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A B S T R A C T

Disruptive events that take place during supply process execution produce negative effects that
propagate throughout a supply chain. Event management systems for supply chains have emerged to
provide functionality for monitoring schedules, managing disruption, and repairing schedules affected
by a disruptive event. A Web service that provides a schedule monitoring functionality for supply chain
event management was developed. This paper provides a framework to allow enterprises that hire this
service to develop simulation models of monitoring processes and evaluate their ability to detect and
anticipate disruptive events. The framework, based on discrete event simulation, is implemented in a
library that can be used for developing and testing monitoring processes by means of a friendly interface.
A marine freight transport process was used as a case study to show how a supply process and its
environment can be modelled and simulated by using the library. Simulation results show the ability of
this approach to anticipate disruptive events and identify critical stages of a supply process in order to
prevent disruptive events.
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1. Introduction

In an integrated supply chain, the overall performance largely
depends on keeping the coordination of schedules for producing
and distributing goods. These schedules are generated by the
planning subsystem of the Enterprise Resource Planning (ERP)
system of each enterprise and are typically represented by
production and distribution orders, where each order represents
a particular instance of a generic supply process.

During the execution of scheduled orders, significant changes
may occur either in the specification of orders or in the availability
of involved resources. These unplanned changes, called disruptive
events, can produce negative effects that propagate throughout the
supply chain, affecting schedules and their coordination [1,2].

The paradigm of robust planning proposes to define buffers
(material, capacity, and time) to absorb changes that may occur
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during the execution of scheduled orders [3]. These buffers allow
achieving a schedule most likely to remain stable during its
execution. This avoids re-planning tasks, which can be costly and
time-consuming, since all enterprises involved in the supply chain
should agree on a new collaborative plan. However, buffers cannot
usually absorb all changes due to the impossibility of forecasting
with certainty the time and place in which disruptive events could
occur and their magnitude.

Under this scenario, Supply Chain Event Management (SCEM)
Systems have emerged [4,5]. SCEM systems should provide
functionality for: monitoring schedules during its execution to
detect disruptive events (reactive monitoring) or to prevent
disruptions before they occur (predictive monitoring); managing
disruption after a disruptive event to check if schedules are still
feasible; and repairing schedules affected by a disruptive event
considering the distributed nature of a supply chain.

Fernández et al. [6], present an Agent-based Monitoring Service
for Management of Disruptive Events in Supply Chains (MSMDE),
which is a Web service that provides the schedule monitoring
functionality of a SCEM system named collaborative management
of disruptive events in supply chains presented in [7]. Enterprises
that hire monitoring Web service MSMDE must provide a
monitoring model of the supply process to be monitored. For
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that, enterprises must develop the monitoring model by using the
abstract modelling language provided by the reference model for
supply process monitoring presented in [8]. This reference model
is a meta-model that specifies the abstract syntax of a modelling
language to represent the static part of the monitoring model of a
supply process [8]. The monitoring model represented in terms of
the reference model is automatically transformed by the Web
service MSMDE into a monitoring process, which is used by the
service for monitoring the supply process.

So, enterprises that hire this Web service must understand the
abstract modelling language provided by the reference model,
which is not easy to understand and use. As Moody states [9] using
an abstract language for model building and testing may be a
difficult task to perform and prone to mistake if a suitable tool is
not available.

The objective of this paper is to provide a framework to allow
enterprises that hire Web service MSMDE to develop simulation
models of monitoring processes and evaluate their ability to detect
and anticipate disruptive events without the need of knowing the
abstract modelling language provided by the reference model. The
framework, based on discrete event simulation, is implemented in
a library that contains a set of simulation elements related to
concepts of the reference model. The library can be used for
developing monitoring processes through a friendly interface,
hiding the abstract modelling language provided by the reference
model. Different monitoring models tailored to supply processes
can be developed and tested by setting input parameters.

The remainder of this paper is structured as follows: Section 2
discusses related works. Section 3 briefly defines the concepts of
the reference model. Section 4 presents the framework and its
implementation in a library. Section 5 describes a case study and
Section 6 presents conclusions and future work.

2. Related works

2.1. Approaches for supply process monitoring

Approaches for reactive monitoring of schedules are based on
capturing information about material resources and/or order
specifications during execution for assessing performance indica-
tors or rule-based arithmetic ratios in order to detect disruptive
events. Indicators are also used to assess the impact of disruption
along the supply chain. Among the proposals for reactive
monitoring, those presented by Bansal et al. [10], Liu et al. [11],
and Winkelmann et al. [12] can be mentioned.

