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Abstract In this work, the management of a polyurethane foam plant is tackled

through a mixed integer linear programming model that simultaneously solves

production and inventory planning problems. The production process considers the

foaming stage where large polyurethane blocks are produced as well as the curing

step where the blocks are dried. The proposed formulation takes into account

several tradeoffs involved in the overall production process. The daily production

planning is tightly related to production requirements, available space for the curing

and stored elements. Moreover, the required time to dry blocks introduces a delay

that must be appropriately considered in order to allow an adequate operation of

downstream operations. Thus, an integrated approach where all these problems are

jointly addressed is proposed using a mathematical programming model. Several

study cases provided by a local company are tested to demonstrate the model

performance.

Keywords Production planning · Inventory management · Polyurethane foam ·

MILP
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Indices
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j Block densities

k Block lengths
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h Rows in the curing area

g Groups of blocks

Sets
Blocks Set of possible foam blocks of width i, density j, and length k
Cart Set of long blocks that can be cured on special carts since they have a low

density j
Long Set of long blocks

Orders Set of special orders to produce blocks of width i, density j, and length

k that are made to order

Groups Set of blocks of width i, density j, and length k belonging to groups g

Positive variables
difijk The difference between the final stock and the minimal stock for the block of

width i, density j and length k
sfijk Final stock for the block of width i, density j and length k
smijk Intermediate stock for the block of width i, density j and length k

Binary variables
uijk Indicates if there is no unsatisfied demand for the block of width i, density

j and length k
wjh Indicates if density j is produced and assigned to be cured in row h
xijk Indicates if external order blocks of width i, density j and length k are

produced

yi Indicates if the width i is selected to be produced

zjkh Indicates if any block of density j and length k is placed on row h

Integer variables
nijkh Number of blocks produced of width i, density j, and length k, placed in row

h
n1ijkh Number of long blocks of width i and density j cured on the special carts

(note that the purpose of keeping index h in this variable is given by Eq. (7)

but it has no physical meaning)

n2ijkh Number of long blocks of width i and density j placed on row h of the floor

Parameters
BMo “Big M” parameter, where o = 0, 1, 2,…,7

cwi Width of the curing area when width i is selected
cli Length of the curing area when width i is selected
dijk Demand for blocks of width i, density j, and length k
flijk Length of block of width i, density j, and length k occupied on the floor in

the curing stage

bwi Width of blocks from set i
fs Minimal space that must be left between blocks to allow air flow in the

curing area
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lijk Length of block of width i, density j, and length k
l min Minimal length to produce for each density

mli Minimal length to be produced for width i
np Number of places available in the carts for the curing stage of long blocks

Rowsi Number of available rows in the curing area when width i is selected
sijk Number of blocks of width i, density j, and length k in stock at the

beginning of the day

scg Stock capacity of group g
smaxijk Maximal stock level (stock capacity) for block of width i, density j, and

length k
sminijk Minimal stock level for block of width i, density j, and length k
soqijk Number of special blocks ordered of width i, density j, and length k

1 Introduction

The mattress industry has had a sustained growth in recent years motivated by

market conditions and new consumption trends. Consumer habits have changed and

mattresses are renewed more frequently. Purchase decisions are now driven mainly

by wellbeing and self-care rather than price. Thus, mattress firms must cope with

new requirements and market needs, producing a huge variety of products and

foams with a high level of service. Optimal production and inventory planning is

crucial to achieving these objectives.

One of the main characteristics of this problem is that several requirements must

be simultaneously considered. The polyurethane foam is produced in a machine

where setup and changeover costs and times are important. A detailed plan is

required. Furthermore, once foam blocks are produced, they must be cured during

about a day. Taking into account the volume of blocks, an appropriate space must be

available. Meanwhile, the downstream mattress production process must be

satisfied, and cured blocks are provided from the inventory. This process is driven

by a consumption characterized by an irregular pattern. Therefore, an approach that

integrates all these perspectives is required.

The integration of process and logistic decisions has been proposed by many

authors and applied in several industries. A new perspective to cope with production

systems is presented by Grossmann (2012). Although he analyzes a wider

perspective than this work, the advantages of the integrated formulations are

overwhelming. Also, Maravelias and Sung (2009) review the challenges and

advantages of the integration of medium-term planning and short-term scheduling.

Different types of decision can be integrated. In Jain and Grossmann (2000) the

manufacturing and packing continuous stages of a plant are integrated using an

intermediate storage. They propose an MILP scheduling model, but given the

combinatorial nature, there are limitations on this model as the number of orders

increases. A heuristic based on partial preordering is considered that solves

industrial sized problems very quickly. Lin and Floudas (2003) investigate the long-

term planning problem for integrated gas field development where the key decisions
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involve both design of the production and transportation network structure and

operation of the gas fields over time. A novel continuous-time modeling and

optimization approach is proposed. A two-level formulation and solution framework

is developed to take into account complicated economic calculations and results in

mixed-integer nonlinear programming (MINLP) problems. Computational results

show reduced computational efforts solving problems that are intractable for the

discrete-time model. Verlinden et al. (2009) develop an integrated production

planning methodology for sheet metal. The shop is configured as a two-stage flow

shop with laser cutting and air bending. The authors argue that although in the

literature, theoretical production planning models can be found for the individual

processes, they focus on one single production step while in reality the planning

decisions taken at the cutting stage affect the production plan for the air bending

stage. An integrated production planning methodology is proposed to overcome this

problem by taking into account relevant bending information at the cutting stage.

Rodriguez and Vecchietti (2010) integrate the inventory and delivery optimization

problems under seasonal demand in the supply chain. They propose a detailed

mathematical formulation where the purchased amount is distributed among several

deliveries giving rise to a nonlinear nonconvex problem that is transformed to find a

global solution. On the other hand, Fumero et al. (2011) propose an MILP model to

simultaneously solve planning and scheduling problems. In particular, they address

a multiproduct batch plant that operates with mixed production campaigns. The

same authors (Fumero et al. 2013) present a mathematical model where decisions

about supply chain and batch plant design are simultaneously considered. They

emphasize that significant benefits can be obtained if the interactions among

different decision levels are appropriately addressed and jointly solved. Two

alternative MILP models are proposed by Relvas et al. (2013) for integrated

scheduling and inventory management of an oil-product distribution system. The

approaches aim to attain a set of planning objectives such as fulfilling customer

demands while minimizing the medium flow rate and avoiding excessively low final

inventory levels. In a similar industry, Marchetti et al. (2014) propose a multi-period

MILP model for the simultaneous production and distribution of industrial gas

supply-chains. Process decisions include production modes and rates that determine

power consumption while the distribution plan involves the selection of routes,

quantity to deliver and time of each truck delivery. Cafaro and Cerdá (2016)

synthesize two innovative optimization tools for the short-term planning of oil

product pipelines. They integrate planning the injection, transportation and delivery

of batches moving into pipelines with many operational constraints.

