
REVIEW

Exogenous enzymes upgrade transgenesis and genetic engineering
of farm animals

Pablo Bosch • Diego O. Forcato • Fabrisio E. Alustiza • Ana P. Alessio •

Alejandro E. Fili • Marı́a F. Olmos Nicotra • Ana C. Liaudat •

Nancy Rodrı́guez • Thirumala R. Talluri • Wilfried A. Kues

Received: 1 December 2014 / Revised: 15 January 2015 / Accepted: 16 January 2015 / Published online: 1 February 2015

� Springer Basel 2015

Abstract Transgenic farm animals are attractive alter-

native mammalian models to rodents for the study of

developmental, genetic, reproductive and disease-related

biological questions, as well for the production of recom-

binant proteins, or the assessment of xenotransplants for

human patients. Until recently, the ability to generate

transgenic farm animals relied on methods of passive

transgenesis. In recent years, significant improvements

have been made to introduce and apply active techniques of

transgenesis and genetic engineering in these species.

These new approaches dramatically enhance the ease and

speed with which livestock species can be genetically

modified, and allow to performing precise genetic modifi-

cations. This paper provides a synopsis of enzyme-

mediated genetic engineering in livestock species covering

the early attempts employing naturally occurring DNA-

modifying proteins to recent approaches working with

tailored enzymatic systems.
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Abbreviations

Cas9 CRISPR-associated protein 9

CPI Cytoplasmic injection

Ct Chromatin transfer

CRISPR Clustered regularly interspaced short

palindromic repeats

DSB Double-strand break

GOI Gene of interest

HR Homologous recombination

HDR Homology-directed repair

ICSI Intracytoplasmic sperm injection

ICSI-Tr Intracytoplasmic sperm injection-mediated

transgenesis

iPS Induced pluripotent stem (cell)

I-SceI Homing endonuclease

ITR Inverted terminal repeat

KO Knockout

NHEJ Non-homologous end joining

PB piggyBac transposon system

PNI Pronuclear injection

RE Restriction enzyme

RecA Recombinase A

REMI Restriction enzyme-mediated integration

RMCE Recombinase-mediated cassette exchange

RMDI Recombinase-mediated DNA insertion

SB Sleeping Beauty transposon system

SCNT Somatic cell nuclear transfer

sgRNA Single-guide RNA

SMGT Sperm-mediated gene transfer

SV40 Simian virus 40

TALEN Transcription activator-like element nuclease

Tol2 Tol2 transposon system

ZFN Zinc finger nuclease
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Introduction

Transgenic farm animals can serve as excellent models of

human diseases, of biopharming, and of basic research

[1–5]. During the past few years, transgenic farm animals

have gained renewed popularity, because of the availability

of annotated genome depositories (http://www.ensembl.

org; http://www.ncbi.nlm.nih.gov/genome) and because of

the introduction of active methods of transgenesis. Active

transgenesis refers to the introduction of exogenously pro-

vided enzymes or nucleic acids encoding them [2, 6, 7],

which catalyze specific gain-of-function or loss-of-function

genetics in an unprecedented pace. The exogenous enzymes

are only transiently present; however, by carefully selecting

highly active or hyperactive variants [8–11], the desired

genetic modification can be performed in individual cells,

such as the mammalian zygote. Prominent examples are

hyperactive transposon systems, such as Sleeping Beauty

[9, 10], piggyBac [11], as well as designer nucleases,

including zinc finger nucleases (ZFNs), transcription acti-

vator-like element nucleases (TALENs) and RNA-guided

nucleases [1–3, 12]. In addition, Cre recombinase and UC31

integrase found some interest for farm animal transgenesis

[13, 14]. Viral integrases (retrovirus, lentivirus, adeno-

associated virus) apply similar mechanisms; however, viral

transgenesis is already covered by a number of excellent

reviews [15–18], and will not be discussed in this paper.

The repertoire of molecular tools now allows the precise

modification of large mammalian genomes at rapid pace

and has led to a recent boost in this field [2, 19–22].

Brief time course of livestock transgenesis

Since the isolation of class II restriction enzymes (RE), the

hypothesis that simultaneous delivery of a RE in combi-

nation with a transgene would increase the efficiency of

foreign DNA incorporation was postulated. First evidence

for this hypothesis came from a study in which illegitimate

integration events of non-homologous DNA fragments into

yeast genome was several fold enhanced when a standard

RE was included in the transformation mixture [23]. The

restriction enzyme-mediated integration (REMI) was sub-

sequently used in unicellular organisms, fungi [24, 25] and

xenopus [26]. The catalytic activity of RE in cultured

mammalian cells [27, 28] prompted researchers to apply

REMI in combination with pronuclear microinjection of

mouse zygotes [29]. In the mouse model, the rate of

transgenic embryos and live pups by PCR analysis was

doubled (18 vs 9 %) in REMI versus standard pronuclear

injection [29]. However, no information regarding number

of copies, genomic sites of transgene incorporation,

expression and transmission to progeny were given [29].

Further independent replications of this approach are

warranted to unequivocally establish the usefulness of

REMI for animal transgenesis.

It has been postulated that the co-delivery of transgene

and a site-specific RE could increase efficiency of inte-

gration into the host genome by three non-excluding ways:

(1) protecting the ends of the transgene constructs, (2)

inducing DNA breaks, and (3) stimulating endogenous

DNA repair mechanisms [30].

It has been well established that frequently cutting RE

may pose a potential risk of causing genotoxic damage [31,

32]. In fact, introduction of a RE by electroporation into

mammalian cells has been shown to induce genomic

rearrangements such as deletions, duplications, and trans-

locations [28, 33, 34]. To avoid these detrimental effects,

REMI can be performed with rare-cutting meganucleases.

Meganucleases or homing endonucleases (HE) are natu-

rally occurring enzymes that recognize long consensus

sequences spanning 12–40 bp [35]. One of the best char-

acterized is I-SceI from Saccharomyces cerevisiae [36].

Albeit the consensus sequence spans 18 bp, I-SceI seems to

allow some ambiguity in the recognition site. Co-injection

of a transgene flanked by two I-SceI restriction sites with

purified I-SceI into fertilized eggs of Oryzias latipes

(medaka fish) and Xenopus tropicalis resulted in improved

transgenic efficiencies [37, 38]. Preliminary studies asses-

sed I-SceI for transgenesis in livestock [39]. I-SceI-injected

bovine zygotes resulted in an increased proportion of

embryos expressing the reporter gene and a reduced per-

centage of mosaic embryos. In a preliminary report [40],

the I-SceI approach significantly increased ratio of trans-

genic bovine fibroblasts, suggesting that I-SceI can

enhance transgene integration into the cattle genome.

Recently, the first reporter transgenic pigs were generated

by an I-SceI approach; however, no details about copy

numbers, integration sites and transgene silencing have

been reported [41]. Further studies are warranted to reveal

the mechanistic role of I-SceI during mammalian

transgenesis.