The approach presented by Bansal et al. [10] uses performance
indicators assessed at regular intervals, cause-effect relationship
models to identify the root cause of a disruptive event and
rectification strategies to repair the schedule. Liu et al. [11] present
a methodology that uses Petri nets to formulate supply chain event
rules and analyse cause-effect relationships among events. Events
are classified in the following types: task status-related events,
events produced by a task, and external events. Based on
interactions between partners in the supply chain, events are
identified and rules relating them are defined to represent a supply
chain in order to propagate events, analyse them, and suggest a
solution when a disruption is detected. Winkelmann et al. [12]
present an approach for conceptual modelling of SCEM systems.
The main tasks are supply chain process definition and identifica-
tion of relevant logistical objects where disruptive events could
occur. These objects are used as reference points for monitoring
activities. For each object, arithmetic ratios are defined and
combined with a rule-based expression to detect disruptive events.
Once detected, disruptions are notified to applications or people
for corrective actions.
The main technologies used for tracking and tracing orders and/
or resources during the schedule execution are RFID and GPS [13].
RFID is generally used for monitoring products, pallets, and
machines, and GPS for vehicle location. The massive data stream
coming from a supply chain when each object provides its current
status requires the use of data flow processing technologies. The
main technologies commonly used for this purpose are: complex
processing [14], agents [15], and event-condition-action [16]. A
complex processing technology is a pattern-based event process-
ing. Relevant events are selected by data stream filtering and
matched to predefined patterns to derive complex events that
allow detecting disruptive events. Agents’ technology is a software
application including complex algorithms able to collect up-to-
date data about orders and/or resources and filter them for
capturing relevant information, and with knowledge and reason-
ing capability for identifying disruptive events. The event-
condition-action technology extends traditional databases with
a layer of rules and event detection mechanisms for event
processing. Among the proposals based on data flow processing
technologies, those presented by Meyer et al. [15], and Ko et al. [17]
should be mentioned. Meyer et al. [15] present an agent-based
architecture for collecting up-to-date information of products and
comparing their current status with that planned in orders so as
detect disruptive events. Agents determine the planned status of
products by analysing the schedule information (such as order due
dates and planned transactions and operations that will affect the
product). If a disruption is captured, agents propose solutions or
suggest how to reduce the severity of the problem. Ko et al. [17],
present an agent-based system for monitoring product locations. A
monitoring agent checks product arrivals at nodes specified in the
monitoring plan. If product arrivals are detected within the
planned time period, the monitoring agent visits the next node.
Otherwise, it suspends monitoring and searches for products
deviated from their planned path.

Approaches for predictive monitoring of schedules are based on
capturing information about resources, order specifications, and
environment variables during execution to prevent disruptions
before they occur. Some proposals for predictive monitoring
should be mentioned: those presented by Kim et al. [16],
Fernández et al. [8], and Vlachakis and Apostolou [18]. Kim
et al. [16] propose a rule-based language to develop monitoring
models to predict and prevent business process disruptions before
they occur or detect and repair them once occurred. The rules
defined to capture information of business processes have an
event-condition-action structure extended with other compo-
nents such as contexts in which rules are applicable, preferences
that specify rule priorities to be triggered by events, and frequency
that specifies periods in which rules are checked. Fernández et al.
[8], present an abstract language to develop monitoring models of
supply processes. It is based on cause-effect relationships among
variables that represent features about order specifications,
resources, and the supply process environment. These variables
are monitored in different milestones related to supply process
stages to anticipate or detect disruptive events. To this aim,
predictive or reactive evaluation functions must be defined. These
can be simple mathematical functions or more complex ones such
as Bayesian Networks, Petri Nets, Complex Processing, or rule-
based. Vlachakis and Apostolou [18] define a supply chain event
management framework able to capture events related to
resources, orders, or environment and process them to detect
undesired deviations when the predefined threshold is exceeded.
After a disruptive event is detected, the damaged schedule is
repaired according to predefined rules or decision models.

Languages to develop models for supply process monitoring in
the supply chain context as that proposed by Kim et al. [16] and
Fernández et al. [8] have the advantage of an abstract syntax that
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allows representing all type of monitoring models for different
domains with independence of an implementation technology.
However, as it was highlighted in the Introduction Section,
building and testing models by using an abstract language may
be a difficult task to perform and prone to mistake if a suitable tool
is not available. Then, these proposals should consider the
development of suitable tools that allow using abstract modelling
languages easily.

2.2. Simulation of monitoring process

Simulation is a powerful tool to study systems behaviour at
specified points (milestones). Particularly, discrete event simula-
tion is a suitable tool for simulating supply processes as a network
of stages, operations, resources, and external entities with the aim
of evaluating the ability of a monitoring process to capture and
predict disruptive events. The main reasons for using simulation to
study the supply process monitoring are: (i) availability to
represent the supply process and its dynamics; (ii) availability
to specify the monitoring process by using appropriate simulation
elements that were developed to exempt users from having to
know the abstract modelling language provided by the reference
model; and (iii) availability to test the monitoring process ability to
detect and anticipate disruptive events.

Discrete event simulation is a modelling approach widely used
as a decision support tool in the supply chain context. Tako and
Robinson [19] present an extensive review of approaches that use
simulation to study different supply chain problems. Despite the
large list of contributions, with the exception of the work by
Heinecke et al. [20], the supply process monitoring problem does
not appear as studied. Heinecke et al. [20] analyse the material
flow in a just in time manufacturing system by using a dynamic
model that anticipates material delivery delay through a cause-
Fig. 1. Reference model for m
effect relationship among operational performance indicators.
Discrete event simulation and dynamic system tools are frequently
used to analyse the impact of disruptions in supply chains but not
to test the monitoring process ability to detect and anticipate
disruptions.

3. Reference model for supply process monitoring

The reference model for supply process monitoring (Fig. 1) is
defined by the tuple RfMo = (Et; Rt) where: Et is a set of concepts;
and Rt is a set of allowed relationships between these concepts. The
static view of a Monitoring Model (MoMo) of a supply process is an
instance of the reference model RfMo [6].

A Schedule is a sorted set of orders and resources that specifies
the time period during which each Resource is required by each
Order, and its required capacity and states. It is defined by the tuple
Sch = (R, O, S, E, C) where: R is a set of resources r; O is a set of orders
o; S is a set of order specifications so = <o, quantity, startTime,
endTime> that states the quantity to produce/supply and times in
which the order starts and ends; E is a set of states eo,r,t = <o, r, er, t>
that specify the required state er2 Er of resource r 2 R for order o 2 O
at time t; and C is a set of capacities co,r,t = <o, r, cr, t> that specify the
required capacity cr 2 Cr of resource r 2 R for order o 2 O at time t. Er
is the set of state of resources and Cr is the set of capacities of
resources.

