, nu-
clear magnetic resonance spectroscopy, infrared spec-
troscopy, UV spectra, MW, as well as determination of
HPLC retention time.

BIOLOGICAL PROPERTIES

Effect on Na+, K+-ATPase Activity.Enzyme deter-
mination is one of the most frequently used biological
assays to study endogenous ouabain-like substances.
Such assays are carried out in crude or purified mem-
branes from central nervous system (16,37,40–43,53),
kidney (23,42,44,53), or aortic sarcolemma (54). Deter-
minations performed in the presence of Mg2+, Na+ and
K+, with and without ouabain, alow assessment of Na+,
K+-dependent enzyme activity. As regards enzyme sub-
strate, ATP or p-nitrophenylphosphate, a non-natural
ATPase substrate, are currently employed. However, it
should be taken into account that Na+, K+-ATPase or
K+-p-nitrophenylphosphatase activities (both ouabain-
sensitive) may not necessarily provide the same infor-
mation since differences in subcellular distribution (66),
Km values and sensitivity to ouabain and F− (67) have
been reported.

In evaluating the effect of endobains on Na+, K+-
ATPase inhibition, it is noteworthy that in general,
though differing in binding properties, cardiac glyco-
sides of chemical structure similar to ouabain behave
similarly as enzyme inhibitors.

For different endobains, Na+, K+-ATPase inhibi-
tion curves are concentration-dependent (17,23,53);
however, the slope of the curve may differ from (53) or
strongly resemble (17,23) those for cardiac digitalis.
Assays performed in the presence of endobain E and
ouabain indicate that the effect is not truly additive, sug-
gesting an interaction between endobain E and ouabain
inhibitory mechanisms (17).

A comparative study of enzyme inhibition by
ouabain versusa factor from peritoneal dialysate indi-
cates a similar extent effect on fetal brain membranes in
which α3 isoform is known to predominate; however, in
other membrane preparations in which α1 (kidney) or
α2 (skeletal muscle) isoforms are more abundant, the
extent of enzyme inhibition is dissimilar (57).

Effect on Other Membrane-Bound Enzymes.To
determine whether the effect is specific for Na+, K+-
ATPase, an essential requirement for putative endo-
bains is their failure to modify other membrane-bound
enzymes.

One of the factors is known to entirely inhibit rat
cardiac and renal Na+, K+-ATPase activities but has no
detectable effects on cardiac Ca2+-ATPases or ouabain-
insensitive Mg2+-ATPase assayed in the same mem-
brane preparations (53).

The source fraction for endobain E isolation,
peak II, besides inhibiting Na+, K+-ATPase activity,
exerts other ouabain-like properties (5) and fails to af-
fect other synaptosomal membrane enzymes such as
Mg2+-ATPase, acetylcholinesterase and 5′-nucleoti-
dase activities (68).

Calcium pump, assayed as synaptosomal mem-
brane Ca2+-ATPase activity was inhibited by an hypo-
thalamic factor HHIF (20) as well as by the cerebral
cortex factor, endobain E (unpublished).

Na+, K+-ATPase Inhibition Versus 3H-Ouabain
Binding Blockade.The diverse endobains invariably in-
hibited 3H-ouabain binding as detected in whole tissue
(64), membrane fractions (17,39–42,44,64) or human
erytrocytes (8).

For some Na+, K+-ATPase endogenous modula-
tors, a close correlation between percentage enzyme in-
hibition and ouabain binding blockade has been found
(7,40,51,69). At variance, 3H-ouabain binding inhibi-
tion by endobain E was concentration-dependent over
a 10-fold range, an effect similar to that found for Na+,
K+-ATPase inhibition. However, a 50% blockade in the
former corresponded with full enzyme inhibition, sug-
gesting interaction between endobain E and ouabain in-
hibitory mechanisms; structural differences between en-
dobain E and ouabain as disclosed by dissimilar UV
spectra, chromatographic behaviour and alkali sensi-
tivity (70), may well explain the differences between
the extent of Na+, K+-ATPase inhibition and 3H-ouabain
binding blockade (17).

In this regard, K+ proves to be eight-fold more ef-
fective to diminish phospho-enzyme levels than 3H-
ouabain binding (71) and no close correlation between
the binding of cardiac glycoside ASI-222 (a digitoxi-
genine derivative) to Na+, K+-ATPase with its ability
to inhibit the enzyme was found, suggesting drug bind-
ing not only to functional but also to non-functional
sites when inhibiting Na+, K+-ATPase activity (72).

