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Technical Note

Free vibrations of a cantilever beam with a
spring–mass system attached to the free end
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Abstract

An exact solution for the title problem is obtained using the Bernoulli–Euler theory of
beam vibrations. Natural frequencies are obtained for a wide range of the intervening physical
parameters. The problem is of interest in naval and ocean engineering systems since in order
to avoid dangerous resonance conditions the designer must be able to predict natural fre-
quencies of the overall mechanical system: structure–motor and its elastic mounting. 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transverse vibrations of a cantilever beam carrying a concentrated mass have been
studied by several researchers (Haener, 1958; Lee, 1973; Laura et al., 1974). All these
studies deal with the situation where the mass is rigidly attached to the beam tip.

However, in many instances the mass is elastically attached to the structural
element, the reason for this being the fact that a motor or engine is mounted on an
elastic foundation or simply because the connection of the mass to the beam does
possess elastic properties (Laura et al., 1977).

The present study deals with the analysis of the mechanical arrangement depicted
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in Fig. 1 and it was motivated by the preliminary design of a cantilever structure
supporting a motor in the case of an offshore platform.

2. Analysis of the problem

It is assumed that the problem under consideration is governed by the classical
Bernoulli–Euler theory. Accordingly the differential system is described by the par-
tial differential equation

∂4w
∂x̄41

rA0

EI
∂2w
∂t2

50 (1)

which in the case of normal modes becomes

d4W
dx̄4 2

rA0

EI
w2W50 (2)

wherew(x̄,t)=W(x̄)eiwt.The boundary conditions atx=L are

W(L)5
dW
dx

(L)50 (3)

while at x̄=0 one has

d2W
dx̄2 (0)50 (4a)

and

2EI
d3W
dx̄3 (L)5F (4b)

whereF is the force transmitted to the beam through the spring defined by its con-
stantk.

Fig. 1. Structural system under study.



935C.A. Rossit, P.A.A. Laura / Ocean Engineering 28 (2001) 933–939

Referring to Fig. 2 one determinesF in the following fashion (Laura et al., 1977).
Let z1 be the displacement of the massM andz2 the one corresponding to the other
end of the spring. Accordingly one has

M
d2z1

dt2
5k(z22z1) (5)

Defining

z5z22z1 (6)

and replacing in Eq. (5) one obtains

M
d2z2

dt2
5kz1M

d2z
dt2

(7)

and since

z25W(0) eiwt (8)

substituting in Eq. (7) results in

M
d2z
dt2

1kz52w2MW(0) eiwt (9)

whose particular solution is

Fig. 2. Analysis of the discrete system attached to the beam tip.
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z5
w2MW(0)
w2M−k

eiwt (10)

Accordingly

F5kz5
w2MW(0)

w2
M
k

−1
eiwt (11)

and the boundary condition Eq. (4b) becomes

2EI
d3W
dx3 (0)52

w2MW(0)

1−w2
M
k

(12)

The solution of Eq. (2) is:

W(x)5A cosbx1B sinbx1C coshbx1D sinhbx (13)

where

x5
x̄
L

and b25!rA0

EI
w L2

Substituting Eq. (13) in the governing boundary conditions one obtains the determi-
nantal equation
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where
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M
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and r5
k
EI
L3

.

Expansion of the determinantal Eq. (14) leads to the following transcendental
expression in the frequency coefficients

2cos2 b22cosb coshb2cosh2 b1
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Table 1
Values ofbi (i=1, . . ., 6) for r=0.1

M 0.2 0.4 0.6 0.8 1.0 1.2 1.4 5 10

b1 0.83377 0.70122 0.63366 0.58970 0.55772 0.53287 0.51273 0.37299 0.31364
b2 1.8907 1.8904 1.8903 1.8902 1.8902 1.8902 1.8902 1.8901 1.8901
b3 4.6951 4.6951 4.6951 4.6951 4.6951 4.6951 4.6951 4.6951 4.6951
b4 7.8550 7.8550 7.8550 7.8550 7.8550 7.8550 7.8550 7.8550 7.8550
b5 10.996 10.996 10.996 10.996 10.996 10.996 10.996 10.996 10.996
b6 14.137 14.137 14.137 14.137 14.137 14.137 14.137 14.137 14.137

2sin2b2
2mb cosb sinhb

1−
mb4

r

1sinhb50 (15)

3. Numerical results

The algorithmic procedure was first applied to the case of the bare cantilever beam
and excellent agreement with the exact results available in the literature was achiev-
ed.