The first evidence for sperm-mediated transport of

native simian virus 40 (SV40) DNA into rabbit oocytes

came from a study by Brackett et al. [42]. The SV40 DNA

encoded the complete genome of the virus, and infective

SV40 virions could be recovered by coculture of fertilized

embryos with a permissive kidney cell line from African

green monkey. Eighteen years later Lavitrano et al. [43]

used sperm mixed with plasmid DNA to produce trans-

genic mice. This report of sperm-mediated gene transfer

(SMGT) was soon challenged by an independent study,

which failed to replicate the experiment [44]. Since then,

SMGT has been assessed for transgenesis in several

invertebrates as well as vertebrates [45–47], including

domestic species [48–50]. However, most of the studies in
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mammalian species provided poor evidences for transgene

integration or recombinant protein expression.

In 1999, an alternate technique called intracytoplasmic

sperm injection-mediated transgenesis (ICSI-Tr) was pub-

lished [51]. Developed originally to produce transgenic mice,

the method was later translated to other mammalian species

[52–56] and birds [57]. In this methodology, double-stranded

DNA molecules are complexed with membrane-damaged

(dead) spermatozoa, which were subsequently microinjected

into the cytoplasm of metaphase II oocytes. In this modifi-

cation of SMGT, the physical or chemical disruption of

sperm cell membranes is a prerequisite for successful gene

transfer, which then requires the troublesome ICSI proce-

dure. With ICSI-Tr, high percentages of transgenic offspring

with low incidence of mosaicism have been reported [51].

Despite the success of this technique in terms of transgenic

ratios, it does not escape from the numerous drawbacks of

methodologies that rely on passive integration of transgenes,

such as concatemeric transgene integration, silencing, and

variegated transgene expression [58, 59].

To address some of these concerns, approaches to com-

bine ICSI-Tr with the delivery of ectopic enzymes were

assessed [60]. Initial experiments addressed the effect of a

bacterial recombinase (RecA) [60] and Tn5 transposase [61]

on mouse and livestock transgenesis [62, 63]. Both enzymes

were able to increase the proportion of live transgenic ani-

mals compared to classic pronuclear microinjection and

ICSI-Tr methods [64], but seemed to suffer from sub-opti-

mal activities of the employed enzymes [29, 30].

The need for advanced transgenic methodologies that

permit precise genetic and highly efficient modifications in

preselected DNA sequences has driven research efforts to

develop hyperactive and codon-optimized transposases

(SB, PB, Tol2) [10, 11, 65–68], recombinases (Cre, flip-

pase) [13, 69] and customized programmable nucleases,

like zinc finger nucleases (ZFN), transcription activator-

like element nucleases (TALEN), and RNA-guided nuc-

leases [2, 19, 22, 70], which already initiated a revolution

in the field of animal transgenesis.

Application of transposon systems for genetic

engineering

Transposons or jumping genes belong to a diverse family

of genetic elements that are able to move horizontally in

genomes. Transposons were originally described in maize

[71], but later identified as widespread components in the

genomes of prokaryotes and eukaryotes [72]. Interestingly,

transposable elements comprise high proportions of

eukaryotic genomes (i.e., about 45 % of the human genome

[73]) and the vast majority of them are inactive due to

accumulated deleterious mutations [74].

Transposons are grouped in two distinct categories

according to the mechanism used for mobilization (trans-

position). Class I transposons also called retrotransposons

rely on a RNA intermediate, which is reverse-transcribed in

a new genomic locus. As consequence the number of

genomic units increases by a mechanism that can be

characterized as ‘‘copy and paste’’ [75]. Retrotransposon

mobilization is capable of inducing random mutations at

high frequency, disrupting endogenous genes, and there-

fore it has been held responsible for causing several genetic

disorders [75, 76].

Class II transposons or DNA transposons are mobilized

by a process that operates by a ‘‘cut and paste’’ mechanism

[10, 77]. A transposase specifically recognizes inverted

terminal repeats (ITRs), and precisely removes and relo-

cates the ITR-flanked DNA segment to a different genome

position [10, 77] (Fig. 1).

Fig. 1 General mechanism for transposase-mediated transgene inte-

gration into the host genome. Transposase (TPase) is commonly

synthesized from an expression vector (helper plasmid), mRNA or it is

(rarely) provided as protein. The gene of interest (GOI) flanked by

ITRs is delivered on an independent vector (donor plasmid) (a). TPase

recognizes/binds ITRs flanking the GOI and catalyzes staggered

double-strand breaks at the ends of ITRs (b). The resulting transpo-

son–transposase complex binds at specific target sites in the host

genomic DNA (c), and integrates the ITR-flanked transposon (d–e)
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DNA transposons have been manipulated as useful gene

transfer vectors for germline transgenesis, insertional

mutagenesis and somatic cell transgenesis (gene therapy)

(reviewed in [78]). Bicomponent transgenic systems have

been developed [79] in which the gene of interest (GOI) is

flanked by ITRs, and the transposase is provided in trans as

mRNA or as an expression plasmid (helper plasmid)

(Fig. 1). The excised transposon plus transposase proteins

binds to a target DNA, where the insertion takes place [80].

Most transposases catalyze integration at short consensus

sequences, for example TC1/mariner transposases recog-

nize TA dinucleotides, and PB transposase recognizes

TTAA tetranucleotides (Fig. 1). Through this mechanism,

one monomeric copy of a transposon is integrated in the

genome, leaving the empty backbone of the donor plasmid,

which is eventually degraded (Fig. 1) [77].

Due to the development of hyperactive transposase

variants, two-component transposon system has been

adopted as an improved tool for germline transgenesis in a

broad range of invertebrate and vertebrate species

(reviewed in [81]). Integration efficiencies reported for

various transposon systems (Table 1) rival the high inte-

gration rates of viral-based methods. In contrast to viral

methods, transposon systems are characterized by being

safe and capable of delivering large cargos [68, 82–85]. An

advantage of transposase-mediated transgenesis is the

monomeric transgene integration, making these constructs

less prone to silencing in transposon transgenic animals

[65].

The reported instability of transgene expression from

sequences inserted by non-facilitating mechanisms has

been linked to methylation of CpG-rich vector sequences

[86] that flank the transgene and are co-inserted with the

transgene. An added advantage of transposition transgen-

esis is that each event can be later segregated in the

descendants [65, 79, 87]. Segregation of independently

inserted sequences by transposition would maximize the

overall efficiency of the methodology. The same segrega-

tion process can serve to recycle marker/antibiotic

selection cassettes to comply with current regulatory

guidelines regarding transgenic animals.