With the purpose of evaluating the value of integrating tactical warehouse and

inventory decisions, a global warehouse and inventory model is presented by Strack

and Pochet (2010). They develop two solution methodologies that offer different

levels of integration of warehouse and inventory decisions. They conclude that

the total cost of the inventory and warehouse systems can be drastically reduced by

taking into account the warehouse capacity restrictions in the inventory planning

decisions, in an aggregated way.

Finally, the simultaneous scheduling and control problems are solved for

sequential batch processes in Chu and You (2014). A moving-horizon approach is
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developed to achieve computational efficiency and rescheduling stability. A reduced

integrated problem is formulated; it can be solved efficiently online. When dynamic

situations are presented in systems integrating production-inventory problems,

control theory offers suitable tools for handling the time-varying phenomena

(Ortega and Lin 2004). In these cases, dynamic constraints must be taken into

account to address the inventory management problem (Subramanian et al. 2014).

Although there are more works addressing the integrated formulation of production

problems, this is not the more usual approach. As a consequence, the assessment of

different tradeoffs is lost.

Some other works have been developed for the industry addressed in this article.

Most literature on this subject studies the technical properties of the products or

processes of the industry (Lanoë et al. 2013; Engels et al. 2013; Hopmann and Latz

2014; Bernardini et al. 2014).

Few articles deal with the production planning problem in this specific industry.

Lin et al. (2013) propose a flow shop scheduling model inspired by a real production

line of polyurethane (PU) foam at a plant in Taiwan. Due to different chemical

compositions, various types of foams can be produced by mixing different materials

on a foaming machine. Mogaji (2014) presents a decision support system for

process planning and control of PU foam production. The system is developed to

enhance production efficiency and presents seven modules that work together to

support the decision-making task. It also includes a simple linear programming (LP)

model to minimize the production costs considering limited raw materials in each

period.

In the foam production process, the foam blocks have to be placed in a limited

area during the curing stage. This type of decision can be related to the strip packing

problem (Trespalacios and Grossmann 2016), where several small pieces must be

accommodated in a larger area. A review of the literature on this topic is presented

by Wäscher et al. (2007).

In the present work, an MILP model for solving planning and inventory problems

in a PU foam production plant is proposed. The literature on the problem addressed

in this article is scarce, and to the best of our knowledge this particular problem has

not been studied before. One important aspect of this article is that a real industrial

application is considered. Different challenges appear when real cases are

addressed. The importance of this issue is pointed out by Harjunkoski et al.

(2014), where the authors observe that there is potential for improvement, especially

in transferring academic results into industry. Moreover, the proposed approach can

be extended to other industries where there is a single machine producing large

pieces of products of different characteristics, which must be arranged into a limited

area and where the storage management with an optimal use of the available space

are key issues for the process development. Some examples are sawmill processing,

corrugated board box production, and paper roll production.

Different decision levels are involved, jointly formulated and solved in the

proposed approach. The production process considers not only the foaming stage,

but also the curing step which involves strip packing type decisions. The proposed

arrangement of blocks in the limited curing area allows an effective representation

of the problem, avoiding a complex formulation. Detailed inventory management
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decisions are also embedded in the proposed approach, achieving a more realistic

representation of the problem. In this way, the presented formulation integrates

several decisions and, therefore, various tradeoffs are simultaneously considered

and evaluated. Despite its complexity, the proposed formulation allows an efficient

solution.

The manuscript is organized as follows: in Sect. 2 the problem is explained.

Section 3 presents the model formulation while Sect. 4 shows the results obtained.

Final conclusions and a discussion are given in Sect. 5.

2 Problem statement

The proposed approach is motivated by production planning and stock management

problems of polyurethane (PU) foam blocks for a mattress manufacturing plant. The

subject considered in this work involves three basic stages: foam production line,

curing of foam blocks and stock of foam blocks.

The production is carried out in a single foaming machine where various

densities of PU foam can be produced. There is a set of possible foam widths but

only one width can be selected per day for production given that a long setup is

required between width changes. The foam is cut in different lengths and densities,

forming the blocks according to characteristics required by the production

procedures in downstream stages. There is a specific density sequence to be

produced, from lighter to denser materials, taking into account production

requirements. Also, to reduce scraps, when a density is produced, a minimal length

must be planned.

The second stage is the curing process where the blocks need to cool, dry and

obtain the appropriate structural properties. For this purpose, the blocks are arranged

in a limited area for about 20 h. They are moved from the foam machine to the

assigned place by a cart. The blocks are introduced to the curing area in the same

order they are processed in the foaming machine. They are placed lengthwise,

forming rows as shown in Fig. 1. The first row is located in the back of the area

where blocks are placed from left to right. A fixed space between two consecutive

blocks is left to help the curing process. All the blocks can be cured lying on the

floor of the curing area, but some blocks of low density and short length can be also

cured in a standing position, using a smaller surface.

Taking into account the produced foam width i, a maximum number of rows can

be located in the curing area. This number represents a model parameter and it is

calculated by dividing the curing area length (cli) by the block width (bwi).

Equation (1) is a general expression to determine the parameter corresponding to

the number of available rows of the curing space for each width i taking into

account the sizes involved and the fixed space between two consecutive blocks (fs)

(Fig. 1):

Rowsi � cli

bwi þ fsð Þ 8i ð1Þ
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Since the length and width of the curing area are known, the row number depends

on the width selected to be produced. Note that the curing area length (cli) also

depends on the width i since different curing area arrangements are possible based

on the orientation of the blocks in the curing area.

