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Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata, Paseo del Bosque,
1900 La Plata, Argentina
e-mail: giordano@fcaglp.unlp.edu.ar

Received 12 August 2003 / Accepted 7 April 2004

Abstract. In this paper we discuss the relevance of diffusive processes in multidimensional Hamiltonian systems. By means of
a rather simple model, we present evidence that for moderate-to-strong chaotic systems the stochastic motion remains confined
to disjoint domains on the energy surface, at least for mild motion times. We show that only for extremely large timescales and
for rather large perturbations, does the chaotic component appear almost fully connected through the relics of the resonance
structure. The discussion whether diffusion over the energy surface could actually occur in asteroidal or galaxy dynamics is
also included.
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1. Introduction

In order to build up an equilibrium model for a galaxy that is
assumed to be represented by a smooth gravitational field it is
necessary to know beforehand its global dynamics. It seems
likely that any realistic model should exhibit a divided phase
space, that is, the motion would take place either in a stable,
regular component or in one or more unstable, chaotic compo-
nents. In 3D systems displaying such a dynamics, the existence
of three, in general local, invariants, allows the presence of in-
variant tori where regular, quasi-periodic or resonant motion
takes place. The disruption of these local invariants, mainly due
to resonance interactions, leads to the appearance of a chaotic
component.

However, the first attempts to investigate these matters in
astrophysical literature assumed that for dynamical systems
with more than 2 degrees of freedom the chaotic component
is fully connected. In fairly recent studies, such as Merritt &
Valluri (1996) and Merritt & Fridman (1996), the authors study
whether this full connection of the chaotic component may oc-
cur in realistic physical times. If such were the case, it would
imply that the orbit of a star within the chaotic domain would
explore the whole region, which, in general, would comprise a
large fraction of the energy surface. As a consequence the dis-
tribution function on the chaotic component would depend only
on the energy (see Merritt 1999 for a thorough discussion).

Here, by means of a very simple model, we present numeri-
cal evidence that for moderate-to-strong chaotic systems diffu-
sion does not occur over the whole chaotic component and only
when the latter fills almost all the energy surface may diffusion
become significant but in extremely long times. As far as we
know, this is one of the first efforts showing diffusive processes

in phase space of multidimensional systems. With this aim we
have chosen a rather simple Hamiltonian system in order to
have a complete knowledge of the local and global dynamics
and the transition to chaos and particularly to be able to study
in detail the motion in the resonance intersections.

In a forthcoming paper we will present a detailed investiga-
tion of these matters but we will now deal with a fairly realistic
model, namely, a perfect ellipsoid perturbed by Denhen’s law.

2. The resonance structure for a 3D toy model

As is well known, the knowledge of the resonance struc-
ture is of actual relevance when dealing with near-integrable
Hamiltonian systems.

In the present effort, we will be concerned with the per-
turbed uncoupled quartic oscillator

H̃(p, q) =
p2

2
+

1
4

(x4 + y4 + z4) + εx2(y + z). (1)

The full dynamics of this 3D system has been investigated
by Cincotta & Giordano (2000) and Cincotta et al. (2003)
by means of the Mean Exponential Growth factor of Nearby
Orbits (MEGNO) (for a detailed formulation of this technique
see Cincotta et al. 2003 and Cincotta & Simó 2000; a brief de-
scription is given in Appendix A). The advantage of this toy
model is that it can be easily written in terms of action vari-
ables and that the coordinates admit of a simple Fourier ex-
pansion. Indeed, in terms of the unperturbed action-angle vari-
ables, (I1, I2, I3; θ1, θ2, θ3), the Hamiltonian (1) can be recast as

H(I, θ) = H0(I) + εV(I, θ), (2)

where H0 is given by

H0(I) = A
(
I4/3
1 + I4/3

2 + I4/3
3

)
, (3)
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with A = (3β/2
√

2)4/3, where β = π/2K(1/
√

2), K(k) denoting
the complete elliptic integral. The perturbation, which can be
assumed to be small as long as ε � 1, admits of the Fourier
expansion

V(I, θ) = V̂12

∞∑
n,m,k=1

αnmk

(
cos
(
2(n + m − 1)θ1 ± (2k − 1)θ2

)

+ cos
(
2(n − m)θ1 ± (2k − 1)θ2

))

+V̂13

∞∑
n,m,k=1

αnmk

(
cos
(
2(n + m − 1)θ1 ± (2k − 1)θ3

)