Under certain scenarios, intentional removal of the sta-

bly inserted sequences is required to turn on or off

transgene expression, being the conditional transgenesis an

illustrative example of such applications [88]. Since

transposition does not change the ITRs [80], the transposon

is susceptible to be remobilized, and eventually removed, if

the transposase is reintroduced in the system. This can be

exploited to excise unwanted genomic DNA sequences

flanked by transposon ITRs. Proof of principle for this

potentially useful strategy has come from experiments with

induced pluripotent stem (iPS) cells [89, 90]. The recent

development of transposase variants, which are excision

competent, but integration deficient will facilitate the

seamless removal of transposons [91]. Thus, transposon

systems combine high delivery rates of transgenes and the

possibility of seamless transposon removal.

The use of DNA transposons to engineer vertebrate

genomes began in 1997, when an active transposase, SB,

was reconstructed from non-functional transposon

sequences isolated from several salmonid species [79]. It

was demonstrated that the original SB variant can trans-

pose DNA sequences in a broad range of vertebrate species

[65, 92–95] with moderate activity [9, 96–98]. Using an

in vitro evolutionary approach, Mátés et al. [10] finally

came up with a hyperactive version: SB100X. Since then,

this hyperactive transposase has become the gold standard

for transposition approaches in animals.

Successful implementation of SB-mediated integration

for germline transgenesis in small animal models was

followed by translational research aimed to produce

transgenic livestock animals (Table 2). There are two

established methodologies to generate transgenic large

animals, DNA microinjection of zygotes or somatic cell

nuclear transfer (SCNT) (Fig. 2).

Microinjection of pronuclear stage embryos, developed

by Gordon et al. [99], became a routine technique to pro-

duce transgenic mice. Later, pronuclear microinjection

(PNI) was adapted to livestock zygotes [100, 101]. Unlike

mouse oocytes, the porcine and bovine counterparts are

darkened by lipid droplets precluding the visualization of

pronuclei. Therefore, high-speed centrifugation of zygotes

is mandatory to visualize the pronuclei [100, 101]. PNI is a

technically demanding methodology, which has been

characterized by low efficiency in terms of number of

transgenic offerings per injected embryo, and variable and

instable expression of the recombinant protein in the

transgenic animals. The cytoplasmic injection (CPI) of

plasmids into the cytoplasm of one-cell embryos [102]

represents a simplified alternative, making it suitable for

species with opaque zygotes (Fig. 2). Both PNI and the CPI

methods were successfully employed with SB, PB and

Tol2 transposon components for germline transgenesis in

fish [103], frogs [92], mice [10, 104], rats [105] and

domestic pigs [65, 87]. A significant increase in the ratio of

transgenic animals per microinjected zygotes has been

consistently reported. The feasibility and efficiency of

transposon-mediated transgene integration into the pig

genome are supported by the high proportion of born ani-

mals carrying at least one copy of the transgene ([40 %)

[65, 66, 106]. Reported overall efficiency was also very

impressive reaching 5.7 and 6.8 % of transgenic live pigs

per microinjected zygote for PB and SB transposon sys-

tems, respectively [65, 106] (Table 1). Moreover, most

transposon integrations corresponded to monomeric inte-

grations and very low incidence of passive incorporation of
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vector backbone or SB transposase vector sequences

(Table 1). Interestingly, all transgenic pigs stably expres-

sed the transgene in a promoter-dependent manner in SB

transgenic animals and only one case of variegated reporter

expression was observed in the PB transgenic group [106].

This can be interpreted as transposase prefers safe harbor

loci for integration.

Transposition transgenesis is also compatible with

SCNT [87, 107]. SCNT involves the introduction of a

somatic cell into an enucleated metaphase II-arrested

oocyte, followed by activation by chemical or electric

stimulation, and subsequent transfer to synchronized sur-

rogate females for development to term [108]. Since the

first report of the successful cloning of sheep from cultured

cells [109], SCNT has become a major method to produce

transgenic livestock. Advantages of SCNT are: (1) the high

rate of transgenic animals per born animals, which often

reaches 100 % (but low overall efficiency), and (2) the

possibility to characterize the genotype of the somatic cells

before use as nuclear donor [110]. High likelihood of

obtaining a transgenic animal by SCNT with known

genetic makeup would reduce costs associated with pro-

ducing a transgenic animal. This is particularly relevant for

monotocous species with long-generation interval like

cattle, in which husbandry expenditures of surrogate

females negatively impact the sustainability of transgenic

endeavors.

Donor cells can be transfected with linear or circular

DNA transgenes for passive integration or with the com-

ponents of an active system, such as SB or PB (Fig. 2)

Table 1 Transposon transgenesis approaches in livestock

Transposon Species Construct Antibiotic

selection

Overall

efficiency*

Expression

pattern

Unspecific

integrations

Germline

transmission

generations

Method References

Sleeping

Beauty

Rabbit CAGGS-Venus AB-free 1.4 % Ubiquitous No F0, F1, F2 PNI [258]

Pig CAGGS-Venus AB-free 6.8 % Ubiquitous *5 % F0, F1, F2 CPI [65]

Pig floxedUbi-GIN G418 NA Ubiquitous *25 % F0 SCNT (HMC) [13]

Pig DIV PuroDtk

APOBEC3G

Puromycin *3 % Ubiquitous No F0 CT [87]

Pig INV-hITGA2/

NV-hITGB1

G418 NA Keratinocyte ND F0. SCNT (HMC) [259]

Pig HCR-hAAT-

D374Y-PCSk9

Puromycin NA Liver ND F0 SCNT (HMC) [260]

PiggyBac Chicken CAGGS-EGFP-

IRES-Puro

Puromycin NA Ubiquitous ND Prefounder,

F1

PGC transfection

in vitro

[261]

Chicken CMV-EGFP

SV40-Neo

G418 49.6 % Ubiquitous ND Prefounder,

F1, F2

PGC transfection

in vitro

[262]

Chicken IRES-LacZ-

CAGGS-

EGFP-PGK-

Neo

G418 NA Ubiquitous ND Prefounder Embryo

microinjection

and

electroporation

[263]

Pig CMV-Neo-EGFP G418 1.3 % Ubiquitous ND F0 SCNT [111]

Pig CAA–tdTomato AB-free 7.0 % Eye lens 5 % F0 CPI Unpub.