For some widths and densities, longer blocks are foamed. The length of these

blocks is approximately four times longer than the others, and some of them can be

cured on carts depending on their density, as shown in Fig. 1. Thus, the firm attains a

greater curing area with a higher flexibility.

After the curing process, the blocks are moved from the curing area to the

storage. In the inventory area, the blocks can be piled up, forming groups, which

have an assigned limited capacity at the storage area. Each group is formed of

different block types. Each block is classified according to its width, length and

density, and it belongs to a unique inventory group. The maximum capacity for each

group in the stock area has been introduced taking into account that there is not

enough space to dedicate a specific place for each block type. As a special case,

groups with only one block type could also be considered in another context.

Figure 1 shows the stages of this work.

To clarify the plant floor operation, we describe the different activities. At the

beginning of the working day, the blocks in the curing area foamed the previous day

are moved to the storage, so when the foaming machine starts producing blocks, the

curing area is empty. Every day, taking into account the production requirements, a

known quantity of blocks is taken from the storage area and cut to assemble

mattresses. In this stage, the planner controls the availability of the required blocks
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Fig. 1 Production, curing and storage of foam blocks of a mattress manufacturing plant
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in stock. Let i be the block width, j the foam density and k the block length such that

a block is designated by these three elements. If the demand (dijk) of a certain block

(i, j, k) required in the downstream process is greater than the available stock (sijk), i.
e. sijk \ dijk, two options are considered by the planner before executing the model.

In the first case, the demand for this block is satisfied in the stock amount and

another block is used to satisfy the rest of the order. The block that replaces the

required one must be larger or of higher density, i.e. (i, j, k) is replaced by (i′, j′, k′)
with i′ greater than or equal to i, and k′ greater than or equal to k, and density j′
greater than or equal to j. In the second case, the demand for this block is satisfied in

the stock amount and the rest of this order is postponed until there is availability of

this block in stock. The quantity of blocks to be consumed is determined the

previous evening and, consequently, it is impossible to work with a longer time

horizon. The required stored blocks are taken for the downstream mattress

manufacturing process, freeing up space for the next foam production. Considering

the curing and stock limitations, and the demand level of the company, the foaming

stage takes about 3 h per day. Therefore, a plan on a daily basis is suitable for this

process, i.e. planning horizon is one day and the model is executed every day.

As previously mentioned, when the required blocks are not available in stock, the

production order might be postponed or another block must be used instead of the

one required in that order. In the second case, this means a greater loss of material if

a larger block is used or more expensive products if a block of higher density

replaces the one missing. Therefore, the main objective of the foam manufacturing

area is to keep a sufficiently large and balanced stock of blocks to avoid this type of

situation taking into account the available space in the storage area.

Thus, it was detected that the main goal of the firm for this area is to avoid stock-

outs. We tested different performance measures in order to find a suitable target, and

our proposed objective is to produce as many foam blocks as possible, to ensure an

appropriate stock of each block. Therefore, the fulfillment of a suitable inventory

level is also considered. If the final stock of a block is less than the required minimal

level determined by the company, a penalty is included in the objective function.

Then, the proposed formulation maximizes the production length minus the total

length of stock-outs given by the missing blocks in storage.

Therefore, the problem for the simultaneous optimal production planning, curing

and stocking of foam blocks is as follows:

Given:

● The set of widths, lengths and densities of the blocks.

● The order of densities.

● The minimum length per density.

● The minimum length to be foamed in the planning horizon.

● The curing area size (width and length).

● The number of carts and the set of blocks that can be cured in carts.

● The set of blocks that can be cured in a standing position.

● The stock level for each group at the beginning of the day.

● The minimum stock level for each type of block.

● The demand of each type of block required for the downstream process.
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● The storage groups and the blocks that compose each group.

● The capacity of each storage group (number of blocks of each type).

Determine:

● The width to be foamed.

● The lengths and densities for the selected width.

● The number of blocks of each type to be foamed.

● The sequence in which the blocks are foamed.

● The block arrangement in the curing area.

● The total stock of blocks at the end of the working day.

The objective is to maximize the total foamed length minus the total length of

inventory shortage, fulfilling the minimum stock requirement for the blocks of the

foamed width.

3 Model formulation

In this section we present the mathematical model for the optimal production

planning and stock management of foam blocks for a mattress manufacturing plant.

The constraints are combined into three groups: planning constraints, stock

constraints, and objective function. The result of this model is a daily production

plan considering process and storage requirements as well as business policies from

the company.

3.1 Planning constraints

Let yi be a binary variable equal to one if width i is selected, then due to the set-up

policies, only one foaming width can be selected:
X

i

yi � 1 ð2Þ

As previously mentioned, the blocks form rows in the curing area (Fig. 1). Let

nijkh be a variable equal to the number of produced blocks of width i, density j, and
length k, placed in row h, then, nijkh ¼ 0 for h[Rowsi, that is, no blocks of width

i are placed in row h for h greater than the number of available rows in the curing

area for each width i:

nijkh � 0 8i; 8j; 8k; 8h[Rowsi ð3Þ

Let lijk be the parameter corresponding to the block length. Then, if blocks of

width i are produced, i.e. yi ¼ 1, a firm production policy based on high setup costs

is that a minimum length must be manufactured. Therefore, the total produced

length has a lower bound, which is given by the parameter mli, defined taking into

account setup costs:
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X

j;k;h:
i;j;kð Þ2Blocks

nijkh � lijk �mli � yi 8i ð4Þ

where Blocks is the set of possible foam blocks defined from production

requirements.

A minimum length for each produced density j has to be fulfilled. This bound is

defined taking into account changeover costs. Let wjh be the binary variable equal to

one if density j is produced and assigned to be cured in row h, and l min the

parameter for the minimum length. Then, Eq. (5) determines that the number of

blocks of density j multiplied by their corresponding length must be greater than or

equal to l min if density j is used in any row h′.
X

i;k;h:
i;j;kð Þ2Blocks
h�Rowsi

nijkh � lijk � l min � wjh0 8j; 8h0 ð5Þ

If a given width i is not selected, then no block of this width i can be produced for
any density j, length k, placed in any row h as shown in Eq. (6):

nijkh �BM0 � yi 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 2 Blocks ð6Þ
where BM0 is a sufficiently large parameter, which can be the maximum stock

capacity for this type of block (smaxijk).

