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Abstract Amixed integer linear programming (MILP) for the detailed production planning
of multiproduct batch plants is presented in this work. New timing decisions are incorpo-
rated to the model taking into account that an operation mode based in campaigns is adopted.
This operation mode assures a more efficient production management adjusted to the spe-
cific context conditions of the considered time horizon. In addition, special considerations as
sequence-dependent changeover times and different unit sizes for parallel units in each stage
are taken into account. The problem consists of determining the amount of each product to
be produced, stored and sold over the given time horizon, the composition of the produc-
tion campaign (number of batches and their sizes), the assignment, sequencing and timing
of batches, and the number of repetitions of the campaign, for a given plant with known
product recipes. The objective is to maximize the net profit fulfilling the minimum and max-
imum product demands. The proposed model provides a useful tool for solving the optimal
campaign planning of installed facilities in reasonable computation time, taking different
decisions about the operations management.
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Abbreviation

Indices

b, b′ Batch
i, i ′ Product
j Stage
k Unit
l, l ′ Slot
m Index utilized for the representation in base 2 for the number of repetition of the

campaign
r Raw material

Sets

I Products
IBi Admitted batches of product i in the campaign composition
K j Nonidentical parallel batch unit that operate out-of-phase in stage j

Parameters

Bmax
i Maximum feasible batch size for product i

Bmin
i Minimum feasible batch size for product i

cii ′k Sequence-dependent changeover time between products i and i ′ at unit k
coi Operating cost coefficient of product i
DEL

i Minimum demand of product i
DEU

i Maximum demand of product i
Fri Raw material conversion factor
H Planning horizon
IMinitr Inventory of raw material r at the beginning of planning horizon
IPiniti Inventory of product i at the beginning of planning horizon
L Number of slots postulated for all units of each stage
Mb Big-M constant parameters for b = 1, 2, 3, 4
npi Selling price of product i
N BCUP

i Maximum number of batches of product i in the campaign
NCUP Maximum number of times that the campaign can be repeated over the planning

horizon
QL

i Lower bound for production level of product i
QU

i Upper bound for production level of product i
SFi j Size factor of product i in stage j
tik Processing time of product i in batch unit k
Vk Size of unit k
αik Equipment utilization minimum rate for product i at unit k
βr Inventory cost coefficient for raw material r
δi Inventory cost coefficient for product i
κr Price of raw material r
λ Weighting factor for the variable CT in the objective function
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Binary variables

xm Variable utilized for the representation in base 2 for the number of campaign
repetition

Xkl Indicates if slot lof unit k is employed
Ybkl Indicates if batch b is assigned to slot lof unit k
zib Indicates if batch b of product i is selected

Continuous variables

Bib Size of batch b of product i
CRr Amount of raw material r purchased during the planning horizon
CT Campaign cycle time
IMr Inventory of raw material r at the end of the time horizon
IPi Inventory of final product i at the end of the time horizon
NBit Total number of batches of product i processed in the time horizon
NBCi Number of batches of product i included in the campaign
NC Number of times that the campaign is cyclically repeated over the time horizon
NP Net profit
Qi Amount of product i to be produced in the planning horizon
QSi Amount of product i sold at the end of the planning horizon
RMr Amount of raw material r used for producing of all products during the time

horizon
RMri Amount of raw material r used to make product i
TFkl Final processing time of slot l in unit k for the first campaign cycle
TIkl Initial processing time of slot l in unit k for the first campaign cycle
wibm Variable that represents the product Bib xm
wwm Variable that represents the product CTxm
YY blb′l ′k Continuous variable on interval [0, 1] that indicates if batch b is assigned to slot l

of unit k and batch b′ to slot l ′ of the same unit

1 Introduction

Multiproduct batch plants are characterized by their flexibility to manufacture multiple prod-
ucts using the same equipment. These plants consist of a collection of processing units where
batches of various products are processed through a set of operations. These operations
are characterized by a processing time and they do not involve both simultaneous feed and
removal of products from the unit during this processing time. Units that perform the same
operation are grouped in a production stage, and they can operate in parallel mode (in phase
or out-of-phase). In this type of batch plants, where the process structure is sequential, each
batch follows the same sequence through all the processing stages (Voudouris andGrossmann
1992).

At the plant floor level production management decisions have to be coordinated and
integrated in order to obtain optimal production targets. Although production planning and
scheduling decisions are closely related since the result of planning problem is the production
target of scheduling problem, traditional approaches resort to hierarchical methodologies for
solving them. At a first level, the planning problem is solved to define the production targets
and then the detailed scheduling program is determined in order to meet these targets.
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Mathematical programming has become one of themost widely exploredmethods for pro-
duction process optimization, and in particular for obtaining detailed production planning
schemes. The reviews of Shah (1998), Grossmann et al. (2002), Kallrath (2002) and Mar-
avelias and Sung (2009) summarize the formulations and strategies proposed for scheduling
and planning problems in the last two decades, presenting the optimization challenges and
opportunities. These authors coincide that the complexity associated to the large size of the
integrated model is an important drawback and constitutes a limitation. To overcome the
above difficulty, most of the works presented in the literature aims at decreasing the prob-
lem scale through different types of problem simplification and developing efficient solution
strategies.

Li and Ierapetritou (2009) presented a general solution framework based on decompo-
sition to solve the integrated production planning and scheduling problem using a bilevel
optimization formulation. They also incorporated a penalty term into the objective function
of the scheduling model to penalize the unsatisfied production targets. Erdirik-Dogan and
Grossmann (2006) proposed a slot-based MILP model for the simultaneous planning and
scheduling of single-stage single-unit multiproduct continuous plants in a multiperiod con-
text. A bilevel decomposition algorithm in which the original problem is decomposed into
an upper level planning and a lower level scheduling problem was also developed in order
to deal with complex problems. Later, Erdirik-Dogan and Grossmann (2008) extended their
work incorporating parallel units to the formulation, and subsequently the same problem was
addressed by Liu et al. (2010). These authors propose a MILP model and a rolling-horizon
algorithm that improve the computational performance of the analyzed examples compared
with the approach introduced by Erdirik-Dogan and Grossmann (2008). It is worth mention-
ing that some authors addressed the integrated problems through hybridmodeling approaches
(Bilgen and Çelebi 2013; Coban and Hooker 2013; Chu et al. 2015) as well as using heuristic
methods such as simulated annealing (Reklaitis 2000) and genetic algorithms (Berning et al.
2004; Yan and Zhang 2007; Shao et al. 2009).