(KW)

Pig CAGGS-EGFP,

SV40-Hygro

none 5.7 % Ubiquitous ND F0 CPI [106]

Tol2 Chicken CAGGS-EGFP-

IRES-Puro

Puromycin NA Ubiquitous ND Prefounder PGC transfection

in vitro

[261]

Chicken CAGGS-EGFP AB-free 1.5 % Ubiquitous ND Prefounder,

F1

PGC transfection

in vivo

[264]

AB-free antibiotic selection marker-free, NA Efficiencies as transgenic offspring per treated embryos are not applicable, ND not determined,

CAGGS cytomegalovirus early enhancer/chicken beta-actin promoter, CMV cytomegalo virus (immediate early) promoter, Ubi ubiquitin C

promoter, SV40 simian virus 40 promoter, DIV diverse promoters were tested, PGK phosphoglycerate kinase promoter, CAA crystallin Aa
promoter, GIN EGFP-IRES-neomycin, APOBEC3G apolipoprotein B mRNA-editing enzyme, INV involucrin promoter, hITGB1 human beta1

integrin, hD374-PCSK9 D374Y gain-of-function mutation in the proprotein convertase subtilisin/kexin type 9, HCR-hAAT hepatocyte control

region and human a1-antitrypsin promoter, hITGA2 human Integrin a2 (CD49b), HMC hand made cloning, PGC primordial germ cell

* Transgenic offspring per treated oocytes or embryos
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[107, 111]. Although donor cells are not considered a lim-

iting resource for SCNT, the use of transposons is

associated with significantly enhanced proportion of stably

transfected cells. Delivery of pmGENIE-3, a helper inde-

pendent PB transposon, to bovine primary fibroblast cells in

culture caused an impressive 42-fold increase in the number

of resistant cell colonies over controls [112]; similar results

were reported for an established immortalized porcine cell

line, as well as in primary porcine cells transfected with the

SB, PB, Tol2 or Passport transposon systems [67, 68, 87,

95]. A disadvantage of the SCNT approach is that an anti-

biotic selection cassette is usually needed for isolation of

transgenic cell clones and therefore, it is carried over into

SCNT transgenic animals. This drawback, which is strongly

discouraged by current regulatory guidelines, can be over-

come if the antibiotic gene is supplied on a separate vector

and consequently is genomically integrated independently

from the GOI. Under this circumstance, the antibiotic

selection cassette may be removed by segregation of the

GOI from unwanted sequences by an additional round of

breeding [87]. Alternatively, unwanted sequences can be

removed by Cre or Flp recombinase systems as addressed in

depth in the next section.

Clean and stable genomic insertion events mediated by

transposases are the most striking features of these systems,

making transposons first choice when gene addition for

gain of function or loss of function by expression of a

dominant negative allele or RNA interference is sought.

Fig. 2 Genome engineering via

in vivo and in vitro approaches.

Injection of nucleic acids and/or

protein into the pronucleus of a

zygote (a) or into the cytoplasm

(b). Genetic modification in

primary cells, which are

subsequently used in SCNT (c)

Table 2 Recombinase superfamily divisions (adapted from [126])

Superfamily Family Subdivisions Recognition sites Activity Representative

members

Site-specific recombinases Tyrosine recombinases Bidirectional Identical Reversible Cre

Inversion, excision and integration FLP

R

Unidirectional Non-identical Irreversible Lambda

Inversion, excision and integration HK101

pSAM2

Serine recombinases Small Identical Irreversible Beta-six

Excision CinH

ParA

Large Non-identical Irreversible Bxb1

Inversion, excision and integration UC31

TP901
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The availability of different transposon systems with dis-

tinct characteristics regarding their recognition sites and/or

biased genome distribution confer versatility to the system

by offering the possibility of choosing a specific transposon

according to the application or particular goal. For

instance, PB transposase has a slight tendency to land in or

close to transcriptionally active regions of the chromatin

[113], so it may be more appropriate for insertional

mutagenesis studies. On the other hand, SB transposase

shows no predilection for transcription units, it rather

prefers intergenic chromosomal regions [114, 115], which

makes it the system of choice for safe delivery of trans-

genes. As new transposable elements are discovered and

recombinant transposases with optimum enzymatic activity

in the mammalian environment and improved targeting

activity are developed, it is expected that transposon-based

systems will gain ground in the field of large animal

transgenesis.

Application of site-specific recombinases

Site-specific recombinase systems occur naturally in pro-

karyotes and fungi, where they perform several biological

functions such as bacterial phase variation, plasmid copy

number regulation, bacteriophage integration/excision

from bacterial genome and amplification of yeast plasmids

[116–118]. Site-specific recombinases have in common the

capacity to bring together two DNA partners, catalyze

double-strand cleavage at specific sites, and rejoin reci-

procal strands (Fig. 3).

Importantly, site-specific recombination can proceed in

heterologous environments, opening new avenues to engi-

neer genomes in a predictable manner [119, 120],

overcoming many problems associated with traditional

methods, namely silencing or unpredictable expression of

transgenes [121, 122] and unwanted remnant sequences left

behind after genome manipulations.

Two basic elements comprise a site-specific recombi-

nase system: two short consensus sequences and an enzyme

that specifically recognizes those motifs and mediates

strand exchange between the two DNA partner molecules

[123, 124]. This process may lead to insertion, inversion,

deletion or translocation of a DNA fragment in a reversible

or irreversible manner [123, 125].

Members of the recombinase superfamily can be

grouped according to the active amino acid present within

the catalytic site in tyrosine or serine recombinases [126].

The mechanism of strand breakage, exchange and reunion

markedly differs for each family (for details see [123]).

The former group is further classified according to the

mechanism of action in bidirectional or unidirectional

[126] (Table 2).

From the tyrosine recombinase family, the Cre-loxP and

Flp-FRT systems are by far the most extensively charac-

terized members [127]. The minimum requirements for the

recombination process to take place are two specific 34

base pair recognition sites and the recombinase [123]. In

addition, based on the length of the recognition sites

(34 bp) the probability that an identical sequence occurs by

chance is extremely low (p * 10-21), and it is conve-

niently short enough as to be normally neutral toward gene

expression when positioned in the genome.

Each loxP or FRT site comprises two inverted 13-bp

symmetry elements, which serve as recombinase binding

motif, flanking an 8-bp non-palindromic core element

where strand recombination is catalyzed. The core nucle-

otide sequence asymmetry gives directionality to the

reaction and therefore determines the type of modification

[128]. Recombination of two identical target sites located

on a circular and a linear DNA molecule each one will

cause integration into the linear molecule. Inverted target

sites in the same linear molecule dictates inversion of the

DNA between recognition target sites (Fig. 3). If each

identical target site is located on different linear DNA

molecules, Cre or Flp recombination causes mutual

exchange of sequences distal to the two recognition sites.

Interestingly, it is known that recombination reaction

occurs with the same efficiency regardless of the DNA

topology (supercoiled or relaxed), and circular or linear

molecules [128]. This versatility has positioned these

members of tyrosine recombinase family at the vanguard of

tools for genetic studies as well as biotechnological

developments [125].

Based on the general properties of site-specific recom-

binase systems, different strategies for genome engineering

have been developed to tailor diverse objectives, initially

applied to classic model mammals and later to large

domestic species. Early reports on the successful use of Flp

and Cre recombinase systems for mammalian genome

modifications employed recombinase-mediated DNA

insertion (RMDI) [119, 120]. RMDI relies on recombina-

tion between two identical target sites, one inserted in a

genomic address and the other one provided in a donor

plasmid carrying the sequence to be inserted [129, 130]

(Fig. 3). Upon recombination, the newly integrated DNA

sequence is flanked by tandem-oriented target sites;

therefore, it is prone to be excised by another round of

recombination, explaining the low efficiency of this

transgenic approach [119, 120]. One alternative is the use

of heteromeric target sites, which recombine into inactive

double mutant site and wild-type site, thus precluding

another round of recombination [131–134].