+ cos
(
2(n − m)θ1 ± (2k − 1)θ3

))
, (4)

the function V̂i j and the coefficients αnmk being

V̂i j =
3β
4

I2/3
i I1/3

j , αnmk = αnαmαk,

αs =
1

cosh
(
(s − 1/2)π

) , αs+1

αs
≈ 1

23
,

and can be split in two, namely Vxy and Vxz, on introducing the
integer vectors l = (l1, l2, 0) and k = (k1, 0, k3), and the new
coefficients α̂l1l2 and α̂k1k3 ,

Vxy(I1, I2; θ1, θ2) = V̂12

∑
l1,l2

α̂l1l2 cos(l1θ1 + l2θ2),

Vxz(I1, I3; θ1, θ3) = V̂13

∑
k1,k3

α̂k1k3 cos(k1θ1 + k3θ3).

The concomitant unperturbed frequency vector is given by

ω(I) =
∂H0

∂I
=

4
3

A
(
I1/3
1 , I

1/3
2 , I

1/3
3

)
. (5)

For the unperturbed Hamiltonian H0, the resonance structure
on the energy surface can be easily visualized by introducing
a change of coordinates such that the unperturbed energies in
each degree of freedom, h1, h2, h3, become the new action-like
variables. Therefore we obtain

H0(h1, h2, h3) = h1 + h2 + h3,

ω(h1, h2, h3) =
√

2β
(
h1/4

1 , h
1/4
2 , h

1/4
3

)
,

and, in terms of (h1, h2), the resonance condition, m · ω =
0, m ∈ Z3/{0}, for H0 = h can be recast in the form

(m4
1 + m4

3)ξ4 + 4m3
1m2ξ

3η + 6m2
1m2

2ξ
2η2

+ 4m1m3
2ξη

3 + (m4
2 + m4

3)η4 − m4
3 = 0, (6)

where ξ = (h1/h)1/4, η = (h2/h)1/4.
Note that for those harmonics in which one of the mi is zero,

the resonant polynomial (6) can be easily solved to yield

ĥ2 =
m4

1

m4
2

ĥ1, m1m2 < 0, m3 = 0, (7a)

ĥ2 = 1 −
(m4

1 + m4
3

m4
3

)
ĥ1, m1m3 < 0, m2 = 0, (7b)

ĥ2 =

( m4
3

m4
2 + m4

3

)
(1 − ĥ1), m2m3 < 0, m1 = 0, (7c)

with ĥi = hi/h, showing that those resonances associated to
resonant vectors with at least one null mi appear as straight
lines on the energy surface ĥ1 + ĥ2 + ĥ3 = 1.

The width of any of those resonances can be computed by
means of a simple pendulum approximation, which indeed is a
suitable description whenever we assume each resonance to be
isolated from the rest.

Let us notice that the map I �→ h transforms the un-
perturbed energy surface into a plane, so that we can per-
form a second (global) change of coordinates, (h1, h2, h3) �→
(e1, e2, e3), in such a way that the e3-axis is normal to the en-
ergy plane,

e1 =
1√
6

(h1 − 2h2 + h3), (8a)

e2 =
1√
2

(h1 − h3), (8b)

e3 =
1√
3

(h1 + h2 + h3), (8c)

with

−
√

2
3
≤ e1

h
≤ 1√

6
, − 1√

2
≤ e2

h
≤ 1√

2
,

e3

h
=

1√
3
· (9)

The resonance structure of the unperturbed system on the en-
ergy surface and the theoretical widths of the principal reso-
nances appearing in the perturbation are presented in Figs. 1a
and 1b, respectively.

In Fig. 1b, the resonance widths were measured in terms
of ∆h instead of ∆I and then transformed to the (e1, e2)-plane
by means of Eqs. (8); for the detailed computation of the reso-
nance widths we refer to Cincotta et al. (2003).

On applying the MEGNO (a somewhat detailed descrip-
tion of this tool can be found in Appendix A) to the study
of the global dynamics of Eq. (1), one obtains the resonance
structure presented in Fig. 1c. There, the details of the phase
space structure at a low-to-moderate value of the perturbation
(ε = 5 × 10−3) are displayed, depicting the obtained values for
the MEGNO in a contour-like plot where resonances can be
clearly distinguished.

At this stage, a brief reference to MEGNO’s behavior is re-
quired in order to grasp the dynamical information comprised
in such a figure. Let us then recall that in the case of regular
motion, the MEGNO (Y) tends asymptotically to a fixed value
independent of the orbit, namely Y → 2. Small departures from
this value indicate the proximity of some periodic orbit, where
Y <∼ 2 and Y >∼ 2 for stable and unstable periodic orbits, re-
spectively. On the other hand, for irregular, stochastic motion Y
grows linearly with time as t→ ∞, at a rate equal to σ/2, σ de-
noting the largest Lyapunov Characteristic Number (LCN) of
the orbit.