Assuming a given plant, i.e., its configuration and the unit sizes are known, different
production problems can be posed depending of the contemplated scenario. In particular,
when products demands can be accurately forecasted during a relatively long time horizon
due to a stable context, more efficient management and control of the production resources
can be attained if the operating condition is based on campaign of cyclic schedule. In this
case, the campaign consists of several batches of different products that are going to be
manufactured and the same pattern is repeated at a constant frequency over a time horizon.
This campaign-based operation mode, namely mixed product campaign (MPC), has several
advantages, for example, more standardized production during certain periods of time, easier
and profitable operations decisions, more efficient operation control, and adequate inventory
levels without generating excessive costs and minimizing the possibility of stock-outs.

The scheduling problem using MPCs was barely addressed in the literature. Birewar and
Grossmann (1989) developed slot-based MILP formulations for scheduling of multiproduct
batch plants using production campaigns, considering different transfer policies (unlimited
intermediate storage, UIS, and zero wait, ZW) and where the number and size of batches are
data problem. They determined the optimal campaign cycle time, for simple plants including
only one unit per processing stage. In Fumero et al. (2011) twoMILPmodels for the simulta-
neous design and scheduling of a multistage batch plant are proposed. The parallel units are
considered identical and no changeover times are taken into account. The same assumptions
were taken into account in the simultaneous planning and scheduling approach presented by
Fumero et al. (2012a).
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Under this context, a detailed planning model is presented in this work. This proposal
considers that production planning is simultaneously solved with the cyclic scheduling based
on MPCs. This type of detailed planning is used for product manufacturing with relatively
constant demand during the planning horizon. This leads to a more regular production mode
which is more appropriate for a make-to-stock production policy. From the computational
point of view, the cyclic scheduling allows reducing the size of the overall scheduling problem,
which is often intractable.

The multistage multiproduct batch plant under consideration has nonidentical parallel
units, operates under ZW transfer policy, and sequence-dependent changeover times are
taken into account. Given the plant configuration and unit sizes, the product recipes, and
the minimum and maximum demands of each product over a know planning time horizon,
this approach simultaneously determines: production targets of each product, selection and
sizing of batches of the campaign to be carried out, assignment of batches to process units,
sequencing of batches on units, timing of batches, and number of campaign repetitions along
the time horizon. The objective is to maximize the total net benefit, given by the income for
salesminus the total costs. Nevertheless, similarmodels can be developed taking advantage of
this proposal, considering different policies and scenarios. Several tradeoffs can be evaluated
as raw material procurement and consumption, units operation, and product inventory and
sale.

From the mathematical and computational points of view, with the aim of reducing the
combinatorial complexity associated to the scheduling decisions, additional constraints are
considered in order to eliminate equivalent symmetric solutions. Then, the detailed planning
approach through MPCs considering sequence-dependent changeover times for multistage
batch plants with nonidentical parallel units is efficiently solved.

The rest of this paper is organized as follows. The detailed planning problem is first
introduced in Sect. 2 and its mathematical formulation is then presented in Sect. 3. In Sect. 4,
the examples are depicted in order to validate the proposed approach. Finally, in Sect. 5 the
conclusions and some remarks are presented.

2 Problem definition

In this work, the integrated planning and scheduling problem is addressed for a multistage
multiproduct batch plant that operates in a campaign mode. In this plant, each processing
stage j ∈ {1, 2, . . ., J } has a set K j of parallel batch units that operate out-of-phase andwhere
different unit sizes are admitted. Since the parallel units in each stage may be not identical,
the numerical sequence 1, 2,…, K is used to denote all plant units, and Vk represents the size
of unit k. A set I of products must be manufactured in the plant following the same sequence
of stages and using R raw materials. Taking into account that the plant operates through
campaigns of cyclic (periodic) execution, the detailed planning problem consists of merely
solving the campaign batching and scheduling and executing it repeatedly. Although the
batching and scheduling decisions are critical when several products are involved and units
with different sizes are available in each stage, the cyclic approach reduces the complexity
of the operations and avoids lead to large-scale and computationally intractable models.

The production recipes, i.e. the processing time of each product i in unit k, tik , the conver-
sion factor Fri that represents the required amount of raw material r to elaborate one mass
unit of product i , and the size factor SFi j that denotes the required capacity of units in stage j
to produce one mass unit of final product i , are problem data. Additionally, upper and lower
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bounds, on the demands of each product i in the planning horizon H , DEL
i and DEU

i , are
known. Then, the production level of each product in the campaign is a model variable, and
this amount can be fulfilled with one or more batches of different sizes. Therefore, an index
b is introduced to denote the bth batch required in the campaign to meet the production of
the corresponding product.

Given that the number and size of batches of each product i in the campaign are decision
variables in the model, the campaign composition and its cycle time are not known a priori.
Only upper limits are imposed on the number of batches of each product i in the campaign,
and therefore a set of generic batches associated to that product, IBi , is proposed, where
|IBi | = NBCUP

i .
For each raw material, the initial inventory level, the unit cost, and its availability are

known parameters. Also, prices of final products and their required final stock levels, are
problem data. For each unit k, an equipment utilization minimum rate is considered for
each product i , which is denoted by αik . This value is associated to physical and operative
conditions of use of the plant equipment, and it is defined by the operations manager of the
facility.