Subsequently, an alternative methodology that addres-

sed some pitfalls of RMDI, known as recombinase-

mediated cassette exchange (RMCE), was introduced
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[135]. RMCE requires the host genome being previously

tagged with compatible docking sites [132–134]. Once the

appropriate tagged cell line is obtained and characterized, a

site-specific recombinase mediates the exchange of the

genomic-tagged cassette with the sequence of interest

(Fig. 3). Recombinase may be provided as protein [136,

137], mRNA [138] or most commonly as an expression

plasmid [129]. The GOI is delivered in a donor vector

flanked by target sites that are homologous to the ones that

were previously inserted in the genome. In summary,

RMCE offers the precise engineering of animal genomes.

Inclusion of a positive selectable marker is normally

required to enrich cell populations in which the desire

transgenic event has occurred. However, retention of strong

promoter and enhancer sequences associated with the

selectable marker may have unpredictable effects on

expression of linked genes [139–142], even those located at

long distances from the inserted cassette [143]. From the

perspective of the future introduction of transgenic animal

products or derivatives into the food chain, production of

selectable marker-free animals will be a mandatory con-

dition to comply with regulatory agency guidelines raising

concern regarding the possibility that antibiotic resistance

genes being transferred to intestinal or environmental

bacteria [144]. Therefore, deletion of selectable genes after

in vitro selection of clonal cell lines is of upmost impor-

tance for both research and commercial application of

transgenesis.

Removal of selectable marker genes introduced as part

of the transgenic strategy can be accomplished by homol-

ogous recombination (HR), using the so-called ‘‘hit-and-

run’’ or ‘‘tag-and-exchange’’ approaches [145–147].

Although successful, these methods subject the cell line to

a second cycle of selection, which is not only time con-

suming but also may compromise the proliferative capacity

of primary cell cultures. Therefore, the use of floxed or

flirted selection cassettes provides the opportunity of

marker deletion or replacement by site-specific recombi-

nation. Several reports have provided proof of concept for

the potential of site-specific recombination technology for

livestock genome engineering [65, 148–150]. Generation

of marker-free cattle [14, 151] and goats [152] originated

from cells that were selected and subsequently subjected to

recombinase-mediated marker removal has been docu-

mented (Table 3).

The potential of site-specific recombinase technology is

not limited to deletion of resistance marker sequences from

the manipulated genome. In mice, strategies that combine

marker gene removal with complex targeted sequence

modifications have been developed [125]. These include

large deletions [153], non-selectable subtle mutations

[154], large-scale chromosomal rearrangements (translo-

cation, duplication, inversion, deletion, or chromosomal

gain or loss) [155] and swapping gene endogenous

sequences for heterologous sequences [156]. Another

application of site-specific recombinases that has

Fig. 3 Recombination reactions catalyzed by Cre and Flp. The

outcome of the recombination reaction is determined by the relative

orientation of target sites. Inverted target sites in the same linear

molecule dictate inversion of intervening DNA (a). Recombination

between a target site located in a genomic address and an identical

target site present in a circular DNA molecule results in insertion of

circular DNA (b; thin arrow). The intramolecular recombination

(thick arrow) is favored over the intermolecular reaction (thin arrow)

(b). RMCE involves recombinase-mediated insertion and excision

reactions, which lead to mutual exchange of the DNA between target

sites (c). The inclusion of mutated target sites makes the recombi-

nation reaction irreversible
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revolutionized mouse genetic studies is the so-called con-

ditional gene targeting. With the conditional gene targeting

methodology the specific genetic modification is triggered

in a specific cell type (tissue-specific) [157] or at a par-

ticular stage of development (temporal-specific) [158,

159].

Applying the basic principles of site-specific recombi-

nation and conditional gene targeting system, a myriad of

novel strategies for mouse genomic manipulation have

been developed, which are revolutionizing genetic research

in the post-genomic era (reviewed in [159]). Equivalent

conditional methods for genetic engineering of livestock

are not yet available. Albeit, some steps toward establish-

ing conditional gene targeting methods in large animals,

like generation of pigs with Cre-induced expression [160,

161] have been undertaken, the complete conditional sys-

tem has not been validated in domestic species.

Further flexibility to site-specific recombination appli-

cations has come with the introduction of the large family

of serine recombinases. For example, the integrase UC31

[162, 163] induces recombination between two different

target sites known as attP (39 bp minimal size) and attB

(43 bp minimum size) [162]. Upon recombination, it

originates two sequence hybrid sites, attL and attR, making

the reaction unidirectional [164]. Depending on the con-

figuration, UC31 can induce inversion, excision or

integration of DNA sequences in heterologous genomes

[165, 166]. For UC31-based strategies, an attP-tagged

genome has to be generated by random integration or HR.

Once the genomic single-copy tagging is achieved, unidi-

rectional recombination between the genomic attP site and

a vector attB site is catalyzed by UC31 [163].

An alternative approach to accomplish chromosomal

targeting with UC31 integrase involves recombination at

cryptic endogenous genomic recognition sites, also known

as pseudo-attP sites. Recombination occurs at these

pseudo-sites, because of their similarity in nucleotide

sequence with the wild-type attP [167]. Pseudo-attP sites

have been reported to be present not only in invertebrates

[168, 169], lower vertebrates [170], but also in mouse

[163], human [167, 171], cattle [172, 173], sheep [174],

goat [175] and pig [176] genomes. Accumulating experi-

mental evidence indicates that these pseudo-target sites

reside in genomic locations that conform to the definition

of ‘‘safe harbors’’ [177, 178]. Further improvement to this

transgenic method was achieved by the introduction of

evolved and mutated UC31 integrases, showing enhanced

sequence specificity and integration frequency at preinte-

grated and pseudo-attP sites [179, 180].

Although UC31 has been the integrase that has received

most attention, new members of the large serine subfamily

[181] are constantly discovered. Such novel recombinase

systems include: R4 [182], TP901-1 [183, 184], and Bxb1

[181, 185]. The wide spectrum of site-specific recombinases

Table 3 Recombinase and integrase approaches in livestock

Enzyme Species Recombination

site

Targeted

modification

Selection Recombinase

activity

Comments Method Germline

transmission,

generation

References

Cre Goat LoxP Deletion of Neo

and tk

G418 Excision SCNT Yes [152]

Pig LoxP/loxP257 Venus[mCherry FACS RMCE SCNT Yes, F1 [65]

Pig LoxP/LoxP? GFP[PSEN1M146I G418/

Puromycin

RMCE SCNT Yes [13]

Cattle LoxP Deletion of Neo FACS Excision SCNT Preimplantation

embryos

[151]

Flp Goat FRT Puromycin[GFP Puromycin/

hygromycin

Gene

replacement

SCNT 35-day fetus [150]

UC31/Cre Cattle AttB-pseudo-

attP/loxP

Artificial locus

integration/

deletion

of Neo and DsRed

G418/FACS Excision Ambiguity SCNT ND [14]

UC31/Cre/

Dre

Cattle AttB-pseudo-

attP/loxP/

rox

Deletion of

Neo, tk,

EGFP and

plasmid

backbone

G418/GCV/

FACS

Excision SCNT Preimplantation

embryos

[149]

RMCE recombinase-mediated cassette exchange, ND not determined, FACS fluorescence-activated cell sorting, GCV ganciclovir, PSEN1M146I

mutated presenilin-1 gene (Alzheimer’s disease-causing gene), Neo neomycin gene, tk thymidine kinase
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identified so far offers a set of tools to tailor controlled and

sophisticated genome modifications for basic and applied

research endeavors.