Table 1 depicts the square root of the first six frequency coefficients,
4√rA0/EI w1/2

i L, for r=0.1 andm=0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 5 and 10. The first
line of the Table contains the frequency coefficients of the discrete system altered
by the presence of the beam. The remaining five lines show the frequency coefficients
of the continuous system modified by the presence of the spring–mass system. As
expected: the parameterm carries considerable weight on the first frequency coef-
ficient, very little on the second and is practically negligible on the remaining.

Table 2 deals with the caser=1 for the same values ofm. The value ofm possesses
influence now upon the first three frequency coefficients although it is very small
upon the third natural frequency.

Table 2
Values ofbi (i=1, . . ., 6) for r=1

m 0.2 0.4 0.6 0.8 1.0 1.2 1.4 5 10

b1 1.3609 1.1584 1.0505 0.97925 0.92705 0.88633 0.85322 0.62187 0.52312
b2 2.0553 2.0305 2.0232 2.0197 2.0177 2.0164 2.0154 2.0115 2.0107
b3 4.7039 4.7038 4.7038 4.7038 4.7038 4.7038 4.7038 4.7038 4.7038
b4 7.8568 7.8568 7.8568 7.8568 7.8568 7.8568 7.8568 7.8568 7.8568
b5 10.996 10.996 10.996 10.996 10.996 10.996 10.996 10.996 10.996
b6 14.138 14.138 14.138 14.138 14.138 14.138 14.138 14.138 14.138



938 C.A. Rossit, P.A.A. Laura / Ocean Engineering 28 (2001) 933–939

Table 3
Values ofbi (i=1, . . ., 6) for r=10

m 0.2 0.4 0.6 0.8 1.0 1.2 1.4 5 10

b1 1.5907 1.4296 1.3249 1.2495 1.1914 1.1446 1.1057 0.81854 0.69069
b2 3.0508 2.8577 2.7873 2.7510 2.7289 2.7141 2.7034 2.6571 2.6480
b3 4.8041 4.7988 4.7971 4.7962 4.7957 4.7954 4.7952 4.7942 4.7940
b4 7.8759 7.8758 7.8757 7.8757 7.8757 7.8757 7.8757 7.8757 7.8757
b5 11.003 11.003 11.003 11.003 11.003 11.003 11.003 11.003 11.003
b6 14.141 14.141 14.141 14.141 14.141 14.141 14.141 14.141 14.141

In the case of Table 3 (r=10) the value ofm influences the first four frequency
coefficients (admittedly: very small on the fourth frequency coefficient). The second
frequency coefficient corresponds now to the spring–mass system modified by the
presence of the beam.

Finally the situation where the mass is rigidly attached to the structural element
is considered in Table 4. Obviously the first frequency coefficient corresponds now
to the beam-concentrated mass system (the discrete system does possess, now, infi-
nite natural frequency). The eigenvalues are in excellent agreement with those
obtained in the literature (Laura et al., 1974).

Modal shapes form=1 and r=0.1, 1 and 10 are depicted in Fig. 3. For case (a),
r=0.1, the beam exhibits very small displacement amplitude in correspondence with
the first mode since the discrete system vibrates considerably.

When r=1, case (b), the beam in its first mode acquires considerable vibrational
behavior when compared with case (a). The beam motion is largely amplified when
r=10, case (c). For this situation the discrete system exhibits minor independent
dynamic performance.
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Table 4
Values ofbi (i=1, 2, . . ., 5) forr→`

m 0.2 0.4 0.6 0.8 1.0 1.2 1.4 5 10

b1 1.6164 1.4724 1.3757 1.3041 1.2479 1.2021 1.1636 0.87002 0.73578
b2 4.2671 4.1444 4.0866 4.0531 4.0311 4.0157 4.0042 3.9500 3.9385
b3 7.3184 7.2155 7.1725 7.1490 7.1341 7.1239 7.1164 7.0825 7.0756
b4 10.402 10.318 10.285 10.267 10.257 10.249 10.244 10.220 10.215
b5 13.507 13.437 13.410 13.396 13.388 13.382 13.378 13.359 13.355
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Fig. 3. Modal shapes form=1 andr=0.1, 1 and 10.
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