Let us devote the following paragraphs to describing the
procedure giving rise to Fig. 1c, and Figs. 2a and 2b which
correspond to higher values of the perturbation.

Though at first sight the Hamiltonian (1) depends on two
parameters – the energy h and ε –, after rescaling the vari-
ables in the fashion xi → εxi, pi → ε2 pi and t → t/ε, we
have H̃ → ε4H̃ ≡ H̄, which is independent of ε, and therefore
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[a] [b]

[c]

Fig. 1. a) Resonances of the unperturbed Hamiltonian (3) for 1 < |m1| + |m2| + |m3| < 9 and energy h = 1 yielding the theoretical Arnold
web on the energy surface. b) Strongest resonances and their theoretical widths. Arrows within resonances (2,−3, 0) and (2, 0,−3) indicate the
direction in which ∆hr

m oscillates about the corresponding resonant value. (Both Figs. a) and b) have been taken from Cincotta et al. 2003.)
c) Actual dynamics of the system revealed by the MEGNO: Y(tf )-levels on the energy surface for ε = 5 × 10−3, h = 1/(4β4) ≈ 0.485 (see text).
The contour plot corresponds to Y binned in the intervals [1.99, 1.995), [2, 2.015), [2.015, 20), [20, 160), [160, 215) , being tf = 3500T .

the scaled energy, h̄ = ε4h, turns out to be the only free pa-
rameter. We then allow ε to vary and fix the energy at the value
h = 1/(4β4) ≈ 0.485. This adopted value for the energy leads to
a period T = 2π for the y, z-axial periodic orbits, which remain
always stable despite the strength of the perturbation.

For each adopted value of ε, we take values of h1 and h2

with 0 ≤ h1, h2 ≤ h, h3 = h−h1−h2, where h1 and h2 are of the
form jh/1000; j = 0, . . . , 1000. This leads to 501, 501 initial
conditions for which we take (x, y, z) = (0, 0, 0).We integrate
the equations of motion together with their first variationals
over a total motion time tf = 3500T . For the tangent vector, we
adopt the initial values δx = δy = δz = 0 and δpi chosen at ran-
dom in the interval (−1, 1) and then normalized to 1. For each
orbit we compute both Y(tf) and the rate at which the MEGNO
grows with time. When performing the least squares fit on Y(t)
to obtain the LCN, only the last 80% of the time interval is

considered in order to avoid the initial transient. The actual en-
ergies h1, h2, h3, are scaled to the interval [0, 1] (by division
through h) and then transformed to the energy plane (e1, e2) by
means of Eqs. (8).

In Fig. 1c, corresponding to ε = 5 × 10−3, we display the
values of Y(tf) binned in five intervals, two of them being very
narrow and close to 2 (see figure caption for details). We have
skipped all points with 1.995 ≤ Y(tf) < 2 (corresponding to
quasi-periodic motion) so that the resonances can be discerned
more clearly. The gray-scale has been simulated using differ-
ent point sizes for different Y(tf ) intervals, which have been
selected such as to highlight some details of the dynamics at
the chosen perturbation value.

In this picture most of the main resonances can be clearly
distinguished as light gray channels surrounded by dark bound-
aries. Thus, for instance, four main resonances are seen
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[a] [b]

Fig. 2. Y(tf )-levels on the energy surface. The contour plot in gray scale (from white to dark-gray) corresponds to Y binned in the intervals,
a) [0, 2.01), [2.01, 15), [15, 50), [50, 160), [160, 412); b) [0, 2.1), [2.1, 30), [30, 60), [60, 130), [130, 310) [310, 512).

to intersect at the origin, the three lines corresponding to
the (1,−1, 0), (1, 0,−1), (0, 1,−1) resonances and the curve as-
sociated to the (−2, 1, 1) resonance.

The actual width of the resonances as well as the narrow
stochastic layers at their edges can be clearly visualized. The
center of any resonance “channel” corresponds to a sequence
of 2D elliptic tori while its borders (“stochastic layer”) corre-
spond to a sequence of 2D hyperbolic tori. We observe a strip
of chaotic motion close to h1 = 0. The presence of this region
is easily understood from Fig. 1a as the overlap of the strongest
resonances, e.g. (2,−1, 0) and (2, 0,−1), as well as of many
others (not shown in Fig. 1a).