Application designer nucleases

Designer nucleases, also known as programmable nuc-

leases, are regarded as a new generation of transgenic tools

characterized by being efficient, customizable and capable

of precise targeted genome modifications for a broad

spectrum of applications [186–191]. Programmable nuc-

leases include ZFNs, TALENs and a RNA-guided genome

modification system termed CRISPR/Cas9 [192]. The

CRISPR/Cas9 has recently emerged as a powerful and

facile alternative to ZFNs and TALENs for inducing tar-

geted genetic alterations in cells and embryos [2, 20, 22].

Generically, these chimeric proteins harbor a domain

(protein or RNA) that recognizes and interacts with a

specific genomic sequence and an associated catalytic

module that induces site-specific DNA single- or double-

strand breaks (DSBs). Enzyme-catalyzed DNA cleavage in

turn activates host repair mechanisms through error-prone

non-homologous end joining (NHEJ) and/or homology-

directed repair (HDR) [188, 189, 193], which are ulti-

mately responsible for the targeted genome modification.

Depending on the system configuration, programmable

nucleases can predictably alter nucleotide sequences to

achieve gene knockout, gene insertion, gene correction or

point mutations at predefined endogenous loci [189–191].

Moreover, long-range chromosomal rearrangements,

including deletions, inversions and translocations can be

accomplished by nuclease-induced DSBs.

The introduction of SCNT opened the possibility of

conventional HR-based gene targeting in somatic cells of

livestock [194, 195], an approach that has been inapplica-

ble before because of the lack of germline competent stem

cells in these species [196–199]. However, the extremely

low rate of HR in somatic cells (10- to 100-fold lower than

that in murine ES cells) [200–202], along with the inherent

inefficiency of the SCNT technique [203] made this

approach cumbersome and tedious. In consequence, only

few loci were knocked out by conventional HR in livestock

species since the establishment of SCNT in 1997.

Designer nucleases rapidly changed the scene in live-

stock transgenesis, evidenced by a burst in the number of

published reports since their recent introduction (summa-

rized in Table 4). The most appealing features of

programmable nucleases are that their DNA-binding

domain can be engineered to target almost any predefined

DNA sequence in a particular genome [12]. During NHEJ,

the break ends are ligated and small base pair deletions or

insertions (indels) are commonly introduced at the site of

breakage. Indels in coding exons frequently result in

reading frameshift mutations and inactivation of the allele.

The other cell pathway triggered by specific nuclease

cleavage of the genome is HDR. The likelihood of a HR

increases several orders of magnitude in the vicinity of a

DSB [204, 205]. Therefore designer nuclease-mediated

DNA scission will favor precise modification of the target

sequence by HR between the endogenous sequence and the

provided donor template [206, 207]. Genome editing

through HR is highly versatile allowing for targeted

introduction of large genetic segments to precise single-

base mutations.

Such improved efficiencies associated with programmed

nucleases make it feasible to target both alleles of a gene

simultaneously, to perform one-step multiplex gene tar-

geting and to omit selectable markers [19, 186]. With this

emerging transgenic technology it is now possible to

achieve biallelic targeting in livestock [187, 208]. Perhaps

one of the major advantages of engineered nuclease-med-

iated gene editing for commercial purposes is that

beneficial traits or mutations can be introduced in livestock

genomes without inserting surplus genetic material, which

is one of the concerns associated with genetically modified

organisms [144].

The first designer nuclease platform to be used in live-

stock was the ZFN [186, 209–211], followed by TALEN

[187, 190, 212] and more recently by CRISPR/Cas9 [19,

213]. ZFNs utilize zinc finger motifs tethered to a non-

specific nuclease (Fok1) to bind chromosomal DNA and

perform a double cut [214]. This system is comprised of an

array of zinc fingers (which recognizes 12 nucleotides in

the target sequence; Fig. 4). As FokI nuclease requires

dimerization to cleave DNA, two ZFN monomers are

necessary to interact with specific sequences in opposite

DNA strands to form an active nuclease dimer. This con-

figuration doubles the length of the recognition site, which

substantially increases the specificity of ZFNs. Despite the

length of the recognition site, off-target cleavages may still

occur [215, 216].

The first report on ZFN-mediated gene knockout in

porcine somatic cells came from the Nagashima laboratory

in 2010 [217], followed by the ZFN-mediated knockout of

a single-copy GFP transgene in cloned pigs [218]. These

initial studies were rapidly extended by the ZFN-medi-

ated mono-allelic disruption of an endogenous gene

(PPARc) in cloned piglets [210] and the biallelic disruption

of the a1,3-galactosyltransferase (GGTA1) gene in pig

fibroblasts, subsequently employed in SCNT to produce

knockout pigs (Table 4; [186, 219]). In cattle, ZFN-medi-

ated disruption of the beta-lactoglobulin (BLG) gene in

bovine fibroblasts and production of cloned cows have

been recently reported (Table 4, [211]). Variants of ZFNs

are the zinc finger nickases (ZFNickases), which induce
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site-specific single-strand breaks in genomic DNA. This

modified version of ZFNs can be engineered by mutating

the FokI catalytic domain in one of the ZFN monomers

[220–222]. ZFNickases, and other programmable nucleases

with single-strain cleavage capability, are better suited for

situations in which HDR-based genome edition is sought.

Single-strand break stimulates resolution by HDR; there-

fore the faulty prone NHEJ pathway is avoided [220, 221].

A ZFNickase was used to stimulate gene addition (lyso-

staphin) by HDR into the endogenous beta-casein (CSN2)

locus of bovine fibroblasts. Treated cells were subsequently

used to generate cloned cows that produced the antimi-

crobial transgene product in milk [223].

Although ZFNs have been exceptionally effective for

knocking out genes in farm animal genomes [186], the lack

of proprietary algorithms to predict active ZFN molecules

has restricted their use [190, 224].

TALENs are fusion proteins that comprise an assembled

DNA-targeting domain coupled to a DNA cleavage motif.