For being fulfilled, each order o 2 O requires the execution of a
production or distribution process. These processes are generically
referred to as supply processes.

A supply process (SupplyProcess) is a sorted set of stages SP, each
stage ps 2 SP involving operations such as production, load, unload,
or transport.

A supply process could be associated with a set of features F,
which are aspects about order specifications, resources required by
onitoring supply process.
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the supply process (port operation time, ship speed), and the
supply process environment (weather conditions, port congestion)
[21]. Each Feature f 2 F is associated with a Variable v 2 V that must
be observed for evaluating the progress of an order execution with
the aim of detecting or anticipating disruptive events. V = S U ErU Cr
U Z is the set of all variables that can be observed by a supply
process monitoring, where Z is a set of environment variable z.

A Milestone m 2 M is a control point that defines a state
(StateMilestone) or time (TimeMilestone) in which a set of variables
will be observed. It is defined by the tuple m = (mt, stv, OVm) where:
mt is the milestone type (state or time); stv is the state or time
value; and OVm2 V is the set of variables to be observed in this
milestone. They can be order specifications so 2 S, capacities cr 2 Cr
of resources r 2 R, states er 2 Er of resources r 2 R, and environment
variables z 2 Z.

Each supply process stage ps 2 SP that has to be monitored
during execution has a defined milestone. So, a supply process
could be associated with a set of milestones M.

The monitoring structure (MonitoringStruture) is defined by the
tuple MS = (M, V, EvFv) where: M is a set of milestones; V is a set of
variables, which can be attribute variables (AttributeVariable) such
as order specifications so2 S, capacities cr2 Cr of resources r 2 R,
states er 2 Er of resources r 2 R, environment variables z 2 Z
(EnvironmentVariable) that may affect a supply process, or target
variables (TargetVariable); and EvFv is a set of evaluation functions,
which can be reactive evaluation functions reacEvFu or predictive
evaluation functions predEvFu.

A target variable (TargetVariable) is used to assess the possible
occurrence of a disruptive event. It is defined by tv = <pv, ov, ev, dc,
de> where: pv is the planned value; ov is the observed value; ev is
an estimated value calculated by using a predictive evaluation
function predEvFu 2 EvFu; dc is the disruption condition
(DisruptionCondition) that defines a threshold value to assess a
disruption; and de is a Boolean variable that specifies if a significant
change in order specifications so 2 S, capacities cr 2 Cr of resources r
2 R, or states er 2 Er of resources r 2 R generates a disruptive event
(DisruptiveEvent).

When the execution of an order o 2 O starts, an initial milestone
m 2 M is activated and current values of variables v 2 OVm are
monitored. These values are used by the target variable for
Fig. 2. Simulation schema of the
analyzing the possible occurrence of a disruptive event. If a
disruptive event occurs, the monitoring process ends. On the other
hand, the next milestone m+ 2 M is selected to continue the supply
process monitoring.

If monitoring is reactive, the target variable uses a reactive
evaluation function reacEvFu 2 EvFu to compare the current
observed value ov of each observed variable v 2 OVm of the current
milestone m 2 M with its planned value pv for calculating its
variation Dv = (ov–pv), and then compare this variation with the
threshold value dc to detect if a disruptive event de has occurred by
using the comparison function: if (Dv � dc 8 v 2 OVm) then
{de = False} otherwise {de = True}.

If monitoring is predictive, the target variable uses a predictive
evaluation function predEvFu 2 EvFu able to infer through cause-
effect relationships an estimated value ev of order specifications
so2 OVm+ in upcoming milestones m+2M from changes in the
planned values pv of any observed variable v2 OVm of the current
milestone m2M. This function is defined as: ev = f(ov, Dcr, Der,
Dcr(z 8 z 2 OVm), Der(z 8 z 2 OVm) 8 r 2 OVm) 8so2 OVm+ where
Dcr = (ov-co,r,t), Der = (ov-eo,r,t). After this, the target variable
compares the estimated value ev with its planned values pv for
calculating the variation of order specifications Dso = (ev–pv) 8so2
OVm+ in upcoming milestones m+2 M, and then it compares these
variations with a threshold value dc to predict if a disruptive event
de could occur by using the comparison function: if (Dso� dc 8so2
OVm+) then {de = False} otherwise {de = True}.

4. Framework for modelling and simulating the supply process
monitoring

The framework is composed of four main levels: Schedule
Execution,Monitoring, External, and Decision-Making (Fig. 2).

The Schedule Execution level consists of two layers: Supply
Process, to represent the supply process SP, and Supply Process
Features, to represent the set of relevant features F involved in the
supply process SP. These features define the set of variables V that
drive the supply process monitoring.

The Monitoring level consists of the Monitoring Process layer,
which represents the monitoring workflow MWf and evaluation
functions EvFs of a monitoring process MoPr [6].
 supply process monitoring.
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The External level is composed of two layers: Planning System, to
represent the planning subsystem of the ERP system that defines
the schedule to be executed, External Entities, to represent the set of
external entities that can affect the supply process and the order
fulfilment.

The Decision-Making level consists of the User/Other External
System layer, which represents users or external systems that
receive output information of the simulation model for deciding if
the monitoring process MoPr behaves as expected. This layer is
Fig. 4. Simulation elements
transversal since it involves supply process information, which
consists of executed orders, delay times and process steps, and
monitoring information, which consists of disruptive events and
other information useful to verify and validate the monitoring
process MoPr under development.