It is quite interesting to see how intricate the dynamics at
the intersection of resonances can be. To illustrate such a fea-
ture, let us note the complexity of the picture reproduced in
Fig. 5c, taken from Cincotta et al. (2003), where we present
a zoom around the intersection of resonances at the origin in
Fig. 1c. That contour plot was obtained with a higher resolution
in h1 and h2 and for a total motion time tf = 350T . There the
MEGNO reveals the existence of several stability zones, which
should be responsible for restraining the spread of chaotic mo-
tion, acting as barriers to diffusion. They are the well-known
sticky tori surrounding the periodic orbit located at the center of
the resonance. This plot is also very illustrative to see how the
manifolds of lower dimensional tori bend in a complex fashion,
giving rise to the many tight loops seen in the picture. These
manifolds are important because they are the objects able to
carry the motion arriving along one of the resonances either to
the “other part” of the resonance or to a different resonance.

As long as the perturbation is increased, resonances are
seen to become wider. Figure 2 displays the actual structure
of action space (e-space) at two different (rather large) values
of the perturbation parameter, namely ε = 0.02 and ε = 0.04.
There, some details of the dynamics at moderate-to-high-level
perturbations are shown in a plot similar to that in Fig. 1c;
the character of the motion (resonant, quasi-periodic and

Fig. 3. Fraction of chaotic motion vs. ε (in logarithmic scale). The
vertical lines refer to the values of ε adopted for Figs. 1c and 2.

stochastic) is represented in gray scale, from white to black,
the different Y(tf ) intervals have been selected so as to sharpen
the details of the phase space structure in each case.

Notice that while for ε = 0.02 a significant part of the en-
ergy surface still looks regular, with wide resonance domains
and a broad chaotic strip (Fig. 2a), it looks very chaotic for a
somewhat slightly larger perturbation (Fig. 2b). Note however
that within the weaker chaotic region, the MEGNO is still ca-
pable of unveiling the relics of resonance structures.

In Fig. 3 we present the fraction of chaotic motion as ε
is increased, fixing a threshold of Y(tf) = 2 below which or-
bits are regarded as regular. The global amount of stochasticity
as a function of ε is measured by counting how many pixels
have a value of Y that exceeds the adopted threshold. The frac-
tion of chaotic motion for the values of ε considered above,
namely 0.02 and 0.04, are 38% and 91.7%, respectively. Note
that there is some value of ε, close to 0.03, where a transition
to, let us say, global stochasticity takes place, in the sense that
chaotic motion prevails in phase space, the chaotic zones not
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Table 1. Initial conditions on the energy surface for seven orbits with
high values of the MEGNO. The energies h1, h2 are given in units
of h/250, where h = 1/(4β4) is the total energy. The exact values of e1

and e2 should be obtained by means of Eqs. (8); their approximated
values have been included so that they can be easily visualized on the
energy surfaces.

i.c. h1 h2 e1 e2

i 20 100 −0.0816 −0.3112

ii 10 125 −0.2041 −0.2969

iii 85 69 0.1143 −0.0565

iv 58 21 0.3053 −0.3116

v 70 134 −0.2482 0.0678

vii 104 140 −0.2776 0.2771

vii 191 15 0.3347 0.4157

being necessarily connected. Further, for values of ε ≥ 0.1 the
system exhibits completely chaotic dynamics.

A quite remarkable result obtained by the application of
the MEGNO to this model is its capability to display the ac-
tual dynamics at resonance crossings. We find that diffusion
over the energy surface may occur, which is obvious for large
perturbations, but in the case of smaller perturbations, the
MEGNO shows a complex structure at the resonance intersec-
tions, which could restrain the spreading of chaotic motion, at
least for the timescales considered.

3. Diffusion on the energy surface
at moderate-to-high perturbations

We proceed to analyze the diffusion on the energy surface at
moderate-to-high perturbations, following several orbits with
initial conditions in different stochastic domains.

For seven different initial conditions listed in Table 1 we
have followed the wandering of the unperturbed integrals over
the (e1, e2)-plane. We have picked two initial conditions in the
chaotic strip close to h1 = 0, (i) and (ii) – see Fig. 2a, an-
other in the region surrounding the more regular central zone
at the origin (iii) and four other initial conditions located near
the crossing of resonances (iv)−(vii); all of them have very high
values of the MEGNO. The origin has also been considered; it
actually corresponds to a regular orbit.