Intermediate storage tanks are not allowed. In addition, taking into account the sequential
structure of the process, no batch splitting or mixing is considered, i.e. each batch is treated
as a discrete entity throughout the whole process. It is assumed that a batch cannot wait
in a unit after finishing its processing. Therefore, the ZW transfer policy between stages is
adopted, i.e., after being processed in stage j , a batch b is immediately transferred to the next
stage j + 1. Besides, batch transfer times between units are assumed very small compared
to process operation times and, consequently, they are included in the processing times.

Sequence-dependent changeover times, cii ′k , are considered between consecutive batches
processed in the same unit k, even of the same product. This transition time corresponds
to the preparation or cleaning of the equipment to perform the processing of the following
batch. It is necessary for various reasons: ensure products quality, maintain the equipment,
safety reasons, etc.

For campaign scheduling decisions, an asynchronous slot-based continuous-time repre-
sentation has been used (Fumero et al. 2012b). Unlike the most of scheduling approaches
presented in the literature, the number and sizes of batches to be scheduled are optimization
variables. Although there are some attempts to link decisions of batching and scheduling
(Prasad and Maravelias 2008; Marchetti et al. 2010, 2012; Sundaramoorthy and Maravelias
2008a, b; Sundaramoorthy et al. 2009; Fumero et al. 2014), in all these works the product
demands of each order are problem data. In addition, taking into account that the parallel unit
sizes are different, the number of slots that must be postulated for each unit of stage j is not
a trivial decision. This parameter can be approximated considering the admitted maximum
number of batches of each product at the campaign. Then, the number of slots postulated for
all units of each stage is the same and it is given by:

L =
∑

i∈I
N BCUP

i

Taking into account the assumed periodic scheduling strategy, the optimal campaign is cycli-
cally repeated along the planning horizon. The number of repetitions of the campaign, denoted
by NC, is a discrete variable of the model, and an upper bound for this variable can be esti-
mated from the length of the planning horizon and the processing times of all products
elaborated in the period.

The decisions involved in the production planning consist of determining for each product,
the quantity to be produced, the total sales, and the inventory level at the end of the horizon.
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The amounts of raw material purchased and used in the process are also determined. From
the point of view of scheduling decisions, the model allows determining, the number and size
of batches of each product in the optimal campaign, the assignment of batches to equipment
items in each stage and its sequencing, the initial and final processing times for batches
processed in each unit, the campaign cycle time, and the number of campaign repetitions
over the planning horizon.

The considered objective function is the maximization of the net profit over the plan-
ning horizon, given by incomes (product sales) minus costs (raw materials, operation and
inventory).

3 Mathematical formulation

3.1 Production planning constraints

The following constraints manage the purchase of raw materials, the production, and the
raw materials and products inventories, in order to meet the demands limits and ensure the
required product and raw material storage at the final of the planning horizon.

The proposed model assumes that the production of each final product i , Qi , requires r
= 1, 2, …, R raw materials. The mass balance [Eq. (1)] determines the amount consumed of
raw material r to make product i , RMri , where parameter Fri denotes the conversion of raw
material r for product i .

RMri = Fri Qi ∀r, i (1)

Constraint (2) specifies the total raw material consumption.

RMr =
∑

i

RMri ∀r (2)

Thus, the stock of raw material r at the end of the planning horizon, IMr , depends on the
amount stored at the beginning of time horizon, IMinitr ; the purchases during this period,
CRr ; and the amount consumed for production, RMr :

IMr = IMinitr + CRr − RMr ∀r (3)

Furthermore, purchases of raw materials cannot exceed the respective availabilities:

CRr ≤ QMr ∀r (4)

In a similar way, Eq. (5) sets the level of final product i stored at the end of planning horizon,
IPi , which is equal to the amount stored at the start of time horizon, IPiniti , plus the production
during this time period, Qi , less the sold amount QSi , where the sold amount is bounded by
the minimum and maximum demands:

IPi = IPiniti + Qi − QSi ∀i (5)

DEL
i ≤ QSi ≤ DEU

i ∀i (6)

3.2 Batches selection and sizing constraints

As alreadymentioned, the number and size of batches of product i that must be manufactured
at the campaign, as well as the number of repetitions of the campaign are model variables.
Then, a binary variable zib is introduced, which takes value 1 if batch b of product i , from
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the set proposed IBi , is selected to satisfy the production requirements of that product and 0
otherwise.

Let Bib be the size of batch b of product i and Qi the amount of product i elaborated
during the planning period. Then, taking into account that the campaign will be cyclically
repeated NC times over the planning horizon:

Qi =
∑

b∈IBi
BibNC ∀i (7)

Bmin
i zib ≤ Bib ≤ Bmax

i zib ∀i, b ∈ IBi (8)

where Bmin
i = max

j∈J

{
min
k∈K j

{
αik

Vk
SFi j

}}
, Bmax

i = min
j∈J

{
max
k∈K j

{
Vk
SFi j

}}
are the minimum and

maximumfeasible batch sizes, respectively, for product i . That is, theminimumandmaximum
capacities of batch units are bounds on the amount of processed material in each batch.

Due to Bib and NC are optimization variables, Eq. (7) is reformulated to avoid non lin-
earities. Discrete variable NC is expressed using a base-2 representation and therefore it can
be treated as a continuous variable:

NC =
M∑

m=0

xm2
m (9)

Parameter M is taken as M = ceil
(
log2(NC

UP + 1) − 1
)
, where ceil is a function that

rounds the argument to the next integer, NCUP is the maximum number of times that the
campaign can be cyclically repeated over the time horizon, which is estimated by the planner
taking into account different parameters of the model (processing times, minimum batch
sizes, maximum demands, planning horizon, etc), and xm are binary variables used for the
representation.