The DNA-binding domain is derived from proteins secre-

ted by a plant pathogen belonging to the genus

Xanthomonas. The DNA-binding domain is tethered to a

catalytic domain of the non-specific restriction endonu-

clease FokI. DNA recognition and binding is mediated by

tandem repeats of typically 34 amino acids, except for the

last module, called half-repeat, which comprises 20 amino

acids [212]. Thirty-two of the amino acids that comprise

the repeat are highly conserved, whereas variable residues

at positions 12 and 13, repeat variable di-residues (RVDs),

dictate the binding specificity to a single nucleotide [225,

226]. Based on this code, arrays of tandem repeats can be

assembled to target almost any DNA sequence of choice.

Similar to ZFNs, TALEN-mediated cleavage depends on

the dimerization of a pair of TALEN monomers binding to

opposite DNA strands, which activates the FokI nuclease

domains. Typical a TALEN monomer contains up to

twenty tandem repeats, such that upon dimerization a 40-bp

target sequence is recognized. Despite this theoretical high

specificity, there exists evidence that TALEN can bind to

degenerate sequences, and induce DNA cleavage at off-

target sites [227, 228].

Several particular features of TALENs make them easier

to develop and use than ZFNs [229]. Tan et al. [19]

assessed the potential of TALENs (and CRISPR/Cas9

nucleases, see below) to edit the genome of many com-

mercially important species. The authors demonstrated that

TALENs can efficiently target a variety of alleles involved

in food production, reproductive efficiency and external

Fig. 4 Schematic representation of components of ZFNs, TALENs

and CRISPR/Cas9 systems. a Structure of ZFNs. A ZFN enzyme

comprise a DNA-binding domain formed by zinc finger modules

(ZF), each recognizing a unique 3-base pair sequence on the target

DNA, and a DNA-cleaving domain composed of FokI. Two ZFN are

designed to recognize DNA sequences that flank the desired cleavage

site. In the example, each ZFN comprises four ZF which recognize

12 bp on opposite strands. Upon interaction of ZF with the target site,

a FokI dimer catalyzes a targeted double-strand break. b Model of

TALEN system. Targeted DNA cleavage is achieved by a pair of

TALEN molecules. Each TALEN is comprised by a TALE and a FokI

catalytic domain. TALE-targeting domain comprise a variable

number of tandem arrays of repeats of typically 34 amino acids each

(shown as colored boxes in b). The RVD is responsible for the repeat

specificity to associate with a particular base pair on the target DNA.

c Model of CRISPR/Cas9. Cas9 nuclease is directed to a specific

sequence in the genomic DNA by the first 20 nucleotides of the

sgRNA, which hybridizes with the target genomic DNA, which has to

be followed by a mandatory protospacer adjacent motif (PAM; 50-
NGG for Cas9 system derived from Streptococcus pyogenes). Cas9

catalyzes a DSB upstream of the PAM (red arrowheads)
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traits (hornlessness) [230] in the genomes from different

livestock species. In the same study, TALENs were used to

induce NHEJ- or HDR-directed edits at specific loci to

mimic mutations that are known to be associated with

genetic diseases in humans. From the edited cells, live pigs

carrying the induced mutations were generated by chro-

matin transfer (CT) and these animals promise to become

valuable large mammalian models in translational medi-

cine. The targeting efficiency ranged from approximately

10 % for single-nucleotide polymorphisms to [50 % for

some larger alterations. According to recent data, the TA-

LEN system is also functional and efficient in the

preimplantation embryo context, since microinjection of

TALEN mRNA directed to the GDF-8 gene [231, 232] into

bovine and ovine zygotes resulted in correctly edited cattle

and sheep [233]. In light of these encouraging findings, it is

conceivable that genome edition by designer nucleases will

become a practical strategy to introduce or suppress genetic

characteristics in livestock populations to accelerate the

genetic progress in harmony with classic breeding

strategies.

The RNA-guided CRISPR/Cas9 system [234, 235] was

recently discovered in bacteria and archaea, in which the

RNA-guided foreign-DNA cleavage process provides

adaptive immunity against invading phages or plasmids

[236, 237]. The CRISPR/Cas9 sequence specificity is

determined by Watson–Crick base complementarity with a

single-guide RNA (sgRNA). The induced DNA damage is

repaired by either HR or error-prone NHEJ that normally

causes indels at the cleavage site. Design and generation of

the synthetic sgRNA is markedly easier compared with the

cumbersome protein engineering required to produce ZFNs

and TALENs. By changing the nucleotide sequence of the

sgRNA it is possible to target almost any site in the gen-

ome. The activity of the CRISPR/Cas9 system allows the

implementation of high-throughput methodologies and

multiplex editing of genomic loci in preimplantation

mammalian embryos [238].

From 2013, the CRISPR/Cas9 system bursts into the

genome engineering scenario through several independent

reports providing encouraging evidence for simplicity and

effectiveness of this system to engineer large animal gen-

omes [2, 239–243]. Tan et al. [19] were the first researchers

to apply CRISPR/Cas9 technology to target endogenous

genes (P65 and APC) in primary pig cells in culture.

Despite the demonstration that CRSPR/Cas9 works in

livestock cells, recovery of CRISPR mutant cell clones was

much lower than that with TALENs, suggesting that

CRISPR/Cas9 system needs further optimization to achieve

targeting efficiencies comparable to TALENs. Follow-up

studies have demonstrated that CRISPR/Cas9 genome-

edited cells can support development to term when used as

nuclear donor in SCNT in pigs [244–246] and goats [247].

An appealing and straightforward alternative to SCNT to

generate genome-edited animals is the injection of the

CRISPR/Cas9 components in livestock one-cell embryos

produced in vivo or in vitro. Using the CPI approach, Hai

et al. [248] managed to obtain live pigs with mono- and

biallelic mutations in the vWF gene to generate a relevant

large animal model for hemophilia. The reported efficiency

is quite impressive for a zygote microinjection-based

method; with 10 out of 16 born piglets (*63 %) carrying

one or both vWF alleles mutated. Another study with sheep

zygotes microinjected with sgRNA/Cas9 mRNA [249]

produced modest results in terms of the number of mutated

offspring to born animals (2/32); however, no off-target

mutations were detected. A recurrent problem of zygote

microinjections is the high incidence of mosaic animals

[227, 246, 249, 250], which is believed to originate when

the nuclease remains active beyond the first embryo

cleavage. Another potential problem associated with the

use CRISPR/Cas9 editing system is the introduction of

undesired mutations at off-target genomic sites [251, 252].

Based on the relatively short CRISPR/Cas9 recognition site

(20 nt) and the known mismatch tolerance, especially at the

50 region of the target sequence, occurrence of off-target

mutations should not be disregarded [253]. A strategy to

minimize off-target activity is to use a mutated version of

Cas9 (D10A mutation [192, 254]) with nickase activity.

DNA single-strand break stimulates HDR with negligible

NHEJ-mediated mutations. Moreover, when required, a

DSB can be simultaneously induced at the target site using

a pair of appropriately spaced and oriented sgRNAs along

with Cas9 nickase, that enhances genome editing speci-

ficity [255]. More research is warranted to ascertain if off-

target DNA cleavage rates induced by CRISPR/Cas9 are a

concern in the context of genome edition in large animals.