The equations of motion have been integrated by means
of a Runge-Kutta 7/8th order integrator (the so-called Dopri8
routine, see Hairer et al. 1987; Prince & Dormand 1981). The
total motion time has been partitioned into 105 intervals and the
average of the unperturbed integrals over each interval has been
obtained, with the aim of lowering the influence of bounded
oscillations and so retaining the accumulated changes.

Let us remark that the integrator used for the present ex-
periments is barely satisfactory since the resulting drift in the
energy conservation is not negligible. However, the results ob-
tained by means of such a standard routine are globally equiv-
alent to those produced by the application of a rather more pre-
cise integrator, and succeed in providing a clear picture of the

diffusion process in phase space over timescales like those con-
sidered here. We have already performed several runs using a
30th order Taylor scheme, which dramatically reduces the en-
ergy drift and is thus suitable for a long term diffusion inves-
tigation when integrations over much longer motion times are
required (see Simó et al. 2004).

The results corresponding to ε = 0.02 for a total motion
time of 3 × 106 characteristic periods T of the system are pre-
sented in Fig. 4a (we refer to Fig. 2a for comparison). We note
that even in the case of moderate perturbation, diffusion is com-
pletely irrelevant over such a timescale. Only when the reso-
nances labeled by the harmonics (2,−1, 0) and (2, 0,−1) over-
lap does fast diffusion occur along such resonances, but it is
restricted to a relatively small region of the energy surface. For
the remaining initial conditions considered the unperturbed in-
tegrals remain confined to rather small domains. In particular,
for the initial condition (vi) selected near the boundary h3 = 0,
the variation of the unperturbed integrals proves to be small,
differing slightly from the expected behavior in case of stabil-
ity. For the regular orbit at the origin, considered just for il-
lustrative purposes, the wandering is restrained to a point, as
expected.

The plot in Fig. 4b corresponds to ε = 0.04 and should be
compared with the contour plot in Fig. 2b, where the chaotic
regime prevails. Notice must be taken however that in the
central region in the latter figure, for which tf = 3500T ,
there lie several chaotic orbits; the light gray points and even
some of the white points within it have values of the MEGNO
larger than 2 (as indicated in the caption). Recall that for con-
structing Fig. 2b the values of the MEGNO are binned in in-
tervals chosen so as to highlight the dynamical structure of
phase space, rather than discriminate stable quasiperiodic mo-
tion from chaotic motion. Thus, those chaotic orbits depicted
in white in the contour plot having MEGNO values smaller
than 2.1 are likely to behave in a regular fashion for rather
short timescales, such as 3500T . Furthermore, Fig. 3 reveals
that for ε = 0.04, the system shows up as globally chaotic, with
just a small fraction of phase space occupied by stable motion.
This explains why, for the larger total motion time now consid-
ered, 3 × 106 characteristic periods T of the system, diffusion
manages to trespass the central zone, the points being mainly
concentrated along a fairly well-defined strip corresponding to
the curve associated to the (−2, 1, 1) resonance (see below).
Note that the upper part of the central zone remains unvisited
at this timescale, except for a rather strong but confined con-
centration of points near the corner.

On considering an even larger timescale, 3 × 108 charac-
teristic periods T of the system, for ε = 0.02 (Fig. 4c) the fast
diffusion occurring at the overlap of the resonances (2,−1, 0)
and (2, 0,−1) after 3 × 106 periods now spreads and contin-
ues upwards along the resonances near the borders h3 = 0
and h2 = 0. For the initial condition (vi) chosen at a resonance
crossing near h2 = 0, the variation of the unperturbed integrals
that was restrained to a small domain in Fig. 4a for the lower
timescale, now moves upwards, then proceeds to the right and
finally goes downwards, the path being drawn by three dif-
ferent resonances. Notice, however, that on this timescale the
wandering does not reach the banana-shaped domain on the
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[a] [b]

[c] [d]

Fig. 4. Diffusion on the energy surface at moderate-to-high perturbations after 3 × 106 characteristic periods T of the system for: a) ε = 0.02,
and b) ε = 0.04; and after 3 × 108T for: c) ε = 0.02, and d) ε = 0.04.

right corresponding to the initial condition (iii), probably due
to the complexity of the dynamics at resonance intersections
(recall how intricate such crossings may be). Summing up, on
this timescale and for ε = 0.02 the unperturbed integrals still
roam over unconnected restraint zones of the energy surface.
There remain very localized diffusion domains and the chaotic
component seems far from being fully connected.