In particular, if the total production at the period is null because the current inventory
allows reaching the requirements to achieve the maximum benefit, all binary variables xm
take value zero: ∑

i

∑

b∈IBi
zib ≥ xm, ∀m (10)

Then, replacing Eq. (9) into Eq. (7), the following constraint is hold:

Qi =
∑

b∈IBi

M∑

m=0

xm Bib2
m ∀i (11)

Bilinear terms in Eq. (11) are eliminated using Glover’s procedure (Glover 1975). Thus, a
non negative continuous variable, wibm , is defined, which is equal to Bib if xm takes value
1, and 0 otherwise. So Eq. (11) is represented by:

Qi =
∑

b∈IBi

M∑

m=0

2mwibm ∀i (12)

Besides, the following constraints are imposed, where M1 is a sufficiently large number that
makes the constraint redundant when xm takes value 0:

wibm − Bib ≥ M1(xm − 1) ∀i, b ∈ IBi ,m (13)

wibm ≤ Bib ∀i, b ∈ IBi ,m (14)

wibm ≤ Bmax
i xm ∀i, b ∈ IBi ,m (15)
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Taking into account that the size of unit k denoted by Vk and the size factor SFi j are model
parameters, if batch b of product i is processed in unit k of stage j the following inequalities
limit the size Bib of batch b between the minimum and maximum processing capacities of
unit k:

αik
Vk
SFi j

≤ Bib ≤ Vk
SFi j

∀ i, b ∈ IBi , k ∈ {units of stage j used to process batch b} (16)

where αik is the minimum filled rate required to process product i in unit k. Due to the units
selected to process the batches of each product are optimization variables and their sizes are
different, Eq. (16) must be expressed through a variable that indicates this selection, as it will
be seen later.

Besides, without loss the generality and in order to reduce the number of alternative
solutions, the selection of batches of a same product as well as the sizes assigned to them are
made in ascending and descending numerical order, respectively, that is:

zib+1 ≤ zib ∀i, b ∈ IBi , b + 1 ∈ IBi (17)

Bib+1 ≤ Bib ∀i, b ∈ IBi , b + 1 ∈ IBi (18)

3.3 Assignment, sequencing and timing constraints

For these decisions, an asynchronous slot-based continuous-time representation has been
used. The assignment, sequencing and timing constraints for the batches that compose the
campaign are largely inspired from detailed model (DP) proposed by Fumero et al. (2014)
for the problem of scheduling of multiproduct batch plants operating in campaign-mode. A
detailed description of assumptions about units and slots utilization at each plant stage, which
allow reducing the search space as well as eliminate alternative solutions, can be found in the
previous article. However, in order to facilitate the readability of the model, the assignment
and timing main constraints are presented in this manuscript.

Each selected batch must be assigned, in each stage, to a specific slot of a unit for its
processing. Then, the binary variable Ybkl is introduced, which takes value 1 if batch b is
assigned to slot l in unit k and 0 otherwise. Although this variable is enough for formulating
the scheduling decisions, the binary variable Xkl , which specifies the slots set utilized in unit
k for processing batches, is also used in order to reduce the search space and, therefore, to
improve the computational performance.

Logical relations can be defined among binary variables zib, Xkl and Ybkl . In fact, if slot
l of unit k is not utilized, then none of the proposed batches is processed in it. Moreover, if
slot l of unit k is utilized, then only one of the proposed batches is processed in it. Then, the
following constraint is imposed:

∑

i∈I

∑

b∈IBi
Ybkl = Xkl ∀ j, k ∈ K j , 1 ≤ l ≤ L (19)

On the other hand, if batch b of product i is selected (i.e. zib = 1), then this batch is processed,
in each stage j , in only one slot of some of the available units at the stage. This condition is
guaranteed by: ∑

k∈K j

∑

1≤l≤L

Ybkl = zib ∀ j, i, b ∈ IBi (20)

Without loss of generality and in order to reduce the search space, it is assumed that slots of
each unit are consecutively used in ascending numerical order. Hence, slots of zero length
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take place at the end of each unit. Eq. (21) establishes that for each unit k, slot l + 1 is only
used if slot l has been already allocated:

Xkl ≥ Xkl+1, ∀ j, k ∈ K j , 1 ≤ l ≤ L (21)

Finally, variable Ybkl allows correctly expressing the inequalities posed in (16) as:

αik
Vk
SFi j

Ybkl ≤ Bib ∀i, b ∈ IBi , 1 ≤ l ≤ L (22)

Bib ≤ Vk
SFi j

+ M2

⎛

⎝1 −
∑

1≤l≤L

Ybkl

⎞

⎠∀i, b ∈ IBi (23)

where scalar M2 is a sufficiently large number that makes the constraint redundant when
batch b is not assigned to any slot of unit k.

Taking into account the cyclic character of the used scheduling strategy, the timing deci-
sions for the set of proposed slots in each unit are posed for the first cycle.

Nonnegative continuous variables, TIkl and TFkl , are used to represent the initial and final
processing times, respectively, of the proposed slots in each unit k. When slot l is not the
last slot used in unit k of stage j for processing one batch, that is, if Yb′kl+1 takes value 1 for
some batch b′,final processing time TFkl of slot l in unit k is constrained by:

T Fkl = T Ikl +
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YbklYb′kl+1 ∀ j, k ∈ K j , 1 ≤ l < L (24)

On the other hand, when the sequence of slots used in unit k is 1, 2, …l, i.e. slot lis the last
slot used at unit k of stage j to process some batch, taking into account that the campaign
is cyclically repeated over the planning horizon, the final processing time TFkl is calculated
considering the changeover time required for processing the batch assigned to slot 1 in unit
k of stage j . Then, the following constraint, analogous to (24), must be satisfied:

T Fkl = T Ikl +
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YbklYb′k1 ∀ j, k ∈ K j , 1 ≤ l ≤ L (25)

A nonnegative variable YYblb′l ′k is defined to eliminate the bilinear products in Eqs. (24)
and (25), which takes value 1 if Ybkl = 1 and Yb′kl ′ = 1, and 0 otherwise. However, taking
into account that the slots of each unit are consecutively used in ascending order, it is only
necessary to link the assignments variables Ybkl and Yb′kl+1, i.e., those relative to consecutive
slots on the same unit k, as well as Ybkl and Yb′k1, for all slot l, in order to represent the
previous constraints. Therefore, Eqs. (24) and (25) are represented using the following Big-
M expressions, respectively:

T Fkl − T Ikl −
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YYblb′l+1k ≥ M3(Xkl+1 − 1)

∀ j, k ∈ K j , 1 ≤ l < L (26a)

−T Fkl + T Ikl +
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YYblb′l+1k ≥ M3(Xkl+1 − 1)

∀ j, k ∈ K j , 1 ≤ l < L (26b)
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T Fkl − T Ikl −
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YYblb′1k ≥ −M3Xkl+1

∀ j, k ∈ K j , 1 ≤ l ≤ L (27a)

−T Fkl + T Ikl +
∑

i∈I

∑

i ′∈I

∑

b∈IBi

∑

b′∈IBi ′
b �=b′

(tik + cii ′k)YYblb′1k ≥ −M3Xkl+1

∀ j, k ∈ K j , 1 ≤ l ≤ L (27b)

where M3 is a sufficiently large number.
Constraints to avoid the overlapping between the processing times of different slots in a

unit as well as tomatch the initial times of empty slots with the final time of the last previously
used slot are added to the formulation.

T Fkl ≤ T Ikl+1 ∀ j, k ∈ K j , 1 ≤ l < L (28)

T Fkl − T Ikl+1 ≥ −M4Xkl+1 ∀ j, k ∈ K j , 1 ≤ l < L (29)

where M4 is a sufficiently large number that make the constraint redundant when slot l + 1
is used.

In order to assure ZW transfer policy, constraints of Big-M type are included, depending
if slot l is or is not the last slot used at unit k of stage j for processing one batch. Thus, the
following constraint set is added to the formulation in order to consider both cases:

T Fkl −
∑

i ′∈I

∑

b′∈IBi ′
cii ′kYYblb′1k − T Ik′l ′ ≥ M3(Ybkl + Ybk′l ′ − 2 −

∑

l̃>l

Xkl̃)

∀ j, j+1, k∈K j , k
′ ∈ K j+1, 1 ≤ l ≤ Lkj , 1 ≤ l ′ ≤ Lk′ j+1, i ∈ I, b ∈ IBi (30a)

−T Fkl +
∑

i ′∈I

∑

b′∈IBi ′
cii ′kYYblb′1k + T Ik′l ′ ≥ M3(Ybkl + Ybk′l ′ − 2 −

∑

l̃>l

Xkl̃)

∀ j, j+1, k∈K j , k
′ ∈K j+1, 1 ≤ l ≤ Lkj , 1 ≤ l ′ ≤ Lk′ j+1, i ∈ I, b ∈ IBi (30b)

T Fkl −
∑

i ′∈I

∑

b′∈IBi ′
b′ �=b

cii ′kYYblb′l+1k − T Ik′l ′ ≥ M3(Ybkl + Ybk′l ′ + Xkl+1 − 3)

∀ j, j+1, k∈K j , k
′ ∈ K j+1, 1 ≤ l< Lkj , 1 ≤ l ′ ≤ Lk′ j+1, i ∈ I, b ∈ IBi (31a)

−T Fkl +
∑

i ′∈I

∑

b′∈IBi ′
b′ �=b

cii ′kYYblb′l+1k + T Ik′l ′ ≥ M3(Ybkl + Ybk′l ′ + Xkl+1 − 3)

∀ j, j+1, k∈K j , k
′ ∈ K j+1, 1 ≤ l< Lkj , 1 ≤ l ′ ≤ Lk′ j+1, i ∈ I, b ∈ IBi (31b)

The expression for the cycle time of the campaign, CT, is obtained from the initial and final
times of the first and last slot proposed for processing batches in each unit, respectively, and
it is given by:

CT ≥ T FkL − T Ik1, ∀ j, k ∈ K j (32)

Significant reductions in resolution times are achieved by establishing the following lower
limit on the campaign cycle time (Fumero et al. 2012b). Assuming that the idle time in each
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unit during the processing of the campaign is zero, then:

CT ≥
∑

i∈I

∑

b∈IBi

∑

l

tikYbkl ∀ j, k ∈ K j (33)

Taking into account that the campaign is executed NC times with period CT, the total time
required to produce all batches cannot exceed the length of planning horizon, H :

CTNC ≤ H (34)

The representation of variable NC [Eq. (9)] allows rewriting Eq. (34) as:

M∑

m=0

2mxmCT ≤ H (35)

In order to avoid the nonlinearity of this expression given for the product of binary and
continuous variables, a new continuous variable wwm is defined, which is equal to CT if xm
= 1; otherwise the value is 0. Then,

M∑

m=0

2mwwm ≤ H (36)

wwm − CT ≥ M4(xm − 1) ∀m (37)

wwm ≤ CT ∀m (38)

wwm ≤ CTU xm ∀m (39)

where M4 is a sufficiently large parameter and CTU is an upper bound for the campaign
cycle time, which is approximated by the planner taking into account the processing times
and the maximum number of batches for all products in the campaign.

3.4 Objective function

The problem goal is to maximize the net profit (NP) given by the difference between the
incomes due to products sales and the total costs that include purchases of raw materials,
inventories and operation costs.

NP =
∑

i

npiQSi −
∑

r

κrCRr

−
[
∑

r

βr

(
IMinitr + IMr

2

)
H +

∑

i

δi

(
IPiniti + IPi

2

)
H

]
−

∑

i

coi Qi (40)

To determine the incomes, the product price, npi , is multiplied by the amount of sold product
i during time period. Parameter αr denotes the price of raw material r used to manufacture
products, while βr and δi are the inventory costs per unit of raw material and final product,
respectively. Finally, parameter coi denotes the operating cost coefficient.