4.1. Simulation elements for modelling the monitoring process

The framework includes a set of simulation elements related to
concepts of the reference model RfMo (Fig.1). They were developed
following fundamentals of discrete event simulation [22] and the
object-oriented paradigm that provides a modular, hierarchical,
and incremental construction of large-scale models [23,24]. Each
element has interfaces to communicate with other simulation
elements and an internal dynamic that defines its behaviour
(Fig. 3). Input and output interfaces are defined by ports and
internal behaviour is specified by internal functions that define
state changes and internal calculus, parameters to configure its
behaviour, and internal variables that perform as buffers and define
the element state.

Simulation elements and interactions between them are
illustrated in Fig. 4. At Schedule Execution level, in the Supply
 and their interactions.
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Process layer, the specialized Supply Process Service element for
capturing the behaviour of each supply process stage ps 2 SP was
defined. So, this simulation element receives an order o 2 O,
processes it, and sends it to the next supply process stage ps+2 SP
through input/output interfaces. A supply process stage ps 2 SP can
be monitored or not. If a supply process stage ps 2 SP must be
monitored, the supply process service has interfaces to plug in
features that define the set of variables to be observed OVm 2 V in
its associated milestone m 2 M. Furthermore, the service has an
interface that allows it to communicate with the related Time/State
Milestone element for evaluating the possible occurrence of a
disruptive event. If a disruptive event de has occurred, the
monitoring process ends. But depending on the nature of the
supply process, it could be stopped and the order must not be
forwarded; otherwise, the order is sent to the next supply process
stage ps+2 SP to continue its execution. When an order o 2 O is
informed, the corresponding milestone m 2 M is activated; then,
the monitoring of order processing takes place. In case a supply
process stage ps 2 SP must not be monitored, the milestone
activation is not verified. Internally, this simulation element keeps
an orders queue while it is processing an order. The time needed to
process an order is given by a probabilistic distribution set.

In the Supply Process Features layer, the Feature element is
specified to capture aspects about order specifications, resources,
and the supply process environment that must be observed for the
monitored supply process stage ps 2 SP. These features define the
set of variables to be observed OVm 2 V in milestone m 2 M
associated to the supply process stage. This simulation element has
an interface to get, from supply process stage ps 2 SP, information
of order o 2 O that is being executed. The element also has an
interface to interact with the corresponding Attribute/Environment
Variable elements that keep observed values of each variable v 2
OVm in timestamps. The feature behaviour responds to a
probabilistic distribution that can be adjusted before simulation.

At the Monitoring level, in the Monitoring Process layer, the main
simulation elements are:

Attribute Variable keeps observed values of a feature that can be
an order specification so 2 OVm, capacity cr 2 OVm or state er 2 OVm

of a resource r 2 R. This simulation element has an interface to
receive, from Time/State Milestone elements, signals to update the
feature value, an interface for making queries to the Feature
element under observation, and an interface to send the observed
current value of the variable v 2 OVm to the Evaluation Function
element, or directly to the Target Variable element if the monitoring
is reactive. The internal behaviour is driven by messages sent by
the Time/State Milestone element, which activates this element
and, in consequence, this element sends messages to the feature to
be observed, saves its current value, and sends it through a
message to either the Evaluation Function or the Target Variable
elements, depending on the kind of monitoring.

Environment Variable: it keeps observed values of an environ-
ment variable z 2 OVm that could affect supply process stage ps 2 SP.
Interfaces and internal operations are the same as those of the
Attribute Variable element.

Time Milestone: it indicates a time point where attribute or
environment variables v 2 OVm must be observed. So, this
simulation element generates a signal to notify the updating of
observed variables. It has a parameter to define the time in which
this signal has to be generated. This simulation element has an
interface to dispatch an updating signal to the observed variable
and another one to communicate with the Supply Process Service
element that represents supply process stage ps2SP related to this
milestone m2M.

State Milestone: it indicates a condition after which attribute or
environment variables v 2 OVm must be observed. This simulation
element checks a condition and, if it is true, dispatches a signal to
observe the value of related variables; otherwise, it continues
waiting. The condition is set as a parameter and can be a value
(simple condition) or a function that returns a Boolean value
(complex condition). Interfaces and internal operations are the
same as those of the Time Milestone element.

Evaluation Function: it uses a predictive evaluation function
predEvFu 2 EvFu for calculating an estimated value ev of order
specifications so 2 OVm+ in upcoming milestones m+2M from
changes in the planned values pv of any observed variable v 2 OVm

of the current milestone m 2 M. This simulation element has an
interface to receive from Attribute/Environment Variable elements
the observed current value of variable v 2 OVm that activates this
element, and an interface to send messages to the Target Variable
element informing the estimated value ev.

Target Variable: For reactive monitoring, it uses a reactive
evaluation function reacEvFu 2 EvFu to compare the current
observed value ov of each observed variable v 2 OVm of the current
milestone m 2 M with its planned value pv for calculating its
variation Dv = (ov–pv) and then compares this variation with the
threshold value dc to detect if a disruptive event de has occurred. To
this aim, it uses the comparison function: if (Dv � dc 8 v 2 OVm)
then {de = False}, otherwise {de = True}. For predictive monitoring, it
compares the estimated value ev received from the Evaluation
Function element with its planned values pv for calculating the
variation of order specifications Dso = (ev–pv)8 so2 OVm+ in
upcoming milestones m+2 M, and then compares these variations
with a threshold value dc to predict if a disruptive event de could
occur. To this aim, it uses the comparison function: if (Dso� dc 8so
2 OVm+) then {de = False}, otherwise {de = True}. This simulation
element has an interface to receive the observed value from
Attribute/Environment Variable elements (if monitoring is reactive)
or the estimated value from the Evaluation Function element
(if monitoring is predictive), and an interface to send a message to
the Disruptive Event element when the disruption condition is
verified. Parameters that can be set are threshold values dc, the
reactive or predictive monitoring choice, and planed values pv.
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Disruptive Event: it sends an event notification to all connected
milestones when the Target Variable element has indicated that the
disruption condition has returned “True” for an order o 2 O. This
simulation element has an interface to receive the message sent by
the Target Variable element when a disruptive event affecting an
order o 2 O has occurred, and an interface to notify all Time/State
Milestone elements of this disruption.