Instead, for ε = 0.04, after 3 × 108 characteristic periods T
of the system the chaotic component is seen to be almost
fully connected through the relics of the resonance structure
(Fig. 4d). The upper right part of the energy surface, for-
merly empty, now appears densely populated by concentrations
mainly along some still distinguishable remaining resonances.

An enlargement of the central region in Fig. 4d is displayed
in Fig. 5a, to see whether any unvisited domain still remains
in that part of the energy surface for such a large timescale. A
strong concentration of points persists along the strip already

present in Fig. 4b for 3 × 106 periods, namely, the curve as-
sociated to the (−2, 1, 1) resonance. Some further noticeable
concentrations along an arc near the upper corner of the figure
and several straight lines give a clear account of the remaining
resonance structure.

In view of the results obtained for ε = 0.04 on the larger
timescale, we integrate a single orbit, the initial condition (i)
taken in the chaotic strip near the border h1 = 0, for an even
larger tf , 6 × 108 characteristic periods T , and trace the path
of its unperturbed integrals over the energy surface, with the
aim of verifying whether this path covers the whole chaotic
component. The results are displayed in Fig. 5b, and should
be compared with the plot in Fig. 4d for seven different initial
conditions in Table 1 corresponding to chaotic orbits. As seen
in the picture, for this single orbit the unperturbed integrals trail
over the chaotic component, the relics of resonances serving as
routes. It should be mentioned that, for half the total motion
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[a] [b]

[c] [d]

Fig. 5. a) Enlargement of Fig. 4d around (e1, e2) = (0, 0). b) Diffusion of a single orbit over the energy surface for ε = 0.04 and tf = 6 × 108 T
(see text for details). c) Blow-up around the origin in the contour plot displaying the Y(tf )-levels on the energy surface for ε = 5 × 10−3

and tf = 350T (taken from Cincotta et al. 2003). d) Diffusion close to (e1, e2) = (0, 0) for ε = 5 × 10−3 and tf = 3 × 108 T (see text for details).

time considered, the upper part of the energy surface remained
yet unreached, and it took a much longer time to visit the whole
chaotic component.

Finally, and in order to confirm the results presented
in Fig. 5c – obtained for ε = 5 × 10−3 and a rather
short time motion tf = 350T , and already discussed in
Sect. 2 – in the sense that the intricate character of the
dynamics at resonance crossings may well restrain diffu-
sion, we have selected an initial condition near the origin
(e1, e2) = (0.076342430317,−0.0799030662741) with a rather
high value of the MEGNO, namely 5.89, and follow its path for
over 3 × 108 T (see Fig. 5d). We observe that despite the very
large timescale considered, the variation of the unperturbed in-
tegrals remains confined to a rather small domain on the energy
surface.

Note that when dealing with chaotic systems the use of
different processors and/or software may lead to somewhat

different results, though the global structures obtained on the
energy surface would not show significant differences. It might
happen, however, that two very close chaotic domains could
show up on the energy surface either connected or unconnected
when the integrations are carried out with different processors.

4. Discussion

In the present paper we present a preliminary study of diffu-
sion in phase space for a rather simple dynamical system in
order to elucidate its efficiency in connecting different chaotic
components. A thorough investigation of long term diffusion
as well as of the efficiency of a single orbit in exploring the
whole energy surface in the case of a fully chaotic dynamics
was provided in Simó et al. (2004), where particular features
of the dynamics of the chosen system are included.
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Despite the simplicity of the adopted model, several results
concerning its dynamics apply to any 3D Hamiltonian system
exhibiting a divided phase space, such as galactic or planetary
systems. In fact, two values for the perturbation have been se-
lected such that the dynamics of our toy model resembles that
of a galactic system (a moderate perturbation, in which case
the two components are comparable) and asteroidal dynamics
(a large perturbation for which the chaotic component prevails).

We have observed that diffusion may actually take place
over the full chaotic component only for strongly chaotic dy-
namics and very long timescales. Notice that while timescales
of the order of ∼6 × 108 characteristic periods are physically
significant in asteroidal dynamics, they are completely irrele-
vant for galactic systems, for which ∼103 periods is a realis-
tic upper bound. Anyway, despite the motion time elapsed, for
moderate perturbations diffusion seems to be unable to connect
different stochastic domains.

Since galaxies are N-body systems, one should not expect
to gain relevant information on the time evolution of the distri-
bution by following a single star orbit over a long stellar time.
But from the above results, a single connected chaotic domain
should exist for galaxies having a very large chaotic component
(similar to that given in Fig. 2b); then it could happen that the
timescale for diffusion given above (∼108 periods) is highly
overestimated, the actual timescale required for the galaxy to
reach a nearly stationary distribution being somewhat lower.