The slope of the concentration-response curve for
the interaction between endobain E and Na+, K+-ATPase
resembled that of ouabain, thus suggesting that both in-
hibitors may act by the same mechanism. Alternatively,
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endobain E and ouabain may only partly share a com-
mon binding site, by binding to neighbouring sites rather
than to the same site (17).

Interestingly, in the opioid system, in which ex-
ogenous ligands (opioid alkaloids) are chemically very
different from endogenous ligands (opioid peptides),
the same profile for binding competition with peptides
and opioid alkaloids was recorded (73). Therefore, in
this system, the binding of opioid peptides to their re-
ceptor occurs at the opioid alkaloid site.

K+ Antagonism.The ability of K+ to reduce phos-
pho-enzyme levels and to stabilize a conformation with
relatively low affinity for ouabain (74) as well as to an-
tagonize cardiac glycosides binding to Na+, K+-ATPase
(75) has been described; the magnitude of such K+ an-
tagonism on binding seems dependent on the lifespan
of the cardiac glycoside-binding E2P enzyme confor-
mation (76). Antagonistic K+ effect depends on the
type of cardiac glycoside tested (77,78).

On increasing K+ concentration to a physiologi-
cal level, enzyme inhibition by ouabain was markedly
diminished (9,72,79) whereas that induced by certain
endobains remained unaltered (53,80), showing a dis-
similar behaviour of both inhibitor types versusK+.

Unlike ouabain, endobain E inhibits Na+, K+-
ATPase activity over a wide concentration range of Na+

(1.56–200 mM), K+ (1.25–40 mM) and ATP (1–8 mM)
(80), as well as that of K+-p-nitrophenylphosphatase ac-
tivity in the presence of several K+ and substrate p-
nitrophenylphosphate concentrations (81), when in no
case inhibition proved competitive. Unexpectedly, en-
dobain E has been found to stimulate Na+, K+-ATPase
activity at low (0.5 mM) ATP concentration (80).

Effect on 86Rb Uptake.Another way to character-
ize endobains is to measure 86Rb uptake in intact ery-
throcytes (12,26,39). Inhibitory potencies of endoge-
nous digitalis-like factors (EDLF) on Na+, K+-ATPase
activity were only found in fractions capable of in-
hibiting 86Rb uptake (53). Newborn plasma inhibits
86Rb uptake in erythrocytes (62), an effect neutralized
by anti-ouabain antibodies (63).

Effect on Neurotransmitter Release.A close rela-
tionship between Na+, K+-ATPase activity and neuro-
transmitter release has been disclosed and this enzyme
seems to play a role in such mechanism (82–84).
Ouabain increases the release of several neurotranmit-
ters, including acetylcholine (82,84,85), 5-hydroxy-
tryptamine (86) and catecholamines (87–89). Con-
comitantly, enzyme activating conditions decrease
neurotransmitter release (84). Likewise, the ability of
endogenous ouabain- like compounds to enhance neuro-
transmitter release has been reported (90).

A brain soluble fraction (peak II) is capable of re-
leasing a neurotransmitter pool stored in pineal nerve
synaptic vesicles, as demonstrated histochemically at
electron microscope level (91). The more purified frac-
tion endobain E increases norepinephrine release in a
concentration-dependent fashion. Due to experimental
conditions employed, such endobain E effect most likely
occurs at presynaptic level and is independent of norep-
inephrine reuptake. On the whole, the effect resembles
that of ouabain. It was postulated that endobain E en-
hances catecholamine availability in the synaptic gap,
leading to an increase in noradrenergic activity (60).

Other Biological Properties.Ouabain stimulates
phosphoinositide hydrolysis, an effect which is more
marked in slices from neonatal than adult rats (92).
Similarly, endobain E highly increases phosphoinosi-
tide hydrolysis in neonatal tissue but only slightly in
adult tissue (61). This effect seems to involve not only
Na+, K+-ATPase inhibition but also Na/Ca exchanger
and a voltage-dependent Ca2+ channel (93).

Other properties shared by ouabain and endoge-
nous ouabain-like substances are the increase in diure-
sis and natriuresis (8,59) and cardiac muscle contraction
force (42) as well as enhancement of cardiovascular
function (18).

Endobain E and commercial ouabain decreased
specific binding of the muscarinic antagonist 3H-
quinuclidinyl benzilate to rat central nervous system
membranes in a concentration-dependent manner; in-
terestingly, such changes followed a pattern similar
to the one disclosed for synaptosomal membrane Na+,
K+-ATPase activity, suggesting that the sodium pump
and cholinergic muscarinic receptor interrelate at
functional level (94).

