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Abstract
In spite of considerable evidence on the regulation of immu-
nity by thyroid hormones, the impact of the thyroid status in
tumor immunity is poorly understood. Here, we evaluated the
antitumor immune responses evoked in mice with different
thyroid status (euthyroid, hyperthyroid, and hypothyroid) that
developed solid tumors or metastases after inoculation of syn-
geneic T lymphoma cells. Hyperthyroid mice showed in-
creased tumor growth along with increased expression of cell
cycle regulators compared to hypothyroid and control tumor-
bearing mice. However, hypothyroid mice showed a higher
frequency of metastases than the other groups. Hyperthyroid

mice bearing tumors displayed a lower number of tumor-
infiltrating T lymphocytes, lower percentage of functional
IFN-γ-producing CD8+ T cells, and higher percentage of
CD19+ B cells than euthyroid tumor-bearing mice. However,
no differences were found in the distribution of lymphocyte
subpopulations in tumor-draining lymph nodes (TDLNs) or
spleens among different experimental groups. Interestingly,
hypothyroid TDLN showed an increased percentage of regu-
latory T (Treg) cells, while hyperthyroid mice displayed in-
creased number and activity of splenic NK cells, which fre-
quency declined in spleens from hypothyroid mice.Moreover,
a decreased number of splenic myeloid-derived suppressor
cells (MDSCs) were found in tumor-bearing hyperthyroid
mice as compared to hypothyroid or euthyroid mice. Addi-
tionally, hyperthyroid mice showed increased cytotoxic activ-
ity, which declined in hypothyroid mice. Thus, low levels of
intratumoral cytotoxic activity would favor tumor local
growth in hyperthyroid mice, while regional and systemic
antitumor response may contribute to tumor dissemination in
hypothyroid animals. Our results highlight the importance of
monitoring the thyroid status in patients with T cell
lymphomas.

Key messages
& T cell lymphoma phenotype is paradoxically influenced

by thyroid status.
& Hyperthyroidism favors tumor growth and hypothyroid-

ism rises tumor dissemination.
& Thyroid status affects the distribution of immune cell

types in the tumor milieu.
& Thyroid status also modifies the nature of local and sys-

temic immune responses.

Keywords Tcell lymphoma . Thyroid hormones .

Proliferation . Apoptosis . Antitumor immune response

Electronic supplementary material The online version of this article
(doi:10.1007/s00109-015-1363-2) contains supplementary material,
which is available to authorized users.

* G. A. Cremaschi
graciela_cremaschi@uca.edu.ar; gacremaschi@gmail.com

1 Instituto de Investigaciones Biomédicas (BIOMED), Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET),
Facultad de Ciencias Médicas, Pontificia Universidad Católica
Argentina (UCA), Buenos Aires, Argentina

2 Departamento de Química Biológica, Facultad de Ciencias Exactas y
Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos
Aires, Argentina

3 Laboratorio de Inmunopatología, Instituto de Biología y Medicina
Experimental (IBYME), CONICET, Buenos Aires, Argentina

4 Area de Investigación, Instituto de Oncología BAngel H. Roffo^,
UBA, CONICET, Buenos Aires, Argentina

5 Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica
(FFyB), UBA, Buenos Aires, Argentina

J Mol Med
DOI 10.1007/s00109-015-1363-2

http://dx.doi.org/10.1007/s00109-015-1363-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s00109-015-1363-2&domain=pdf


Introduction

Recent evidence suggests that thyroid hormones (THs) are
involved in cellular transformation, tumorigenesis, and metas-
tasis, suggesting their relevant role in tumor biology [1]. Al-
though it was demonstrated that THs regulate tumor cell phys-
iology in vitro [2–5], the association between thyroid status
and cancer has not been established. Epidemiological studies
suggest tumor-promoting effects of THs, as hyperthyroidism
was associated with a higher risk for ovarian [6], pancreatic
[7], lung [8], and prostate [8] cancers, while hypothyroidism
was associated with a slower development of invasive breast
cancer [9]. However, a greater prevalence of hypothyroidism
was found in patients with hepatocellular carcinoma, suggest-
ing that TH deficit would be a potential risk factor for liver
carcinogenesis [10, 11]. Moreover, the use of levothyroxine
was associated with a significantly reduced risk of colorectal
cancer [12], but TH supplementation of hypothyroid patients
increased the growth rate of other types of solid tumors [13].
However, a recent meta-analysis showed no significant asso-
ciation between hypothyroidism and the risk for breast cancer
[14]. Experimental tumor models in hypothyroid or hyperthy-
roid animals showed no clear-cut evidence of thyroid status
effects on tumor progression. Reduced growth and prolonged
host survival were described in hypothyroid with respect to
control tumor-bearing animals [15]. Similar findings were re-
ported for human prostate and lung adenocarcinoma xeno-
grafts in athymic nude mice [15, 16]. Martinez-Iglesias et al.
[17] showed that hypothyroidism resulted in a decreased rate
of tumor growth but an increased development and number of
metastasis in murine xenograft models of human
hepatocarcinoma and breast cancer.

However, little information is available on the effects of
thyroid status on lymphoid malignancies. Recently, we have
studied the modulatory action of thyroid status on the in vivo
growth of murine T lymphoma cells [18]. We found that hy-
perthyroid animals exhibited a higher growth rate and an ear-
lier appearance of solid tumors than euthyroid or hypothyroid
mice and this effect was mainly related to increased
vasculogenesis [18]. Additionally, we have demonstrated that
TH-activated signaling, via its membrane receptor, promoted
human Tcell lymphoma (TCL) proliferation and angiogenesis
by upregulating VEGF [19]. However, the impact of the thy-
roid status on tumor immunity has not been explored. This is
particularly important given the impact of hypothyroidism on
suppression of antibody- and cell-mediated immune responses
and the contrary effects of hyperthyroidism [20, 21].