Taking into account that different production campaigns can be obtained for a sameoptimal
planning, a penalty term that involves the cycle time of the campaign is included in the
objective function. Through this heuristic, the computational performance is improved and
the number of alternative solutions is reduced. This new term is the product of the variableCT
with a weighting factor λ, which is appropriately selected taking into account the involved
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Fig. 1 Plant structure and unit
sizes

Stage 1 Stage 2

200 L150 L

150 L

250 L

Stage 3

parameters. In this way, the approach reaches the more profitable solution with minimum
campaign cycle time. Therefore, the following objective function is proposed:

f = NP − λCT (41)

Finally, all the constraints for the detailed planning of a multiproduct multistage batch plant
with nonidentical parallel units, sequence-dependent changeovers, and a campaign-based
operation, are linear in order to generate aMILPmodel that can be solved to global optimality.

4 Examples

In this section two illustrative examples are presented in order to evaluate the proposed
formulation for the optimal production planning for multiproduct batch plants operating
through campaigns of cyclic execution. In both examples, coefficient αik representing the
minimum filled rate required to process product i in unit k, is assumed to be 0.50 for all
products and equipment items. That is, this parameter accounts for 50% of total available
capacity of units. All the examples has been solved with a 0% optimality gap in GAMS
(Brooke et al. 2012), using CPLEX 12.5 solver, on an Intel Core i7, 3.4 GHz with 4GB
RAM.

4.1 Example 1

Four products (A, B, C, D) are produced through three stage from two raw materials (R1,
R2). The plant structure and unit sizes are illustrated in Fig. 1. Units at each stage are denoted
by the sets: K1 = {1}, K2 = {2, 3}, and K3 = {4}, respectively.

A planning horizon time of 1 week (H = 144 h) is assumed. Data on processing times
and size factors for each product, and conversion factors of raw material into product are
shown in Table 1, while the sequence-dependent changeover times are given in Table 2.

The raw materials availability (kg) for the purchase are 5000 for R1 and 4000 for R2, and
their costs ($/kg) are 0.4 and 0.6 for respectively. The final products selling prices ($/kg) are
3.2, 3.0, 2.8, 2.5, for products A, B, C and D. The inventory cost coefficients ($/ ton h) for
both raw materials and final products are 0.1 and 0.2, respectively. The maximum product
demands are 780, 1290, 1980 and 2400, respectively, while a minimum of 50% of those
demands must be satisfied in the planning horizon.

For this case, the initial inventories of both raw materials and products are null. The
production of product D will be suspended by a week, and therefore it is required to maintain
a stock of 1000kg of this product at the end of the given planning horizon.

Considering the nonidentical parallel unit sizes at each stage and the size factors for each
product in each stage, and assuming that the equipment utilization minimum rate is 0.50
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Table 1 Example 1—model parameters

Products Processing time, tik (h) Size factor, SFi j (L/kg) Conversion factor, Fri

J1 J2 J3 J1 J2 J3 R1 R2

1 2 3 4

A 6.0 14.0 12.0 6.0 0.6 0.9 0.8 0.75 0.5

B 2.0 4.0 2.0 2.0 0.7 1.2 0.85 1.0 0.25

C 5.0 11.0 9.0 2.0 0.75 1.0 0.7 0.5 1.25

D 2.0 1.5 1.5 3.0 0.3 0.4 0.45 0.8 0.2

Table 2 Example 1—sequence-dependent changeover times

i Sequence-dependent changeover time: cii ′k (h)

J1 J2 J3
k = 1 k = 2, 3 k = 4

A B C D A B C D A B C D

A 0.0 0.5 0.3 0.0 0.0 0.3 0.4 0.5 0.25 0.3 0.0 0.6

B 0.8 0.0 0.6 0.8 1.2 0.25 0.6 0.6 1.2 0.25 0.8 0.7

C 1.0 0.5 0.0 1.0 0.0 0.5 0.25 0.5 1.5 0.5 0.0 0.5

D 0.8 0.0 0.6 0.0 0.9 0.25 0.7 0.25 1.25 0.5 1.25 1.25

for all products and equipment items, the feasible batch sizes for products A, B and C are
bounded by: 125 ≤ BA ≤ 250, 118 ≤ BB ≤ 208.3, 143 ≤ BC ≤ 200, 250 ≤ BD ≤ 444.

Taking into account that the total production for all products and the amount of each prod-
uct elaborated in the campaign are optimization variables, the number of batches that must
be postulated for each product in the campaign as well as the its number of repetitions are not
trivial decisions. Model parameters concerning to maximum demands, possible batch sizes,
cycle time of products, length of planning horizon, etc. allow obtaining a better estimation
of this values and a reduction in the model size. In this example, a maximum of two batches
in the campaign composition is assumed for products A, B and D, and three batches for
product C; and an upper limit for the number of repetitions of the campaign equal to 6. Then,
the sets of batches proposed for each product are: IBA ={b1, b2}, IBB ={b3, b4}, IBC =
{b5, b6, b7}, IBD = {b8, b9}, and three binary variables have been defined for the base-2
representation of variable NC. In order to avoid undesirable combinations for the value of
NC, the following constraint is added to the formulation: x2 + x1 + x0 ≤ 2.

Table 3 lists the objective function values for the linear programming (LP) relaxation and
the MILP model, as well as the model size and computational statistics for the proposed
formulation.

The amounts of final products produced and sold, amounts of raw materials purchased
and used for producing all products, and the inventories levels of both raw materials and
products, are summarized in Table 4.