As mentioned above, blocks must be cured after they are cut in the foaming

machine. For this purpose, they are placed in the floor forming rows as shown in

Fig. 1 where they must stay for 20 h. All the blocks can be cured on the floor and

some of them, with density j 2 Cart and length k 2 Long, can be also cured in carts.

These sets consider blocks with special characteristics; Cart defines the set of

densities that can be cured on carts, and Long is the set of sizes that can be allocated

to them.

In order to assign foam blocks to the different curing options, new variables are

introduced. While variable nijkh is used for the number of blocks of normal lengths,

variables n1ijkh and n2ijkh define the number of long blocks placed on carts and on

the floor in row h, respectively for blocks included in sets Cart and Long.
Equation (7) ensures that the total number of produced long blocks, nijkh k ∈ Long, is
equal to the number of long blocks cured on the floor, n2ijkh, plus the number of long

blocks cured on the carts, n1ijkh for the blocks included in this special set.

n1ijkh þ n2ijkh ¼ nijkh 8 i; j; kð Þ 2 Blocks; h�Rowsi; 8k 2 Long ð7Þ

Thus, the different curing options are related and variables n1ijkh, n2ijkh, and nijkh
for long blocks are associated.

The following constraint ensures that the produced blocks fit in the curing area

where parameter flijk indicates the block distance occupied on the floor. Depending

on the characteristics of the block, it can be cured lying or standing. If the block is

placed lying on the floor, then flijk represents the block length. On the other hand, if

the block is placed standing on the floor, flijk is equal to the block height. Therefore,
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the total width used for each row is given by the number of blocks assigned to the

row multiplied by the sum of the block distance occupied on the floor flijk and the

space left between blocks fs. The total covered width in a row must be less than or

equal to the curing area width cwi, as shown in Fig. 1. This constraint is presented in

Eq. (8):
X

j;k:
i;j;kð Þ2Blocks
k 62Long

nijkh � flijk þ fs
� �þ

X

j;k:
i;j;kð Þ2Blocks
k2Long

n2ijkh � flijk þ fs
� �� cwi 8i; 8h�Rowsi ð8Þ

In the same way, there is a limited number of carts with certain curing capacity. It

is assumed that only one long block can be assigned to a cart, and that the number of

available carts is np. Therefore, the total number of blocks cured on carts can be at

most np:
X

i;j;k;h:

ði;j;kÞ2Blocks
k2Long
j2Cart

h�Rowsi

n1ijkh � np ð9Þ

In contrast to the previous constraint, Eq. (10) establishes that no long block can

be cured on the carts if they are of densities j with j 62 Cart.
X

i;j;k;h:

ði;j;kÞ2Blocks
k2Long
j 62Cart

h�Rowsi

n1ijkh � 0 ð10Þ

Some blocks of width i, density j and length k are produced to satisfy external

orders. These orders satisfy special requests that are directly delivered to the clients.

Therefore, they are not stocked after curing. The binary variable xijk determines if

the total demand of blocks of width i, density j and length k corresponding to

external orders is going to be satisfied ðxijk ¼ 1Þ or not ðxijk ¼ 0Þ. If a given block

type ((i; j; kÞ 2 Orders) is selected to be produced, then the exact quantity of this

external order, soqijk, must be produced. This constraint is shown in Eqs. (11) and

(12):
X

h�Rowsi

nijkh � soqijk � xijk 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 2 Orders ð11Þ

X

h�Rowsi

nijkh � soqijk � xijk 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 2 Orders ð12Þ

Blocks are produced considering an increasing density order taking into account

the foaming machine operation. They are placed in the curing area in the same

sequence they are obtained from the foaming machine in order to make an easier
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block location. Equation (12) establishes that if a given density j′ is placed on row h′
of the curing sector (meaning that wj0h0 ¼ 1), then no blocks of density j greater than
j′ can be placed on any row h lower than h′:

X

i;k;h:

ði;j;kÞ2Blocks
k 62Long
h\h0

nijkh þ
X

i;k;h:

ði;j;kÞ2Blocks
k2Long
h\h0

nijkh �BM1 1� wj0h0
� � 8j[ j0; 8h0 ð13Þ

where BM1 is a sufficiently large number that makes the constraint redundant when

the given density j′ is not placed on row h. BM1 can be the maximum number of

blocks that can be placed in the curing area.

Blocks are cut in the foaming machine in decreasing length for a given density

j and they are located in the curing area in the same order they are obtained from the

foaming machine. Let zjkh be a binary variable equal to one if any block of density

j and length k is placed on row h. Then, Eq. (14) establishes that if a given length k′
of density j is placed on row h′ of the curing sector (meaning that zjk0h0 ¼ 1), then no

blocks of this density j and length k less than k′ can be placed on any row h′ lower
than h:

X

i;k;h:

ði;j;kÞ2Blocks
k 62Long;k\k0

h\h0

nijkh þ
X

i;k;h:

ði;j;kÞ2Blocks
k2Long;k\k0

h\h0

n2ijkh �BM2 1� zjk0h0
� � 8j; 8h0;8k0 ð14Þ

where BM2 is a sufficiently large number that relaxes this constraint when the length

k′ of density j is not placed on row h of the curing sector. As for BM1, BM2 can be

the maximum number of blocks that can be placed in the curing area.