The Evaluation Function element can be defined as a simple
mathematical function or can be supported by techniques such as
Bayesian Networks and machine learning, among others. Finally,
the Disruptive Event Sink element is defined to resume the
information of disruptive events related to orders.

4.2. Metrics

In order to develop a simulation model of a monitoring process
MoPr and assess its ability to detect and anticipate disruptive
events, metrics providing quantitative performance measures for
schedule execution, supply process monitoring and prediction
ability of a monitoring process MoPr must be used.

The schedule execution can be assessed by using the following
two metrics usually employed for this purpose [25–27].

On-Time Delivery: it is the percentage of orders delivered by the
requested delivery date, as indicated in the order specification,
related to all orders delivered during a time period (Eq. (1)).

On Time Delivery ¼
number of orders delivered by requested date

total number of delivered orders

0
B@

1
CA� 100
Fig. 6. Sea route.Red
Order Turnaround Time: it is the average amount of time taken
by a facility to fulfil an order, from the date on which each order is
received by the supply chain until the date on which the order is
shipped to customer. This metric defines the processing efficiency
of a set of orders by adding the elapsed time between the reception
date and the shipping date of each order (Eq. (2)).

Order Turnaround Time ¼

Xn

i¼1

time to process orderi

total number of processed orders
ð2Þ

where n = is the total number of processed orders.
The supply process monitoring can be assessed by the following

two metrics [24,26]:
Orders affected by Disruptive Events: it is the amount of delayed

or incorrectly fulfilled orders due to a disruptive event in a time
period (Eq. (3)).

Orders withDE ¼ total number of processed orders ð3Þ
Delivered Orders: it is the amount of correctly fulfilled orders

(Eq. (4)).

Delivered Orders ¼ total number of f illed orders ð4Þ
The prediction ability of a monitoring process MoPr can be

assessed by the following three metrics based on the contingency
table:

Exactitude: it is the percentage of orders that have been
correctly predicted in relation to all orders delivered during a time
period (Eq. (5)).

Exactitude ¼ TP þ TNð Þ
TP þ TN þ FP þ FNð Þ � 100 ð5Þ
uce this figure.



Fig. 7. Supply process MFTPr: route Argentina-Uruguay-Brazil.

Table 1
Correspondence between supply process and simulation elements.

Element of the Supply Process MFTPr Simulation Element

Port operation Service
Travel (seen as process) Service
Roadstead waiting Delay
Port queue Queue
Access channel Conveyor
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Accuracy: it is the percentage of orders affected by disruptive
events that have been correctly predicted in relation to all orders
that have been predicted as affected by disruptive events (Eq. (6)).

Accuracy ¼ TP
TP þ FPð Þ � 100 ð6Þ

Prediction Recall: it is the percentage of orders affected by
disruptive events that have been correctly predicted in relation to
all orders affected by disruptive events (Eq. (7)).

Recall ¼ TP
TP þ FNð Þ � 100 ð7Þ

where:
TP (True Positive) is the amount of orders affected by disruptive

events that have been correctly predicted.
TN (True Negative) is the amount of orders not affected by

disruptive events that have been correctly predicted.
FP (False positive) is the amount of orders not affected by

disruptive events that have been wrongly predicted as disrupted.
FN (False negative) is the amount of orders affected by disruptive

events that have been wrongly predicted as not disrupted.
These metrics allow understanding the dissemination of

disruptions and tracing the operational performance of a
monitoring process MoPr for early decision-making.

4.3. Implementation: monitoring process library

The implemented framework includes all simulation elements
needed to represent the monitoring process of a supply process.
That is, elements to represent the monitoring workflow MWf and
evaluation functions EvFs of a monitoring process MoPr. The
framework was implemented by using AnyLogic [28] since it
provides a flexible modelling language that allows capturing the
complexity and dynamics of supply processes and the detection of
disruptive events at different detail levels. Furthermore, AnyLogic
provides graphical interface, tools, library objects, and support for
the object-oriented model design paradigm.

The framework includes the Supply Chain Monitoring library
(Fig. 5), which requires the Enterprise Library of AnyLogic. This
library implements previously defined simulation elements, their
interfaces and internal behaviour, and specialized classes that were
implemented by using the JAVA programming language.

The library is composed of six elements to represent the static
view StaticView of a monitoring model MoMo as an instance of the
reference model RfMo (Fig. 1). These elements, which define the
core of the library, are: Disruptive Event, Target Variable, State
Milestone, Time Milestone, Attribute Variable, and Environment
Variable. The library also includes the support elements: SC Service,
for modelling the supply process; Feature, for modelling supply
process features under monitoring; Disruptive Event Sink, for
modelling statistic disruptive events; and Evaluation Function and
Evaluation Function with Two Entries, for prediction, which could be
linked to external prediction tools or techniques. All elements were
implemented as Active Object Class provided by AnyLogic. Two
additional classes were internally developed: Order, which models
the order sent by the planning subsystem of the ERP; and
MonitoringMsg, which represents messages sent to and received by
the developed simulation elements. The library is a package that
can be added as a tool bar providing users with a graphical
interface.