The optimal campaign consists of one batch of product A (b1), one of B (b3), two of C
(b5, b6) and one of D (b8). The optimal production sequence obtained in each batch unit for
the different stages, considering sequence-dependent changeover times, is illustrated in the
Gantt chart of Fig. 2. As it can be noted from Fig. 2, in order to decrease the campaign cycle
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Table 3 Model sizes and computational statistics

Model LP relaxation Objective function Constraints Variables Nodes CPU time (s)

Binary Continuous

Example 1 13,150.50 11,059.54 26,321 352 5059 17,756 124.66

Example 2 149,427.40 148,532.40 46,959 519 8453 47,407 481.96

Table 4 Example 1—optimal production planning variables

Product Production
(kg)

Sales (kg) Inventory
(kg)

Raw
material

Purchases
(kg)

Material
used (kg)

Inventory
(kg)

Qi QSi IPi CRr RMr IMr

A 780.0 780.0 0.0 R1 4956.2 4956.2 0.0

B 1250.0 1250.0 0.0 R2 3710.3 3710.3 0.0

C 1980.0 1980.0 0.0

D 2664.0 1664.0 1000.0

Product CProduct A Product B

1

3

4

Stage 1

0

Units

Stage 3

Stage 2
2

30

Changeovers times

10 20 40

Campaign cycle time = 23.6 h
b5 b8b1

b1

b3b8

b3

b3 b1b8

Time (h)

b5

b5

b6

b6

b6

Product D

6 times 

Fig. 2 Example 1—optimal production schedule for the campaign

time and improve the use of the equipment items, the processing sequence of the batches is
not the same on stages 1 and 3. The campaign cycle time is equal to 23.6 h and it is repeated
6 times.

The size for each batch that composes the campaign is equal to 130 kg for product A, 208.3
kg for product B, 187 and 143 kg for product C, and 444 kg for product D. The capacities
used in each unit of the different stages for processing the selected batches are reported in
Table 5. The batches that reach the minimum and maximum capacities are highlighted in
italics and bold, respectively. Batch b1 of product A is processed in units 1, 3 and 4 using
52, 78 and 52% of their capacities, respectively. Batch b3 of product B is processed in units
1, 2 and 4 and its size is the maximum possible. Two batches of product C are processed
for meeting its demand. Batch b6 size is larger than b5 and additionally the size of b5 is the
required minimum. Finally, for product D, batch b8 is processed in units 1, 2, and 4 and its
size is the maximum possible,

As it can be observed from Table 4, the optimal campaign allows satisfying the maximum
demands of products A, and C. However, for products B and D, although the batch size used

123



430 Ann Oper Res (2017) 258:415–435

Table 5 Example 1—capacities
used in each unit of each stage (L)

Product Batch Stage 1 Stage 2 Stage 3

k = 1 k = 2 k = 3 k = 4

A b1 78.00 117.00 104.00

B b3 145.83 250.00 117.08

C b5 140.36 187.14 131.00

b6 107.14 142.86 100.00

D b8 133.2 177.6 200.00

Table 6 Example 1—economic
evaluation results ($)

Description Optimal value

Sales income 15,950.00

Raw material cost 4,208.66

Raw material inventory cost 0.00

Product inventory cost 14.40

Operating costs 667.40

Total 11,059.54

in each case is the maximum possible, the total produced over the given time horizon does
not meet the maximum demand for those products. Although the availability of rawmaterials
is not zero, these quantities as well as the length time horizon are not sufficient to meet the
maximum demands for products B and D.

Finally, a detailed analysis of the economic results is summarized in Table 6.

4.2 Example 2

The batch facility considered in this example consists of three processing stages with two
nonidentical units operating in parallel on stages 1 and 2, and one unit on the remaining stage,
as is shown in Fig. 3. The unit sizes are also depicted in the figure.

The plant can produce four products A, B, C and D from two raw materials.
As in Example 1, the objective is to determine the detailed production plan for a time

horizon equal to 1 week (H = 144 h).
Data on processing times and size factors for each product, and conversion factors of raw

material into product are shown in Table 7, while the sequence-dependent changeover times
are given in Table 8.

The raw material availability during the planning horizon is equal to 55,000 kg for raw
material R1 and 70,000 kg for raw material R2, and the costs ($/kg) are 0.5 for R1 and 1.4
for R2. The final products prices ($/kg) are 2.0, 3.0, 2.5, and 2.0 for products A, B, C and D,
respectively. The inventory cost coefficients ($/ ton h) of both final rawmaterials and products
are 0.1 and 0.2, respectively. The maximum demands (kg) are 25,000, 40,000, 30,000 and
20000, for products A–D respectively; and a minimum of 50% of those demands must be
satisfied in the planning horizon.

The initial inventories (kg) of raw materials are 10,000 and 20,000, respectively; while
the available stock for products A and D at the beginning of the planning horizon are
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Fig. 3 Example 2—plant
structure and unit sizes

Stage 1 Stage 2

3000 L

3000 L

4200 L

Stage 3

2500 L

4000 L

Table 7 Example 2—model parameters

Products Processing time, tik (h) Size factor, SFi j (L/kg) Conversion factor, Fri

J1 J2 J3 J1 J2 J3 R1 R2

1 2 3 4 5

A 10 7 18 14 5 0.70 0.60 0.50 0.5 0.7

B 11 7 13 13 4 0.60 0.70 0.45 1.0 0.7

C 8 6 11 8 3 0.70 0.65 0.55 0.4 1.0

D 6 5 3 3 1 0.60 0.80 0.40 0.3 1.3

Table 8 Example 2—sequence-dependent changeover times

i Sequence-dependent changeover time: cii ′k (h)

J1 J2 J3

k = 1, 2 k = 3, 4 k = 5

A B C D A B C D A B C D

A 0.0 0.5 0.3 0.0 0.25 0.3 0.0 0.5 0.0 0.6 0.6 0.6

B 0.8 0.0 0.6 0.8 1.2 0.25 0.8 0.4 0.8 0.0 0.8 0.5

C 1.0 0.5 0.8 1.0 0.5 1.5 0.55 0.5 2.0 1.5 0.0 1.0

D 0.4 0.5 1.0 0.0 0.25 0.5 0.5 0.25 0.5 0.5 0.5 0.0

IPinit A =1000 kg and IPinitD = 10,000 kg. It is required to maintain a stock of 500
kg of product A and 2500 kg of product C at the end of the given planning horizon.