If density j is not assigned to row h of the curing area (i.e., wjh ¼ 0), then no

blocks of this density can be placed on h. Similarly, if length k and density j are not
assigned to row h (i.e., zjkh ¼ 0), the number of blocks of those length and density is

zero in that row. These restrictions are stated using Big-M type expressions, as

shown in Eqs. (15) to (17):
X

i;k:
i;j;kð Þ2Blocks
k 62Long

nijkh þ
X

i;k:
i;j;kð Þ2Blocks
k2Long

n2ijkh �BM3 � wjh 8j; 8h ð15Þ

X

i:
i;j;kð Þ2Blocks

nijkh �BM4 � zjkh 8j; 8k 62 Long; 8h ð16Þ

X

i:
i;j;kð Þ2Blocks

n2ijkh �BM5 � zjkh 8j; 8k 2 Long; 8h ð17Þ

BM3, BM4 and BM5 can be calculated as the maximum number of blocks that can

be placed in a row.
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On the other hand, if the number of blocks of density j and length k assigned to

row h is zero, then the binary variable zjkh that assigns blocks of density j and length

k to row h must be also zero (Eqs. (18), (19)), and, if a given density j is assigned to

row h (i.e., wjh ¼ 1), then some blocks of this density must be located in this row as

shown in Eq. (20):
X

i:
ði;j;kÞ2Blocks

nijkh � zjkh 8j; k 62 Long; 8h ð18Þ

X

i:
i;j;kð Þ2Blocks

n2ijkh � zjkh 8j; k 2 Long; 8h ð19Þ

X

i;k:
i;j;kð Þ2Blocks
k 62Long

nijkh þ
X

i;k:
i;j;kð Þ2Blocks
k2Long

n2ijkh �wjh 8j; 8h ð20Þ

Logical relations can be defined among the binary variables yi, xijk, zjkh and wjh:
X

k

zjkh �wjh 8j; 8h ð21Þ

Equation (21) establishes that if density j is assigned to row h, at least one length
k of density j must be assigned to row h.

zjkh �wjh 8j; 8k; 8h ð22Þ

Equation (22) states that if density j is not assigned to row h, no length k of

density j can be assigned to row h.
X

j0:
j0 � j

wj0h0 �wjh 8j; 8 h; h0ð Þjh0\h ð23Þ

If a density j′ is assigned to row h′, then any density j must be assigned to all rows

h previously located to h′. The purpose of Eq. (23) is to avoid alternative solutions

when the limitation of the number of produced blocks is given by the storage

capacity and there is an excess of space in the curing area.

xijk � yi 8 i; j; kð Þ 2 Orders ð24Þ

Equation (24) admits the production of blocks of width i required for external

orders only when this width has been selected.

3.2 Stock equations

After curing, the foam blocks are stored. The warehouse policy determines a set of

groups of blocks which have a specific assigned space in the storage area, as shown

in Fig. 1. These groups are related a priori to specific blocks of different width,
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density and length by the set Groups ( i; j; k; gð Þ 2 Groups). A block of a given

width, density and length belongs to a unique group.

The stock capacity for each group (scg), as well as the minimum (sminijk) and

maximal stock (smaxijk) and the initial stock (sijk) for each block type, all expressed

in number of blocks, are model parameters. As previously described, a daily

production planning is modeled. Three moments are considered for the stock, the

initial moment where the stock is equal to the final stock of the previous day

(including the pieces produced the previous day), the intermediate stock smijk, after

the demand of the current day is taken for downstream processes, and the final stock

sfijkt which is the inventory level that considers the blocks produced and cured in the

current day,
P

h nijkh.

At the beginning of the production day, the demand (dijk) is taken from the stock

area. This demand is satisfied by the initial stock, i.e. the available blocks at the end

of the previous working day. In the intermediate moment, if the demand of blocks

dijk is greater than the initial stock sijk, an unsatisfied demand occurs, and the model

reports the unsatisfied blocks. In this case, the intermediate stock is smijk ¼ 0. On

the other hand, if the initial stock is enough to satisfy the demand, the intermediate

stock is the difference between the initial stock and the demand, as in the following

constraints:

smijk � sijk � dijk þ BM6 1� uijk
� � 8 i; j; kð Þ 2 Blocks ð25Þ

smijk � sijk � dijk � BM6 1� uijk
� � 8 i; j; kð Þ 2 Blocks ð26Þ

smijk �BM6uijk 8 i; j; kð Þ 2 Blocks ð27Þ
where uijk is a binary variable equal to 1 if no unsatisfied demand occurs for block of

width i, density j and length k, and 0 otherwise. In this way, if the initial stock is

enough to satisfy the current demand, uijk ¼ 1 and Eqs. (25) and (26) state that the

stock after taking the demand is smijk ¼ sijk � dijk, while Eq. (27) is redundant.

Otherwise, uijk ¼ 0, Eq. (27) indicates that smijk ¼ 0, and Eqs. (25) and (26) are

redundant. BM6 can be the maximum stock capacity for block (i, j, k), smaxijk.
Finally, the stock at the end of the day is given by the intermediate stock plus the

blocks produced during the day:

sfijk ¼ smijk þ
X

h

nijkh 8 i; j; kð Þ 2 Blocks ð28Þ

The following equation determines that the total number of blocks of a given

group g in the stock cannot be greater than the stock capacity of that group:
X

i;j;k;h:

ði;j;kÞ2Blocks
ði;j;kÞ62Orders

ði;j;k;gÞ2Groups

sfijk � scg 8g ð29Þ

M. A. Rodriguez et al.

123



This last expression excludes blocks that belong to external orders (Orders) that

are not stored.

Similarly to the previous equation, Eq. (30) establishes that the number of blocks

in stock at the end of the planning day must be less than or equal to the block stock

capacity parameter, for each block of width i, density j and length k. Blocks that

belong to external orders (Orders) are not stored, and thus they are not included in

this equation.

sfijk � smaxijk 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 62 Orders ð30Þ

If width i is selected to be produced, then the stock of all blocks of this width

must fulfill the minimal stock as shown in Eq. (31), where BM7 is a sufficiently large

constant to make this constraint redundant when width i is not produced. A good

selection for BM7 is BM7 ¼ max
i;j;kð Þ2Blocks sminijk

� �
. Blocks corresponding to external

orders (Orders) are not considered.

sfijk � sminijk �BM7 yi � 1ð Þ 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 62 Orders ð31Þ

3.3 Objective function

The objective function seeks simultaneously the maximization of the length of the

produced foam and the minimization of the length of blocks needed in the inventory

to satisfy the required minimum stock. As previously mentioned, the foam

production section aims to assure the provision of the requested blocks to the

following production stage. It is important to mention that if the maximum block

production is considered as the sole performance measure of the model, the solution

would only take into account the available curing space as well as the empty places

in stock. Therefore, the formulation would lack criteria to evaluate whether or not

the proposed production plan is balanced. In addition, the production planners have

defined a minimal stock of blocks according to their expertise regarding the

historical consumption of blocks in the downstream process. To take into account

this information and provide a solution of better quality, a second term is included in

the objective function that penalizes the unsatisfied minimum stock requirement.