5. Case study: marine freight transport process

This section presents a case study consisting of the monitoring
process of a marine freight transport process for predicting
disruptive events. The simulation model is composed by two main
parts: Marine Freight Transport Process (MFTPr), which is the
supply process under monitoring, and Marine Freight Transport
Monitoring Process (MFTMoPr).
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5.1. Marine freight transport process MFTPr

The case study is a traditional marine freight transport process
carried out by South American industries. The sea route Bahia
Blanca-Montevideo-Rio Grande Do Sul that links Argentina,
Uruguay, and Brazil, is used for transporting a variety of goods,
raw materials, and other merchandises among these countries
(Fig. 6).

The port of Bahía Blanca (Argentina) gathers the major part of
exports coming from Patagonia and the major part of the cereal
grain production from Buenos Aires and La Pampa. This port has
two main foreign-trade zones, which have several terminals
specialized in different products: cereal grain, general load,
containers, oil, and fuel. The access channel is 97 km long in
which the maximum navigation speed of ships is 10 knots. The port
of Montevideo (Uruguay) has a main terminal prepared to receive
general cargo ships, container ships, bulk carriers, and oil tankers,
among other kinds of ships. The access channel is 42 km long in
which the maximum navigation speed of ships is 10 knots. The port
of Rio Grande do Sul (Brazil) is prepared to handle container ships
and bulk carriers. It has several terminals for general cargo and
other kinds of ships. The access channel is 0.2 km long in which the
maximum navigation speed of ships is 8 knots.

Supply process MFTPr involves ship loading at the port of Bahía
Blanca. After 38 h of navigation, an intermediate stop in the port of
Montevideo is planned, where the ship might be loaded or
unloaded, depending on operations defined in the order or only
proceed with the formality required to continue the travel. After
leaving the port of Montevideo, the ship travels 28 h to the port of
Rio Grande do Sul. This is the last stop, where the ship is unloaded
(Fig. 7). In this supply process, a disruptive event can occur due to
delays in port operations or along the journey, which cause a delay
in the arrival of goods required by the distribution processes taking
place in different locations.

Elements of the supply process MFTPr and their corresponding
simulation elements are detailed in Table 1. The set of elements are
connected for modelling the ports of Bahia Blanca, Montevideo,
Fig. 8. Simulation Environment: m
and Rio Grande do Sul, and the travels required by the planned
route. These elements are illustrated by the simulation tool in
Fig. 8. In the port of Bahia Blanca (prefix BB), only ship departure is
modelled, so operation time before leaving (BBHarborOperation) is
included. In the ports of Montevideo (prefix M) and Rio Grande do
Sul (prefix RG), the modelled elements are: roadstead
(MRoadsteadWaiting and RGRoadsteadWaiting), the port queue
(MHarborQueue, and RGHarborQueue), the access channel (acces-
sChannelToM, and accessChannelToRG), and the port operation itself
(MHarborOperation, and RGHarborOperation).

5.2. Monitoring process MFTMoPr

A monitoring process MoPr is defined according to the
complexity and features related to the supply process to be
monitored. Features of the supply process MFTPr are described in
Table 2. Features BBOperationTime, MOperationTime, and RGOper-
ationTime are defined to capture the operation time at the port.
Wind speed can affect the journey from Bahia Blanca to
Montevideo by reducing ship navigation speed or even forcing
the ship to stop. So, the windSpeedSeaTravelToM feature is specified
for monitoring wind speed. The general condition of the sea
between Montevideo and Río Grande do Sul can be changeable due
to the variability of maritime currents in the first part of the route.
Thus, shipSpeedSeaTravelToRG feature for monitoring ship speed
and nauticalMileSeaTravelToRG feature for monitoring nautical
miles travelled by the ship during the trip are specified.

The monitoring process MFTMoPr is defined by associating
features of supply process MFTPr to variables that keep observed
values in a time stamp (Table 2). The observedWindSpeedSeaTra-
velToM environment variable is specified for monitoring wind
speed; and attribute variables observedBBOperationTime, observ-
edOperationTimeInM, observedOperationTimeInRG, observedShip-
SpeedSeaTravelToRG, and observedNauticalMileSeaTravelToRG are
specified for monitoring the operation time in ports, ship speed,
and nautical miles travelled respectively.
onitoring process MFTMoPr.



Table 2
Correspondence between MFTMoPr and simulation elements.

MFTMoPr Elements Simulation Element

Port operation time Feature
Wind speed Feature
Ship speed Feature
Nautical mile Feature
Observed port operation time Attribute Variable
Observed wind speed Environment Variable
Observed ship speed Attribute Variable
Observed nautical mile Attribute Variable
Control point State/Time Milestone
Target and disruption condition Target Variable
Ship delay that could imply delay of delivery Disruptive Event
Delay estimation Evaluation Function
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Milestones that define the time in which the monitoring is
executed (Table 2) are defined. State milestones M1BBDeparture,
M3MArrival, and M5RGArrival are defined in each port for
monitoring load, unload, customs process, and other specific
operations, except for ships’ arrival to the port. These milestones
are activated when a ship starts its operation. Two time milestones
are defined to monitor the travel: M2after16hr for the stretch from
Bahia Blanca to Montevideo, being activated 16 h after the time at
which the ship sets sail; and M4after12hr, for the stretch from
Montevideo to Río Grande do Sul, being activated 12 h after the
time at which the ship sets sail.