For this example, the minimum feasible batch sizes for products A, B, C, and D are 3000
, 3333 , 2727 and 3750 kg, respectively, while the maximum feasible batch sizes are 5714
kg for product A, 6000 kg for B, 5454 kg for C and 5250 kg for D. Based on the above
values and taking into account the different parameters of the model, the maximum number
of batches in the campaign composition is assumed to be three for products A and C, four
batches for product B, and two batches for product D; and the upper limit for the number of
repetitions of the campaign equal to 7. Then, the sets of batches proposed for each product
are: IBA = {b1, b2, b3}, IBB = {b4, b5, b6, b7}, IBC = {b8, b9, b10}, IBD = {b11, b12}, and
three binary variables have been defined for the base-2 representation of variable NC.

Objective function values for LP relaxation and MILP model, as well as the model size
and computational statistics for the proposed formulation are listed in Table 3.

The optimal amounts of final products produced and sold, amounts of raw materials
purchased and used for producing all products, and the inventories levels of both rawmaterials
and products, are summarized in Table 9.
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Table 9 Example 2—optimal production planning variables

Product Production
(kg)

Sales
(kg)

Inventory
(kg)

Raw
material

Purchases
(kg)

Material
used (kg)

Inventory
(kg)

Qi QSi IPi CRr RMr IMr

A 20,000.0 20,500.0 500.0 R1 43,000.0 53,000.0 0.0

B 40,000.0 40,000.0 0.0 R2 54,500.0 74,500.0 0.0

C 32,500.0 30,000.0 2500.0

D 0.0 10,000.0 0.0

4

2

Product CProduct A Product B

1

5

Stage 1

0

Units

Stage 3

Stage 2
3

20 Time (h)10 4030

Campaign cycle time = 34.30 h

b1

b5

b1b8

b4

b9

b4

b4

b1

b9b5

b5

b8 b9

b8

4 times 

Fig. 4 Example 2—optimal production schedule for the campaign

The optimal campaign consists of one batch of product A (b1), two of B (b4, b5), two of
C (b8, b9) and zero of D. The optimal production sequence obtained in each batch unit for
the different stages, considering sequence-dependent changeover times, is illustrated in the
Gantt chart of Fig. 4. The campaign cycle time is reached at unit 5 and it is equal to 34.3 h,
and the campaign is repeated 4 times over the planning horizon.

The size for each selected batch that composes the campaign and the capacities used in
each unit of the different stages for processing those batches are depicted in Table 10. The
batches that reach the maximum capacities are highlighted in bold.

Productions of B and C satisfy the maximum demand limits because they are the most
profitable products. The total production of B is sold, while a portion of the total production
of C is used to satisfy the required stock level for this product at the end of the planning
horizon and the rest is sold. Batch b4 of product B is processed in units 1, 3 and 5 and its
size is the maximum possible. Then, batch b5 fulfills the required amount of that product
occupying approximately 96, 67 and 60% of the capacities of units 2, 3 and 5, respectively.
On the other hand, batch b8 of product C is processed in units 1, 4 and 5 and its size is the
maximum possible to be processed in unit 4 of stage 2. Then, batch b9 fulfills the required
amount of that product occupying approximately 98, 76 and 64% of capacities, respectively.

Analyzing results, it is found that the total of raw materials R1 and R2 consumed to
produce B and C are 53,000 and 74,500 kg, respectively. Therefore, 12,000 and 15,500 kg
of raw materials R1 and R2, respectively, are available for the production of A and D. From
these last two products, A is the most profitable. A total of 20,000 kg of A is produced
and considering the time horizon available for reaching the optimal plan, only one batch of
product A (b1) is processed in units 1, 4 and 5 taking the maximum possible size in unit 4 of
stage 2. Then, 2000 kg of R1 and 1500 kg of R2 are available for production of D. For this
product, the initial inventory level allows satisfying the minimum demand limit (10,000 kg)
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Table 10 Example 2—selected batch sizes (kg) and capacities used in each unit of each stage (L)

Product Batch/size Stage 1 Stage 2 Stage 3

k = 1 k = 2 k = 3 k = 4 k = 5

A b1 (5000) 3500.00 3000.00 2500.00

B b4 (6000) 3600.00 4200.00 2700.00

b5 (4000) 2400.00 2800.00 1800.00

C b8 (4615.4) 3230.77 3000.00 2538.46

b9 (3509.6) 2456.73 2281.25 1930.29

Table 11 Example 2—economic
evaluation results ($)

Description Optimal value

Sales income 256,000.00

Raw material cost 97,800.00

Raw material inventory cost 216.00

Product inventory cost 201.60

Operating costs 9,250.00

Total 148,532.40

but no more batches of this product can be processed in the campaign because the amounts
of raw materials and the planning horizon time are not sufficient.

Finally, a detailed analysis of the economic results is summarized in Table 11.

5 Conclusions

In this work, the detailed production planning of multistage multiproduct batch plants that
operate in campaign-mode is addressed. Planning and scheduling decisions are modeled
according to this operation mode. In addition, sequence-dependent changeover times and
nonidentical parallel unit sizes are taken into account. The scheduling constraints are based
on a continuous-time representation using the concept of slots. Various equations of the
integrated model have been reformulated in order to attain a MILP model and assure the
global optimality of the solution.

The planning and scheduling decisions are integrated via production, inventory and batch-
ing constraints and the different trade-offs between both decisions levels can be adequately
evaluated. From the planning perspective, the rawmaterials purchase, production, and inven-
tory levels are obtained. From the scheduling perspective, the selection and sizing of the
batches that compose the campaign, the assignment of batches to units and its sequencing,
and the initial and final operation times has been achieved as well as the number of campaign
cycles. The proposed model selects the best campaign configuration with minimum cycle
time that can be executed during the given planning horizon in order to satisfy the demand
limits and maximize the total net profit.

The proposedmodel can be used by the planner as a tool for the decision–making about the
operations management and different options can be assessed. In a stable context, a make to
stock policy can be effectively carried out assuring the appropriate employment of the plant
resources. Through the examples the capabilities of the proposed formulation are shown.
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