An interesting fact is that diffusion is driven along the res-
onances, even in an overlap regime. Though the resonance
structure is destroyed by the overlap, diffusion proceeds along
its relics; the latter can be clearly seen in the MEGNO con-
tour plots. This kind of diffusion should not be attributed
strictly to Arnol’d diffusion (Arnol’d 1964; Chirikov 1979;
Cincotta 2002), where the existence of a chain of tori (the
so-called transition chain) is required to have a path for a sin-
gle orbit to transit along the resonance. However, according to
the obtained numerical evidence, the mechanism leading to dif-
fusion shows a somewhat geometrical resemblance to Arnol’d
diffusion in the sense that the strong stochastic layers around
resonances serve as routes for diffusion, thus managing to con-
nect two distant chaotic domains of phase space.

We have shown the complex nature of dynamics at reso-
nance intersections in a multidimensional system. Moreover,
we have provided numerical evidence that the predicted sta-
bility domains in the resonance crossings would restrain diffu-
sion, at least over rather large motion times. Nonetheless, the
evidence obtained here does not invalidate the theoretical con-
jecture that diffusion may spread over the whole energy surface
of multidimensional systems through resonance intersections,
which still remains an open question.

Observational evidence suggests that a model resembling
for instance an elliptical galaxy should exhibit a phase space
structure analogous to that presented in Fig. 2a (correspond-
ing to a moderate perturbation). In such a case, we have ob-
served that the unperturbed integrals remain confined to rather
small chaotic domains and that diffusion is completely inca-
pable of connecting them, at least over timescales of the or-
der of ∼108 characteristic periods, several orders of magnitude
larger than the typical timescales for galactic systems. Further,

the existence of remarkable point concentrations on the energy
surface suggests that the distribution function is unlikely to de-
pend only on the energy level, but also on one or two more local
pseudo-invariants in a somewhat complicated fashion. This is
a natural consequence of the discontinuous dependence of the
unperturbed actions on the phase space coordinates in nearly
integrable Hamiltonian systems.

This investigation encourages the study of more realistic
models. In this direction, some very preliminary results con-
cerning a perfect ellipsoid perturbed by Denhen’s law for mod-
eling an elliptical galaxy agree with those obtained here for
the toy model. These issues will be thoroughly addressed in a
forthcoming paper.
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Appendix A: The mean exponential growth factor
of nearby orbits (MEGNO)

Here we summarize the main features of the Mean Exponential
Growth factor of Nearby Orbits (MEGNO-hereafter) that is de-
scribed in detail in Cincotta et al. (2003). This alternative tool
to explore the phase space belongs to the class of the so-called
fast indicators of dynamics.

Let H(p, q) with p, q ∈ RN denote an N-dimensional
Hamiltonian, assumed to be autonomous just for the sake of
simplicity since this is actually not required for the present for-
mulation. On introducing the notation x = (p, q) ∈ R2N, u =
(−∂H/∂q, ∂H/∂p) ∈ R2N, the equations of motion read

ẋ = u(x). (A.1)

Let γ(t) be an arc of an orbit of flow (A.1) on a compact energy
surface Mh ⊂ R2N, Mh = {x : H(p, q) = h}, so that

γ(t) =
{
x(t′; x0) : x0 ∈ Mh, 0 ≤ t′ < t

}
, (A.2)

and the full positive orbit is γ = limt→∞ γ(t).
Relevant information about the flow in the vicinity of any

orbit γ is gained through its largest Lyapunov Characteristic
Number (LCN-hereafter), σ(γ), defined as

σ(γ) = lim
t→∞σ1(γ(t)), σ1(γ(t)) =

1
t

ln
‖δ(γ(t))‖
‖δ0‖ , (A.3)

with δ(γ(t)) and δ0 “infinitesimal displacements” from γ at
times t and 0, respectively, (see below) and where ‖ · ‖ is some
norm. The fact that the LCN measures the “mean exponential
rate of divergence of nearby orbits”, is stated explicitly when
recasting (A.3) in the integral form

σ(γ) = lim
t→∞

1
t

∫ t

0

δ̇(γ(t′))
δ(γ(t′))

dt′ =
(
δ̇/δ
)
, (A.4)

with δ ≡ ‖δ‖, δ̇ ≡ dδ/dt = δ̇ · δ/‖δ‖, the bar denoting time-
average. Recall that the tangent vector δ satisfies the variational
equation