Although in general endobains share diverse bio-
logical properties with ouabain, a difference was recor-
ded for the glutamatergic NMDA receptor on assaying
3H-MK-801 binding to brain membranes. Whereas oua-
bain is able to stimulate such binding under certain ex-
perimental conditions, endobain E invariably reduces
the binding (95), an effect which seems hardly attribut-
able to enzyme inhibition (96).

CHEMICAL AND BIOPHYSICAL FEATURES

According to their chemical nature, endogenous
substances may be grouped into either identical or
closely resembling ouabain or else diverse non-steroidal
compounds.

Ouabain and Ouabain Isomers.Endogenous digi-
talis-like immunoreactive factors (DLIF) with biologi-



cal and immunological properties similar to cardiotonic
substances, such as digoxin, have been found in several
tissues and body fluids of humans and animals (6).

An endogenous Na+, K+-ATPase inhibitor has been
isolated from bovine hypothalamus and human plasma
(HIF) and structurally characterized as an ouabain iso-
mer (45,46). A factor which differs from ouabain in
mass spectrum, in accurate mass, and in HPLC retention
time has been isolated from bovine hypothalamus (20).

Sodium pump inhibitors of the bufodienolide type
of cardiotonic steroids have been identified; from lens, a
19-norbufalin and a peptide derivative were isolated
(47). A substance similar to amphibian marinobufogenin
has been isolated from human urine (56) and another one
which cross-reacts against bufodienolide proscillaridin
A has been isolated from adrenal glands (26).

The presence of a factor in human plasma very
similar to ouabain as determined by mass spectrome-
try has been reported (52,55).

One out of four plasma sodium pump inhibitors
distinguishable biologically, on the basis of chromato-
graphic, mass spectral, biochemical and physiological
analyses has been shown to be a novel steroidal ouabain
isomer; such substance is secreted by the adrenal cortex
and enhances cardiovascular function. It has been ad-
vanced that it may belong to a broader family of novel
mammalian steroids regulating the sodium pump and
other processes (18).

An ouabain isomer rather than ouabain is present
in bovine hypothalamus (45) and has been attributed to
the same substance present in human plasma (46).

The presence of a factor identical or closely simi-
lar to ouabain in rat hypoyhalamus has been confirmed
immunohistochemically (97) and biochemically in par-
tially purified extracts (98).

In human urine, two ouabain-displacing com-
pounds (ODC-1 and ODC-2) have been separated by
RP-HPLC; the more polar ODC-1 is ubiquitously dis-
tributed in mammals, increases after salt loading in
humans and behaves as a natriuretic factor with va-
soactive properties, closely resembling ouabain in bi-
ological, physicochemical, and chromatographic prop-
erties. ODC-2 is indistinguishable from digoxin in
proton nuclear magnetic resonance and fast atom
bombardment mass spectrum (8).

Ouabain Detection.After detection of a factor
indistinguishable from ouabain in human plasma (50),
it has been contended that ouabain is an endogenous
circulating agent (99).

Ouabain itself is present in hypothalamic and
medullary neurons and mediates sympathoexcitatory
and pressor responses not only to acute and chronic in-

creases in sodium concentration in cerebrospinal fluid,
but also to high sodium diet intake in SHR hyperten-
sive patients (15). Likewise, HPLC retention time of
an ouabain-like substance (OLS) purified from plasma
and tissue is identical to that of standard ouabain (24).

Finally, an inhibitor termed B with molecular
mass of 584 Da, which cross-reacts with antibodies
against ouabain, behaves as ouabain in inhibiting ery-
throcyte sodium pump, in retention time in RP-C18
HPLC, molecular mass, UV and NMR spectroscopic
data, jointly supporting that is actually the cardenolide
ouabain (26).

Interestingly, a binding protein specific for cardiac
glycosides has been detected in bovine serum (100).

Non-Steroidal Substances.Low MW factors, ei-
ther non-peptidic (39,42) or peptidic in nature (41)
have been described. Two inhibitors (termed A and B)
of the sodium pump have been isolated from bovine
adrenals. Inhibitor A has 600 Da molecular mass and
maximal UV absorption at 250 nm; it cross-reacts
against the bufodienolide proscillaridine A but not
against the cardenolide ouabain, inhibits erythrocyte
sodium pump and is slightly more hydrophilic than
ouabain on RP-C18 HPLC (26).