The proposed objective function represents a good compromise among production,

storage and downstream demand fulfillment.

As stated in Eq. (31), if the width i is selected, all final stock of blocks of this

width must be greater than or equal to the lowest admitted stock sminijk. For the

other widths, the difference between the final stock and the minimal stock is not

modified because no blocks are produced, then it can be greater than, less than or

equal to zero. In order to represent this difference, the variable difijk is defined.

Then, Eq. (32) states that the amount of missing blocks in stock, of width i, density
j and length k, is equal to the difference between the minimal stock level (sminijk.)

and the final stock level). Thus, if the minimal stock of block of width i, density
j and length k is satisfied, difijk takes value zero. Otherwise, difijk is equal to the

number of blocks of width i, density j and length k required to complete the

minimal stock.
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sminijk � sfijk � difijk 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 62 Orders ð32Þ

difijk � 0 8 i; j; kð Þ 2 Blocks; 8 i; j; kð Þ 62 Orders ð33Þ

It is worth noting that for the width produced in the current day, difijk ¼ 0 due to

Eq. (31).

Therefore, the objective function to be maximized is:

C ¼
X

i;j;k;h:
i;j;kð Þ2Blocks
h�Rowsi

nijkh � lijk �
X

i;j;k:
i;j;kð Þ2Blocks

difijk � lijk: ð34Þ

In summary, the proposed mathematical model for the simultaneous production

and inventory planning involves maximizing the objective function of Eq. (34)

subject to constraints (2)–(33).

4 Results

Different production scenarios can be obtained according to the problem input data.

In this section, three study cases are presented to show various planning schemes

and highlight the several tradeoffs that are simultaneously evaluated in the proposed

approach. Also, the objective function is tested and validated through an example.

The examples have been adjusted to an appropriate size for an article.

In the first example, the stock capacity is completed for the width selected by the

model, and therefore no more blocks of this width can be produced. This means that

the stock capacity is the limiting resource while the curing area is not filled. In the

second case, no more blocks can be placed in the curing area, and therefore the

maximum stock of blocks of the selected width is not fulfilled. Finally, in the last

example, the model is solved maximizing the foaming length in the objective

function, i.e. without penalizing the negative difference between the inventory level

and the minimal stock parameter. In this way, the objective function and the

corresponding optimal solution is tested and compared with the previous example.

In all cases, the model was implemented and solved in GAMS version 24.1.3 with a

2.8 GHz Intel Core i7 processor. The CPLEX 12.5.1 solver was employed for

solving the MILP problems. The computational performance of the three examples

is presented in Table 1.

It is worth highlighting that the good computational performance of the model is

because the constraints are strongly dependent on the width selection and the binary

variables are closely linked through specific constraints. As only one width is

produced, when the solver selects the width, many variables take the value zero, and

therefore, many decisions are made. Moreover, the logical constraints help the

convergence since they reduce the search space in the feasible region. In summary,

the model structure is suitable for fast convergence despite the large number of

discrete decisions.
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To show the power of the model, for the examples, 3 possible widths, 16 different

densities, and 12 lengths are considered. Table 5 from the Appendix shows, for each

possible foam block belonging to the set Blocks grouped according to the stock

groups (Groups), the stock capacity of each block (smaxijk) and group (scg), and the

minimum stock for each block (sminijk). Table 6 from the Appendix displays the

initial stock (sijk) and the demand (dijk) for the instances.

The curing area size is determined by the parameters cwi and cli. In these

examples, for i equal to width 190 and 200 cm the curing area width is fixed to

2040 cm, while the curing area length is 4500 cm. For width 214 cm, some long

blocks are produced, and therefore more blocks can be accommodated in the curing

area if this area is transposed. Then, for i equal to 214, cwi ¼ 4500 and cli ¼ 2040

cm. The parameter cli is used to determine the value of Rowsi i.e. the number of

admitted rows in the curing area, according to Eq. (1). It is worth mentioning that

the planners can modify these parameters to improve the block arrangement in this

sector.

The minimum density length is 1500 cm (l min) and the considered value for the

minimum total length is 15,000 cm (ml). There are 5 available places in carts

(np ¼ 5) for curing long blocks (1200 2 Long) of densities j 2 Carts, i.e. blocks of

1200 cm in length of certain densities. In addition, 10 blocks of width 214, density

BS28, and length 225 are required as a special order (soq214;BS28;225 ¼ 10; where
214;BS28; 225ð Þ 2 Orders). Therefore, if the width 214 is selected to be produced,

the total special order could be manufactured.

Example 1 Besides the parameters previously presented, the initial stock and the

demand presented in the first and third columns of Table 6 from the Appendix,

respectively, must be considered.

The optimal solution selects the width 190 cm and 152 blocks of this width are

foamed. The total foamed length is equal to 392.62 m. In Table 2, the detailed

foaming program is shown. The order in which blocks for each density are produced

is provided by the company. From this table, the total foamed length for each

density can be calculated.

Figure 2 displays the optimal planning in the curing area. Note that the total

available rows (21) are used, but some of them are not completely occupied. For

example, in row h3 there are two blocks of density CO28 and length 2 m, which are

lying down on the floor occupying 4.42 m of this row. Therefore, nearly 16 m of this

row is empty. Note that the width used in this row is 4.42 m because an additional

fixed space must be considered to allow the air flow in the curing process. A similar

Table 1 Performance of the three examples

Equations Continuous

variables

Discrete

variables

CPUs*

example 1

CPUs*

example 2

CPUs *

example 3

150,108 15,179 14,907 66.08 10 52.3

* 0% gap (in all cases)
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situation can be observed in rows h7, h8, and h20. In h20 for example, the blocks are

standing, therefore the length occupied in the floor is calculated according to the

block height which is 1.18 m, i.e., the occupied length is 6.65 m that corresponds to

1.18 m [block height] by 5 [no. of blocks] plus 0.15 m [space between blocks] by 5

[no. of blocks]. In this case, alternative solutions for the block arrangement can be

obtained because the available space in the curing area is greater than the required

surface.