δ̇ = Λ(γ(t))δ, (A.5)
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where Λ = Du is the Jacobian matrix of the vector field u.
We now introduce the MEGNO, Y(γ(t)), through the

expression

Y(γ(t)) =
2
t

∫ t

0

δ̇(γ(t′))
δ(γ(t′))

t′dt′, (A.6)

which is related to the integral appearing in (A.4). Notice that
in the case of an exponential increase of δ, δ(γ(t)) = δ0 exp(λt),
the quantity Y(γ(t)) can be considered as a weighted variant
of the integral in (A.4). Instead of the instantaneous rate of
increase, λ, we average the logarithm of the growth factor,
ln (δ(γ(t))/δ0) = λt.

Let us now describe the MEGNO’s asymptotic behavior
in order to show how it serves to give a clear indication of
the character of different types of orbits. In the first place,
let us consider orbits on irrational tori for a non-isochronous
system. As shown in Cincotta et al. (2003), for any such
(quasi-periodic) orbit, γq, the temporal evolution of Y(γq(t)) is
given by

Y
(
γq(t)
)
≈ 2 − ln (1 + λq t)2

λq t
+ O
(
γq(t)
)
, (A.7)

where O denotes an oscillating term with zero average.
The limt→∞ Y

(
γq(t)
)

does not exist but, on introducing the
timeaverage

Y(γq(t)) ≡ 1
t

∫ t

0
Y(γq(t′))dt′, (A.8)

it can readily be shown that

Y
(
γq

)
≡ lim

t→∞ Y
(
γq(t)
)
= 2. (A.9)

Therefore, for the case of quasi-periodic motion, Y(γ) is a fixed
constant, independent of γ.

For an irregular orbit, γi, within any stochastic component,
for which δ(γi(t)) ≈ δ0 exp (σit) where σi is γi’s LCN, the tem-
poral evolution of the MEGNO reduces to

Y (γi(t)) ≈ σit + Õ (γi(t)) , (A.10)

where Õ is some oscillating term of bounded amplitude (which
in general is neither periodic nor quasi-periodic, but has zero
average). On averaging over an interval large enough we get

Y (γi(t)) ≈ σi

2
t, t→ ∞. (A.11)

Therefore, for a chaotic orbit both Y (γi(t)) and Y (γi(t)) grow
linearly with time at a rate equal to the LCN of the orbit or one
half of it, respectively. Only when the phase space has an hyper-
bolic structure does Y grow with time. Otherwise, it saturates to
a constant value, even in the degenerated case in which δ grows
with some power of t, say n, where Y → 2n as t → ∞.

Therefore, the MEGNO’s temporal evolution allows of
being summed up in a single expression valid for any kind of

motion. The asymptotic behavior of Y(γ(t)) may be written in
the fashion Y(γ(t)) ≈ aγt + dγ, where aγ = σγ/2 and dγ ≈ 0
for irregular, stochastic motion, while aγ = 0 and dγ ≈ 2 for
stable quasi-periodic motion. Departures from the value dγ ≈ 2
indicate that γ is close to some periodic orbit, being dγ <∼ 2
and dγ >∼ 2 for stable and unstable periodic orbits, respectively
(see Cincotta et al. 2003 for details). Note also that the quantity
σ̂1 = Y/t verifies

σ̂1(γq(t)) ≈ 2
t
, σ̂1(γi(t)) ≈ σi, t → ∞, (A.12)

which shows that in the case of regular motion σ̂1 converges
to 0 faster than σ1 (which goes to zero as ln t/t), while for
chaotic motion both magnitudes approach the positive LCN at
a rather similar rate.

Further details on the MEGNO’s performance when ap-
plied to the study of global dynamics in 2D Hamiltonians
as well as the advantages of deriving the LCN from a least
squares fit on Y are given in Cincotta & Simó (2000) and
Cincotta & Giordano (2002). An interesting application to a
2.5D problem, namely, the Arnold’s classical problem of diffu-
sion when the two small parameters are equal, may be found
in Simó (2001). The associated splitting of separatrices has
been studied in Simó & Valls (2001). Recent applications of
the MEGNO to Solar System dynamics may be found in, for
instance Gozdziewski (2002, 2003a,b). For a generalized ver-
sion of the MEGNO and its application to a 2D and a 4D area
preserving maps we refer to Cincotta et al. (2003).
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Simó, C., & Valls, C. 2001, Nonlinearity, 14, 1707
Valluri, M., & Merritt, D. 1998, ApJ, 506, 686