Resembling ascorbic acid derivatives, a factor
which inhibits Na+, K+-ATPase activity, raises intracel-
lular free calcium and induces natriuresis has been iden-
tified in human urine; this ouabain-like factor (OLF) is
chemically a vanadium diascorbate adduct, unrelated to
ouabain (22).

Among non-steroid factors, endobain E is a low
MW factor, highly hydrophilic, non-lipidic, non-
peptidic anionic compound, acid stable but alkali labile
(16), which differs from ouabain in HPLC retention
time, chromatographic behavior and UV spectra (70),
and most likely is an ascorbic acid derivative (81).

PHYSIOLOGICAL IMPLICATIONS

According to 3H-ouabain binding affinity profile,
three isoforms of the sodium pump have been identified,
more extensively characterized in rat than in man (101,
102). In arterial smooth muscle, the high affinity (α3)
isoform and the plasmalemmal Na / Ca exchanger are
confined to plasmalemmal domains that overlie junc-
tional sarcoplasmic reticulum; at variance, the low affin-
ity (α1) isoform and the plasmalemmal Ca2+ pump are
uniformly distributed in the plasma membrane (103).

In human arteries, marinobufagenin (a putative
digitalis-like factor) and ouabain are able to modulate the
sodium pump, exhibiting respectively greater affinity to
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α1 and α3 isoforms, the latter proving more concen-
trated in nerve endings. These findings support the view
that differential response to endogenous digitalis-like
factors is attributable to specific Na+, K+-ATPase α-iso-
form behaviour (104).

Whereas several ouabain-like substances are effec-
tive as kidney enzyme inhibitors, peak II (the source
fraction for endobain E), failed to inhibit kidney ATPase
activity (105). This finding may receive a plausible ex-
planation in that α1 is the main isoform in this tissue
whereas all three isoforms are present in brain (106).

The distinct pattern of isoform sensitivity dis-
played by the various digitalis-like factors (DLFs) and
ouabain further differentiates these substances and
raises several physiological implications of these en-
dogenous factors (57).

As regards brain development, it should be men-
tioned that Na+, K+-ATPase inhibition by endobain E ob-
tained from brain of a four-day-old rat is higher than that
from adult rat. Since cerebral Na+, K+-ATPase expres-
sion increases 10-fold during development, the effect of
endobain E should be greater at early postnatal stages of
development than during adult life and may play a role
in neuronal development (107).

Marinobufagenin, an amphibian endogenous digi-
talis-like factor (EDLF), is a vasoconstrictor bufodieno-
lide which inhibits aortic sarcolemmal Na+, K+-ATPase.
Interestingly, marinobufagenin-like activity but not
ouabain-like activity increases after treating rats for
eight days with ACTH (54).

Hypoxia is a potent enhancer of endogenous
substances release; this observation suggested that a
Na+, K+-ATPase inhibitor may be involved in energy-
conserving cellular adaptive responses to hypoxic or
ischemic insult through ATP maintainance (21).

Since potential sodium pump regulators may be
physiologically released, it is reasonable to posit their
involvement in maintaining homeostasis. Some of
these novel compounds may act as regulators not only
of chemical neurotransmission but also natriuresis and
blood pressure.

PATHOLOGICAL CONDITIONS

After acute myocardial infarction, a bufodieno-
lide (MW ≅ 400D) has been isolated from urine and
eluted from HPLC columns with the same retention
time as amphibian marinobufagenin, from which it is
indistinguishable. Since hypoxia stimulates endobain
release, such factors may be involved in the pathogen-
esis of myocardial ischemia (56).

Although renal Na+, K+-ATPase activity remains
unchanged in the low renin hypertension model, in-
creased plasma ouabain and Na+, K+-ATPase inhibitory
activity has been recorded, helping to explain the de-
velopment of this hypertension type (25). Interestingly,
sera from patients on chronic dialysis renders an en-
dobain termed F1 which displays marked electrophysi-
ological effects and modifies transepithelial 22Na flux
pattern, whereas control sera produce no change (19).

The concentration of an ouabain-like factor (OLF)
has been determined in plasma and tissues from an hy-
pertensive rat strain versus a normotensive one and
from healthy human volunteers. A single HPLC fraction
identical to ouabain was found in rat hypothalamus and
hypophysis and in both rat and human plasma, whose
dilution curve paralleled that of ouabain; inhibitory fac-
tor is present at larger concentrations in hypertensive rat
strain, thus suggesting its pathogenetic role (98).