Figure 3 shows the stock management for each group. Blocks of width 190 cm

are stored in groups G5 to G11, G13, G18 and G19. Groups G14, G16 and G22

include blocks of width 190 cm as well as blocks of width 200 cm. Some of these

groups do not achieve their maximum stock capacity, even when there is free space

for more blocks in the curing area. However, the free space in stock corresponds to

the blocks of width 200 cm which are not produced. The maximum foamed length is

reached with blocks of width 190. The maximum stock capacity for this width is

completed except for group G13 due to the minimum density length requirement.

Therefore, the bottleneck in this case is the stock capacity.

Example 2 Considering the data in the second and fourth columns of Table 6 from

the Appendix, the optimal solution selects to foam blocks of width 214 cm. The

Table 2 Example 1. Detailed program of foam blocks

Density (j) Length (k) (cm) No. of blocks (Σhnijkh) Total length (Σhnijkh * lijk) (m)

CO28 200 13 26.78

CO28 250 1 2.58

CO28 270 1 2.79

CO28 280 4 11.56

GR28 240 8 19.76

GR28 260 3 8.04

GR28 280 13 37.7

RS26 280 8 23.04

AZ24 240 4 9.88

AZ24 280 2 5.76

AM20 200 4 8.4

AM20 240 21 52.5

AM20 260 4 10.8

AM20 280 9 26.01

LI18 240 6 15.12

LI18 280 4 11.6

N18L 200 4 8.4

N18L 240 9 22.5

N18L 280 11 31.9

BCOL 240 23 57.5

Total 152 392.62
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number of produced blocks is 38 and the total length is 358.50 m, while the total

length of missing blocks in stock is 49.43 m. The detailed foaming program is

shown in Table 3. As can be observed, the special order of 10 blocks of density

BS28 and length 225 cm is carried out.

Figure 4 shows the block arrangement in the curing area. Note that the number of

rows in the curing area is less than in the previous case since when width 214 cm is

selected, the area dimensions are transposed. In this case, all the available rows are

employed and 23 long blocks are cured on the floor. Although some rows are not

totally covered, no more long blocks can be accommodated in the rows of this area.

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

h16

h17

h18

h19

h20

h21

Rows Used Width (m)

17.83

19.89

4.42

19.67

18.3

19.83

15.72

9.09

18.18

19.59

18.24

19.74

18.55

18.55

17.93

19.70

15.25

19.58

19.35

6.65

19.95

Fig. 2 Example 1. Optimal block arrangement in curing area
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Therefore, the total available space in carts (5 blocks) is used for curing long blocks

of low density.

The stock management of these blocks is shown in Fig. 5. The long blocks are

grouped in a last cluster, G23. Note that the blocks of the special order are not

stored. There are 3 places unoccupied in G23. This means that, in this case, the most

limited resource is the curing area. All the required shorter blocks are foamed, while

no more long blocks are produced because they cannot be accommodated in the

curing area. For the remaining groups no blocks are produced, therefore the final

stock is equal to the initial stock minus the demand.

Example 3 The objective function is changed in this example and the term that

calculates the lacked blocks according to the minimum stock is removed. Therefore,

Eq. (34) is replaced by:

C ¼
X

i;j;k;h:

ði;j;kÞ2Blocks
h�Rowsi

nijkh � lijk ð35Þ

and all the parameters are as for Example 2. Now, the optimal solution selects width

190 cm instead of 214 cm. The detailed planning program is shown in Table 4.
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G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23

Minimal stock Final Stock Stock capacity

Fig. 3 Example 1. Stock management of groups

Table 3 Example 2. Detailed program of foam blocks

Density (j) Length (k) (cm) No. of blocks (Σhnijkh) Total length (Σhnijkh* lijk) (m)

BS28 225 10 22.50

BS28 1200 2 24

FR28 1200 6 72

GS26 1200 6 72

BB20 1200 5 60

BB12 1200 9 108

Total 38 358.50
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The total foamed length in the previous example was 358.5 m, while in this case,

the total foamed length is 361.84 m. Taking into account the problem data, in both

examples the shortage of blocks when width 190 cm is produced is 133.43 m, while

when width 214 cm is produced it is 49.43 m. Therefore, when the length of missing

blocks is subtracted from the length of foam blocks, the best solution is to produce

blocks of width 214 cm, while when shortage is not taken into account the best

solution is to produce blocks of width 190 cm.

This shows that the purpose of maintaining a more balanced stock level can be

achieved when the objective function is given by Eq. (34).

h1 h2 h3 h4 Rows

Used Width (m)

h5 h6 h7 h8

43.50 41.25 36.45 36.45 36.45 36.45 36.45 36.45

Curing Area

Carts for curing long blocks

Fig. 4 Example 2. Optimal block arrangement in the curing area
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5 Conclusion

In this article, an MILP formulation for the simultaneous optimization of PU foam

production planning and inventory management was presented. Planning decisions

include two main features of the production process. In the foaming step, only one

foam width can be produced per day and the number and type of foam blocks must

0

10

20

30

40

50

60

70

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23

Minimal stock Final Stock Stock capacity

Fig. 5 Example 2. Stock management of groups

Table 4 Example 3. Detailed program of foam blocks

Density (j) Length (k) (cm) No. of blocks (Σhnijkh) Total length (Σhnijkh* lijk) (meters)

CO28 200 11 22.66

CO28 250 3 7.74

CO28 270 1 2.79

CO28 280 3 8.67

GR28 240 8 19.76

GR28 260 3 8.04

GR28 280 16 46.4

RS26 280 8 23.04

AZ24 240 4 9.88

AZ24 280 4 11.52

AM20 200 4 8.4

AM20 240 21 52.5

AM20 260 2 5.4

AM20 280 12 34.68

LI18 240 8 20.16

LI18 280 6 17.4

N18L 200 4 8.4

N18L 240 9 22.5

N18L 280 11 31.9

Tota 138 361.84
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be decided. In the curing process, the blocks must be placed according to the

available curing space. Given that only one width can be produced per day, storage

planning is critical in the plant. Besides, mattress production requirements cannot be

known in advance, so an appropriate inventory must be maintained to overcome

manufacturing fluctuations. The lack of blocks in stock with respect to a minimal

level is then incorporated in the objective function, allowing a homogeneous

distribution of blocks in storage. Therefore, the model allows obtaining the largest

foaming production considering the lack of blocks and satisfying production, curing

and stocking policies.