In the monitoring process MFTMoPr, the objective is to monitor
the cumulative delay that can affect the order fulfilment. So,
TimeDelay target variable and ShipIsLate disruptive event were
deined (Table 2). Parameters of TimeDelay target variable were set
in 2 h for the PlannedValue and 15 h for the Threshold. In this case,
tolerance is up to 5% of the total hours [29]. This percentage
represents the total cumulative delay tolerated by this kind of
supply process and was defined according to the total time
required for the whole itinerary from Bahía Blanca to Río Grande
do Sul. The ShipIsLate disruptive event sends a signal and records
the disruption when it is anticipated by the predictive evaluation
function PredEvFu.

The cumulative delay is defined according to evaluation
functions EvFs programmed for this example (Table 2). In this
case, the predictive evaluation function PredEvFu was programmed
as a simple mathematical function.

The simulation objective is the cumulative delay that can affect
the order fulfilment. To this aim, the simulation contrasts the order
fulfilment under normal conditions with the disruption caused by
the cumulative delay of delivery.

5.3. The environment simulation model

External systems such as the planning subsystem of ERP
systems that provide the schedule of orders to be processed are
modelled as sources that generate the “load” on the supply process
under monitoring (Table 3). Ships that can arrive to a port but are
not under monitoring are modelled as sources that affect the time
of entry into the port (Table 3). Ships that can depart from a port
but are not under monitoring are modelled as sink that affect the
departure time from the port, since these departures are not
counted into the operation time of ports (Table 3). Those
responsible of either production or logistic areas who make
decisions according to the information of the supply process and
disruptive events are also modelled as sink (Table 3).

5.4. Experimental setup

Input parameters allow configuring experiments based on the
domain. Parameters values can be adjusted to the needs and
estimated from previous experiences, historical data, or informa-
tion of the data base of involved systems [30–33]. For the case
study, the following parameters were set:

� Order: start date, end date (302 h in average after start date,
considering a threshold setting by the user), description,
quantity (load), and additional control information.

� Interarrival time: the arrival of orders responds to uniform
distribution functions because scheduled orders were simulated
to generate the load. So, to generate a significant load for
validating the monitoring process, the time between orders was
low, receiving an order each ten hours.

� Services behaviour: a normal distribution is set up to model the
service time with mean and standard deviation calculated from
statistics of port operations. Travel time in each stretch of the
route involved in this supply process responds to a normal
distribution, also with mean and standard deviation taken from
estimated travel times. The internal queue capacity was limited
according to the operation capacity of ports.

� Roadsteads waiting: a normal distribution is defined with mean
and standard deviation calculated following statistical waiting
times in the roadstead of ports.

� Port queues: queues in ports (Montevideo and Río Grande do Sul)
were configured with limit capacity according to characteristics
of ports entry.

� Access channels: length of access channels and maximum ship
speed are defined according to that previously detailed.

� Features behaviour: the operation time in each port includes
loading and unloading, customs process, and other specific
operations. This time was set as a normal distribution with a
mean and standard deviation calculated from historical data of
each port. Wind speed has been represented with a triangular
distribution with the major probability in a defined value
corresponding to the Beaufort scale. Ship speed was configured
following a normal distribution with a mean value calculated by
a function that divides the total miles and the travel time (time in
which the milestone activates). Nautical miles travelled by the
ship during the trip is defined with a normal distribution, where
the mean value is dynamically calculated from the speed at
which the ship is coming multiplied by the time in which the
milestone indicates the measurement (12 h after the time the
ship sets sail).

� Threshold: maximum time delay to consider a disruptive event.
� Planned value: in this example, the planned time delay was 2 h.
� Milestones conditions/time frequencies: state milestones were
configured by defining a conditional function that returns the
value “true” each time the ship enters a port for starting
operations. The time of time milestones is defined after the ship
sets sail. In the stretch Bahía Blanca-Montevideo the time was set
as the departure date plus 16 h and in the stretch Montevideo-
Río Grande do Sul the time was set as the departure date plus
12 h.

Orders were sequentially processed to have a major control over
each of them that arrived to be processed. Orders were monitored
over six months. The simulation was run several times by using
different seeds to set the generator elements.

5.5. Simulation results

Five simulation runs with several replications for each of the
four Threshold values were performed. Results of average values of
simulation outputs for the monitoring process MFTMoPr are
compared with simulation outputs of the supply process MFTPr to



Table 3
Correspondence between environment and simulation elements.

Environment Element Simulation Element

External entities from system Source
Other ships arrival Source
Travel end (supply process) Sink
Disruption (disruptive events) Disruptive Event Sink
Other ships departure Sink

Table 5
Prediction errors of the monitoring process.

Threshold TP TN FP FN

3 22.6 17.0 13.6 0.8
6 20.2 21.0 11.6 1.2

15 13.8 32.4 6.6 1.2
18 12.2 35.4 5.2 1.2
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validate monitoring predictions by using the metrics defined in
Subsection 4.2.

On average, 432 orders per simulation run were received. From
them, 54 orders in average were delivered; other orders were in
process when simulation finished, i.e. after an elapsed time of
180 days.

Average values of the metrics of the analysed supply process
MFTPr were On-Time Delivery = 52.85% (Eq. (1)) and Delivered
Orders = 54 orders (Eq. (4)). Table 4 shows average values of Order
Turnaround Time (Eq. (2)), Orders affected by Disruptive Events
(Eq. (3)), and the simulation time for four different threshold
values. Table 4 shows that the amount of orders affected by
disruptive events decreased from 23.4 to 13.4 as the specified time
delay to consider a disruptive event (threshold) was increased
from 3 to 18 h.

From simulation results, the contingency Table with average
values of prediction errors of the monitoring process MFTMoPr for
each threshold value was generated (Table 5).