Studies performed both in hypertensive humans
and animals have shown a correlation between plasma
concentrations of endogenous digitalis-like factors and
blood pressure (58,108). Furthermore, an ouabain-like
compound extracted from toad skin which enhances
basal and K+-stimulated norepinephrine release from
pulmonary artery has been associated to hypertension
(109).

A circulating factor is increased in hypertension,
which cross-reacts with antibodies against proscillaridin
A; at variance with ouabain, its concentration fails to
correlate with blood pressure. Although its retention
time in HPLC is identical to that of ouabain, both sub-
stances differ in UV spectra (26). The ability of a factor
which mediates sympathetic hyperactivity in congestive
heart failure has been reported (15).

Raised digoxin-like immunoactivity (DLIA) has
been documented in diabetic patients, which may be
secondary to sodium retention and volume expansion.
Whether DLIA increase occurs via their action on Na+,
K+-ATPase and [Ca2+]i stores, actually leading to hy-
pertension and/or modulate insulin sensitivity or se-
cretion remains to be elucidated (10).

As regards central nervous system disorders, the
suggestion that an endogenous digoxin-like immunore-
active factor (DLIF) is involved in the pathophysiology
of mania has been advanced; although normal controls
exhibit seasonal changes in serum DLIF concentration,
in bipolar patients no such pattern is observed and low
levels persist throughout the year (11).

Ouabain-like activity in the central nervous system
correlates with diverse pathophysiological conditions.
Ouabain enhance was observed in spontaneously hy-
pertensive and in Dahl salt-sensitive rats, and appears to
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be responsible for increased sympathoexcitation, de-
creased sympathoinhibition, desensitized arterial barore-
flex function and the development of hypertension
(110–112). Congestive heart failure has been associated
to marked increases in both peripheral and brain
ouabain-like activity (113), appearing to mediate the in-
crease in resting sympathetic tone and to enhance sym-
pathoexcitatory responses to stress.

Regarding neurotransmitter release, endobain E
plus ouabain show no synergic or additive effects;
therefore, both substances may act on distinct sites
or by dissimilar mechanisms to enhance norepineph-
rine release. Since endobain E enhances norepineph-
rine release in hypothalamic neurons, this factor may
be involved in the development and/or maintenance of
cardiovascular disorders (60).

Na+, K+-ATPase from purified basolateral mem-
branes is inhibited by incubation with uremic plasma
factor F1, indicating the presence of an endogenous
Na+, K+-ATPase inhibitor, which may participate in the
development of unpredictable responses to digitalis
therapy in pathophysiologic status (19).

CONCLUDING REMARKS

Sustained efforts have been devoted in several
laboratories to disclose endogenous regulators for the
sodium pump. The purpose of the present article,
rather than an exhaustive summary of all available lit-
erature, was to provide a state-of-the-art overview of
the subject.

It is worthwile mentioning that to explain the
pharmacological action of plant opioid alkaloids, their
receptors and later a wide spectrum of endogenous
peptides related to their function have been disclosed
(114). Plant cannabinoids present specific receptors
(115) as well as endogenous ligands (116); likewise,
the plant-ouabain has its receptor in human and animal
tissues, for which the binding site is in the sodium
pump (1,3). The presentation of a site capable of bind-
ing cardiac glucosides as a characteristic feature of the
sodium pump provides a useful approach for the study
of endogenous ouabain-like factors (endobains).

Progress on the knowledge of endobains is essential
not only for nervous system but also for other tissues like
kidney, heart or skin.

Na+, K+-ATPase, the enzymatic version of the
sodium pump, participates in the regulation of several
cell functions and is crucial for Na+ extrusion and K+ re-
covery from neurons following the passage of nerve im-
pulse. Reasonably enough, tissues presenting the highest

ionic exchange rates have the highest Na+, K+-ATPase
activities (1,3). Since such enzyme concentrates at nerve
ending membranes (66), its regulation is crucial for neu-
rotransmission at central and peripheral system levels.

Why do we need so many endobains?
The wide spectrum of neuronal functions which

depend on Na+, K+-ATPase activity may provide an
answer. Furthermore, differential response to endoge-
nous digitalis-like factors is attributable to the behav-
iour of specific Na+, K+-ATPase α-isoforms.

Since circulating Na+, K+-ATPase inhibitors are
most likely generated by the central nervous system and/
or adrenal glands, they may be considered hormonal fac-
tors. Accumulating evidence suggests central nervous
system as a site of hypertensinogenic action of ouabain-
like compounds. The putative role of brain “ouabain” in
cardiovascular regulation affords a novel approach to
the development of antihypertensive agents.
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