Several tradeoffs are simultaneously considered. First, the model achieves an

appropriate planning of the foaming sector with adequate links with production

through inventory management. Previous efforts with disarticulated proposals failed

to attain an efficient operation. Block production not only is limited by foaming

requirements but also by curing area and stock space. The concurrent consideration

of these perspectives allows tighter resource utilization. Thus, mathematical

programming is an effective tool to improve the production and inventory

management.

Although the model is a sophisticated approach from the mathematical point of

view, with an important number of discrete variables, it is a simple tool from the

managers’ perspective. Several runs can be compared and the impact of daily

mattress production plans can be anticipated.

The inventory management through block groups with limited capacity has

enabled a stock policy avoiding shortages. If additional space was available in the

inventory area, a dedicated stock for each block could be adopted. However, space

limitations necessitated a different approach. Block groups are sufficiently flexible

to maintain an appropriate block stock in the available area.

Three study cases were presented to demonstrate the model performance.

Through the examples, the approach capabilities were highlighted and several

tradeoffs among production and curing processes and stock management were

analyzed. For the company, the approach represents a useful tool for deciding the

daily production planning. The structure of the model, where several logical

relations among variables are included, allows solution in a reasonable compu-

tational time, providing a powerful tool for helping the firm with decision making.
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Appendix

See Tables 5, 6.

Table 5 Stock capacity data

Group Block

(width.density.

length)

Stock capacity

(number of blocks)

Minimum stock

(number of blocks)

Group stock capacity

(number of blocks)

G1 200.VE22.200 8 2 23

200.VE22.240 2 0

200.VE22.280 8 2

200.VE22.300 5 1

G2 200.LI18.200 10 3 25

200.LI18.240 3 0

200.LI18.280 6 1

200.LI18.300 6 0

G3 200.GR28.160 22 8 39

200.GR28.180 8 2

200.GR28.210 9 6

G4 200.AZ24.160 26 10 47

200.AZ24.210 15 5

200.AZ24.300 6 1

G5 190.AZ24.240 11 1 30

190.AZ24.280 19 10

G6 190.AM20.240 45 10 45

G7 190.AM20.260 4 0 48

190.AM20.280 44 20

G8 190.GR28.260 6 0 41

190.GR28.280 35 8

G9 190.GR28.240 26 5 26

G10 190.BCOL.240 53 10 53

G11 190.N18L.240 34 10 59

190.N18L.280 25 2

G12 200.B14P.270 11 2 32

200.B14P.300 21 8

G13 190.BC35.240 2 0 15

190.BC35.280 13 3

G14 200.AM20.180 5 2 13

190.AM20.200 4 0

200.AM20.200 4 2

G15 200.AM20.160 30 8 30

G16 200.CO28.160 11 0 66

190.CO28.200 27 10

200.CO28.210 14 0
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Table 5 continued

Group Block

(width.density.

length)

Stock capacity

(number of blocks)

Minimum stock

(number of blocks)

Group stock capacity

(number of blocks)

190.CO28.250 5 2

190.CO28.270 4 1

190.CO28.280 5 1

G17 200.RS26.160 12 5 20

200.RS26.210 8 2

G18 190.RS26.280 10 1 10

G19 190.LI18.240 15 0 29

190.LI18.280 14 0

G20 200.BC35.160 11 5 24

200.BC35.210 13 2

G21 200.N18L.160 31 8 31

G22 200.N18L.180 5 2 13

190.N18L.200 4 0

200.N18L.200 4 2

G23 214.BS28.1200 2 0 31

214.FR28.1200 8 2

214.GS26.1200 6 1

214.BB12.1200 10 2

214.BB20.1200 5 2

Table 6 Initial stock and demands

Block (width.density.length) Initial stock (number of blocks) Demand (number of blocks)

Example 1 Examples 2 and 3 Example 1 Examples 2 and 3

200.VE22.200 5 5 0 2

200.VE22.240 0 2 0 0

200.VE22.280 3 5 3 2

200.VE22.300 3 5 0 2

200.LI18.200 7 10 0 2

200.LI18.240 2 3 0 2

200.LI18.280 0 0 0 0

200.LI18.300 3 2 0 2

200.GR28.160 20 11 1 10

200.GR28.180 6 6 0 6

200.GR28.210 7 7 0 7

200.AZ24.160 23 13 1 13

200.AZ24.210 5 3 4 3

200.AZ24.300 5 3 0 3

190.AZ24.240 7 7 0 0
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Table 6 continued

Block (width.density.length) Initial stock (number of blocks) Demand (number of blocks)

Example 1 Examples 2 and 3 Example 1 Examples 2 and 3

190.AZ24.280 18 10 1 1

190.AM20.240 40 35 16 16

190.AM20.260 2 2 2 2

190.AM20.280 40 37 5 5

190.GR28.260 3 3 0 0

190.GR28.280 35 32 13 13

190.GR28.240 23 23 5 5

190.BCOL.240 30 53 0 0

190.N18L.240 29 29 4 4

190.N18L.280 20 20 6 6

200.B14P.270 9 5 1 4

200.B14P.300 19 10 3 9

190.BC35.240 0 0 0 0

190.BC35.280 12 0 2 2

214.BS28.1200 0 0 0 0

214.FR28.1200 5 5 3 3

214.GS26.1200 4 4 0 0

214.BB12.1200 2 0 0 0

214.BB20.1200 4 2 0 0

200.AM20.180 0 0 0 0

190.AM20.200 4 4 4 4

200.AM20.200 0 0 0 0

200.AM20.160 0 0 0 0

200.CO28.160 11 11 2 11

190.CO28.200 21 21 7 7

200.CO28.210 13 14 0 13

190.CO28.250 5 1 1 1

190.CO28.270 3 1 0 0

190.CO28.280 2 2 1 1

200.RS26.160 4 4 4 4

200.RS26.210 3 4 2 3

190.RS26.280 4 4 2 2

190.LI18.240 10 8 1 1

190.LI18.280 10 8 0 0

200.BC35.160 11 5 0 5

200.BC35.210 10 13 1 10

200.N18L.160 23 13 1 13

200.N18L.180 2 3 0 2

190.N18L.200 2 2 2 2

200.N18L.200 3 3 1 3
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