Based on the contingency table, the average values of the
metrics of monitoring process MFTMoPr were assessed. The ability
of the monitoring process to predict orders affected by disruptive
events can be analysed from the average values of Exactitude
(Eq. (5)), Accuracy (Eq. (6)), and Recall (Eq. (7)) summarized in
Table 6. Table 6 shows that the monitoring process predicted the
orders affected by disruptive events with an exactitude that
increased from 0.73 to 0.88 as the specified time delay to consider a
disruptive event (threshold) was increased from 3 to 18 h. For
threshold = 3, 62% of the orders predicted as affected by disruptive
events by the monitoring process were actually affected by
disruptive events. This percentage increased to 70% for threshold =
18; while 97% of orders affected by disruptive events were
correctly predicted by the monitoring process for threshold = 3,
and 91% for threshold = 18.

Such accuracy indicates that the monitoring process will issue
alerts about orders that might be potentially affected by a
disruptive event, when in fact between 30 and 38% of them
(depending of the threshold value) will end without disruption.
This imprecision is not of significant concern since they result in
warnings that are not confirmed.

The recall, however, implies that the monitoring process will
not issue alerts about orders that will be affected by disruptive
events. This fact is more disturbing but, for the present case, this
failure will vary between 3 and 9% (depending on the threshold
value). Namely, between 91 and 97% of the orders affected by a
disruptive event will be alerted, which is a range of values that can
be considered as acceptable.
Table 4
Execution schedule and supply process monitoring metrics.

Threshold [h] Orders affected by Disruptive Events 

3 23.4 

6 21.4 

15 15.0 

18 13.4 
The ability of the monitoring process to predict orders affected
by disruptive events depends on the prediction function being
used. Prediction functions based on models with greater predictive
power than that used in this study, for example Bayesian Networks,
could improve the monitoring process performance (this issue
being out of the scope of this proposal).

Simulations were run on a notebook computer with a Pentium
5i processor and 8 GB of RAM. The simulation time was 441 min on
average (Table 4). It is important to highlight that the simulation
involves three levels of complexity, which imply a lot of
components and variables as previously explained.

5.5.1. Analysis objectives
The framework for modelling and simulating the supply

process monitoring based on the reference model RfMo allows
modelling, simulating, and validating a monitoring process MoPr
for each order o2O involved in a schedule Sch. It is able to detect
disruptive events affecting any order specifications so2S, capacities
cr2Cr, or states er2Er of resources r2R, or to anticipate disruptive
events affecting any order specifications so2S.

5.5.2. Scalability
The framework was implemented in a library which provides a

set of simulation elements following fundamentals of discrete
event simulation and the object-oriented paradigm [22,23]. Each
element is an embedded object that may embed other objects from
simple to complex elements, encapsulating the internal behaviour
(dynamics) and communicating through its interfaces. This type of
modelling allows evolving into modelling and simulation of
complex monitoring process MoPr. Evaluation functions used in
the case study involves simple mathematical calculus, but other
prediction techniques could be supported such as Bayesian
Networks, Petri Nets, CEP, or a rule language.

5.5.3. Reusability
The supply process, monitoring process MoPr and its environ-

ment, as well as, prediction algorithms that have been previously
defined and tested could be reused by others enterprises that hire
monitoring web service MSMDE. By setting parameters of
simulation elements, it is possible to add or delete some of them
to achieve a new simulation model of supply process monitoring.

5.5.4. Usability
The framework allows generating simulation models of

monitoring processes MoPr through a user-friendly interface
without the need of knowing the abstract language provided by
Order Turnaround Time [h] Simulation Time [min]

299.87 453.04
303.98 454.84
301.81 358.00
301.98 500.22



Table 6
Exactitude, precision, and recall of the monitoring process.

Threshold Disruptive Event Prediction

Exactitude Accuracy Recall

3 0.73 0.62 0.97
6 0.76 0.64 0.94

15 0.86 0.68 0.92
18 0.88 0.70 0.91
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the reference model RfMo. The developed simulation elements are
graphical representation tools. They make this framework easy to
be learnt and used by those who are in charge of hiring monitoring
web service MSMDE for an enterprise.

5.5.5. Input parameters
The simulation model requires the configuration of input

parameters about supply processes, planned values of orders and
resources, and environment data. Data about supply processes are
obtained from historical data available in the domain. Data about
environment may be obtained from web services that provide
weather forecasts and road traffic conditions. Planned orders and
resources are obtained from production and distribution schedules
in the data base of the planning subsystem of ERP systems. And the
execution values are obtained from the data base of the execution
subsystem of ERP systems, in which disruptive events are
registered.

6. Conclusions

The presented framework allows for the responsibility of
enterprises that hire the monitoring web service MSMDE to
generate simulation models of monitoring processes through a
user-friendly interface, without the need of knowing the abstract
language provided by the reference model RfMo. The library
implemented by the framework allows representing static and
dynamic parts of a supply process monitoring model through
concepts of the reference model RfMo.

Metrics providing quantitative performance measures enable
users to develop and test different monitoring processes until
reaching one that best represents their supply process. So,
monitoring models to be provided to the web service MSMDE
could be tested suitably.

Simulation models generated with the library are encoded in
JAVA. So, models can be exported, allowing users to employ other
simulation tools or embed simulation models.

The marine freight transport process allowed showing how a
supply process and its environment can be modelled and
simulated by using the library. Simulation results show the
approach ability to anticipate disruptive events. Also, critical stages
of a supply process could be identified in order to prevent
disruptive events. For example, it is possible to identify if a port
operation is requiring more time than planned and if this can
produce significant ship delays.

While for the case study a simple function was used for
predicting disruptive events, more complex functions based on the
best prediction techniques or probabilistic models could be
developed to be included in the library so as to improve the
attained results. Future work will be aimed at this direction.
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