Conclusions

Transgenic methodologies are constantly evolving, pro-

viding researchers and biotechnologists with advanced

tools for efficient and controlled genome modifications.

Initial transgenic interventions in livestock were confined

to simple gene insertion at random places in the genome.

Thanks to constant advances in the area of genetic engi-

neering, today it is possible to achieve precise genome

modifications by inserting, replacing or removing prede-

fined DNA sequences. In this regard, introduction of

methodologies that enable enzymatic manipulation of

animal genomes have opened new possibilities to create

genetically modified animals for agriculture or biomedi-

cine. Although the transgenic toolbox for large animals is

currently equipped with powerful methodologies there are

many aspects to improve in the associated reproductive
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technologies required to generate a transgenic animal. Low

success rates of SCNT and zygote microinjection, two of

the most commonly used methods to generate transgenic

large animals, still represent a bottleneck. Efficiency of

SCNT has remained low in spite of considerable efforts

invested in developing more successful protocols, while

embryo microinjection has been invariably associated with

undesired chimerism. Thus, further improvements in sur-

passing the limitations of these techniques may impact

favorably on the overall efficiency of transgenic methods.

Transposon-based systems are a straightforward alter-

native to achieve transgene integrations with persistent

transgene expression and germline transmission. These

characteristics along with increased transgenic efficiencies

will certainly reduce costs and contribute to animal welfare

by reducing the number of animal required to produce the

desired genotype and by avoiding unwanted phenotypes.

Transposon-based methods alone or combined with site-

directed recombinases will simplify the production of

marker-free animals to comply with regulatory guidelines

for animal transgenesis.

The ground-breaking feature of designer nucleases is

that they brought the possibility of purposely directing the

genomic modification to a specific and unique chromo-

somal locus. Among the members of the engineered

nucleases, RNA-guided nucleases are the ones that promise

to change the paradigm of genome editing in large animals.

The CRISPR/Cas9 system combines facile design and

construction with high specificity, effectivity and real

possibility of multiplex gene edition. However, there is still

room for improvement in particular areas like minimizing

off-target effects of designer nucleases, enhancement of

nuclease activity, and development of methods to enrich

cell population with targeted genome edits. Another avenue

to improve engineered nuclease-based methods is through

the genetic or pharmacologic manipulation of the DSB

repair pathway. For instance, for many applications,

enhancement of low-frequency HDR over the NHEJ would

be convenient.

The launching of high-throughput genome sequencing at

accessible prices will make it possible to improve the

quality of current genome data in farm animals and it will

become a valuable tool to verify transgenic lines at genome

scale. It is anticipated that new generation transgenic tools

in concert with updated genomic data will facilitate the

production of large animal models for translational medi-

cine. These large animal models will be instrumental for

understanding disease pathogenesis and development of

better therapeutic approaches of severe human pathologic

conditions.

It is foreseen that similar opportunities will arise in

agricultural applications of transgenic livestock. Genome

sequencing and phenotyping will provide unprecedented

opportunities for the identification of molecular markers

that affect livestock performance, which can be readily

addressed and manipulated at will by site-directed nuc-

leases to improve productive traits. Experimental evidence

has provided proof of principle that non-meiotic intro-

gression of natural or novel genetic variants in livestock

genomes is attainable using designer nucleases. Numerous

reports cited in this review strongly indicate that designer

nucleases have earned enough merit as genome engineer-

ing tools as to be considered in the near future in selection

programs to advance genetic improvement when selective

breeding is impracticable or inefficient. Importantly, the

toolbox for genome engineering is still expanding, as

new enzymatic systems are constantly discovered. One

recent example are the bacterial casposons, which seem to

combine the features of CRISPR/Cas and transposons [256,

257], suggesting that more sophisticated options for gen-

ome engineering will become feasible in the near feature.
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74. Muñoz-López M, Garcı́a-Pérez JL (2010) DNA transposons:

nature and applications in genomics. Curr Genomics

11(2):115–128. doi:10.2174/138920210790886871

75. Ostertag EM, Kazazian HH (2001) Biology of mammalian L1

retrotransposons. Annu Rev Genet 35:501–538. doi:10.1146/

annurev.genet.35.102401.091032

76. Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions

created upon LINE-1 retrotransposition. Cell 110(3):315–325

77. Plasterk RH, Izsvák Z, Ivics Z (1999) Resident aliens: the Tc1/

mariner superfamily of transposable elements. Trends Genet

15(8):326–332

78. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak

Z (2009) Transposon-mediated genome manipulation in verte-

brates. Nat Methods 6(6):415–422. doi:10.1038/nmeth.1332

79. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular

reconstruction of Sleeping Beauty, a Tc1-like transposon from

fish, and its transposition in human cells. Cell 91(4):501–510

80. van Luenen HG, Colloms SD, Plasterk RH (1994) The mecha-

nism of transposition of Tc3 in C. elegans. Cell 79(2):293–301

81. Mátés L, Izsvák Z, Ivics Z (2007) Technology transfer from

worms and flies to vertebrates: transposition-based genome

manipulations and their future perspectives. Genome Biol

8(Suppl 1):S1. doi:10.1186/gb-2007-8-s1-s1

82. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient

transposition of the piggyBac (PB) transposon in mammalian

cells and mice. Cell 122(3):473–483. doi:10.1016/j.cell.2005.07.

013

83. Horie K, Yusa K, Yae K, Odajima J, Fischer SE, Keng VW,

Hayakawa T, Mizuno S, Kondoh G, Ijiri T, Matsuda Y, Plasterk

RH, Takeda J (2003) Characterization of Sleeping Beauty

transposition and its application to genetic screening in mice.

Mol Cell Biol 23(24):9189–9207

84. Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A,

Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor

RS, Ekker SC (2006) Harnessing a high cargo-capacity trans-

poson for genetic applications in vertebrates. PLoS Genet

2(11):e169. doi:10.1371/journal.pgen.0020169

85. Rostovskaya M, Naumann R, Fu J, Obst M, Mueller D, Stewart

AF, Anastassiadis K (2013) Transposon mediated BAC trans-

genesis via pronuclear injection of mouse zygotes. Genesis

51(2):135–141. doi:10.1002/dvg.22362

86. Curradi M, Izzo A, Badaracco G, Landsberger N (2002)

Molecular mechanisms of gene silencing mediated by DNA

methylation. Mol Cell Biol 22(9):3157–3173

87. Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR,

Hackett PB, Clark KJ, Fahrenkrug SC (2011) Strategies for

selection marker-free swine transgenesis using the sleeping

beauty transposon system. Transgenic Res 20(5):1125–1137.

doi:10.1007/s11248-010-9481-7

88. Ryding AD, Sharp MG, Mullins JJ (2001) Conditional trans-

genic technologies. J Endocrinol 171(1):1–14
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