The immune system has a dual role in cancer development
and progression. It can eliminate malignant cells via the
tumor-suppressive activity of natural killer (NK) cells, con-
ventional dendritic cells, and cytotoxic T lymphocytes. But,
it can also promote tumor growth and spreading, mainly by
downregulating the activity of antitumor effector cells; these

effects are mainly mediated by plasmacytoid and tolerogenic
dendritic cells, myeloid-derived suppressor cells (MDSCs),
and different types of regulatory T (Treg) lymphocytes [22].
Compelling evidence suggests that immune cells infiltrating
the tumors and their soluble factors contribute to the biology
of many cancers and are associated with the clinical outcome
of the disease. In fact, tumor infiltration by NK or Th1/CD8
cytotoxic T cells correlated with good prognosis in various
cancer types [23, 24].

Despite the differences observed in T lymphoma growth in
mice with different thyroid status, no evaluation was per-
formed on the impact of THs in tumor dissemination and
metastasis. Here, we aimed to evaluate the metastatic behavior
of T lymphoma cells in syngeneic euthyroid, hypothyroid, and
hyperthyroid mice and to study the systemic and local antitu-
mor immune responses underlying these metastatic responses.
Our results show that thyroid status has a dual effect on T
lymphoma growth and dissemination, with hyperthyroidism
favoring tumor local growth and hypothyroidism leading to
tumor spreading. These actions were found to correlate with
the regulation of NK and cytotoxic T cell function and of local
and systemic expansion of immunosuppressive populations
including Treg cells and MSDCs. Our results highlight the
importance of monitoring the thyroid axis in patients with
lymphoid malignancies.

Materials and methods

Cell culture

The tumor cell line EL-4 (ATCC) was cultured in RPMI 1640
with 10 % fetal bovine serum (GIBCO) [18]. When indicated,
cells were arrested by serum starvation [20]. To analyze the
effects of THs, cells were treated with the combination of
100 nM L-thyroxine (T4) and 1 nM triiodothyronine (T3)
(Sigma-Aldrich), to mimic the in vivo conditions, for the in-
dicated time periods.

Animal models

Murine models of hyperthyroidism or hypothyroidism were
developed using female C57BL/6J mice, 2–3 months old, that
were bred and kept at the Instituto de Investigaciones
Biomédicas (Argentina) in accordance with the ARRIVE
Guidelines [25]. All experimental protocols were approved
by the Institutional Committee for the Care and Use of Labo-
ratory Animals, School of Pharmacy and Biochemistry, Uni-
versity of Buenos Aires. Hyperthyroid and hypothyroid mice
were obtained respectively by daily administration of T4
(0.012 mg/ml) for 28 days or of the antithyroid drug
propylthiouracil (PTU, 0.5mg/ml, Sigma-Aldrich) for 14 days
in drinking water [18, 21].
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T cell lymphoma model

To generate solid tumors, mice were inoculated subcutaneous-
ly with 3×105 syngeneic EL-4 cells as described [18]. Tumor
length and width were measured every day using calipers, and
tumor volume was calculated as V=π/ 6×length×width2. For
the experimental metastasis test, mice were inoculated
through the tail vein with 3×105 EL-4 cells. After 10 days,
mice were killed, organs were removed and fixed in 3.7 %
paraformaldehyde, and tumor foci were counted.

Statistical analysis

Prism software (GraphPad) was used. Student’s t test for un-
paired values was used to determine significance. One-way
ANOVATukey post hoc tests were used for multiple compar-
isons. P values of 0.05 or less were considered significant.

Additional methods are described in Supplementary Mate-
rials and Methods.

Results

Thyroid status influences tumor growth
and dissemination

To analyze the impact of the thyroid status on TCL develop-
ment, we evaluated the latency, tumor volume, and metastatic
dissemination on euthyroid, hyperthyroid, and hypothyroid
tumor-bearing mice. Hyperthyroid mice showed high levels
of THs but very low levels of TSH with respect to euthyroid
animals (hyperthyroid T3 397.0±45.1*ng/dl, T4 31.5±
1.3*μg/dl, TSH <20 ng/ml; p<0.05 vs euthyroid T3 107.0±
11.3 ng/dl, T4 6.2±0.8 μg/dl, TSH 45.3±6.4 ng/ml), and the
contrary was observed in hypothyroid mice (T3 57.6±10.3*
ng/dl, T4 <1.0 μg/dl, TSH 62.8±5.3 ng/ml; *p<0.05 vs con-
trol). These animals were then subcutaneously inoculated with
EL-4 T lymphoma cells. As expected from our previous re-
sults [18], hyperthyroid mice showed a significant increase in
solid tumor growth compared to euthyroid animals and this
effect was evident 10 days post tumor inoculation. On the
other hand, hypothyroid mice showed no statistical differ-
ences in tumor growth with respect to controls (Fig. 1a, b).

The experimental metastasis test allows the evaluation of
tumor cells to survive in the circulation, extravasate, and col-
onize distant tissues. We analyzed EL-4 cell dissemination in
the different experimental settings. The number of mice that
developed metastatic nodules in the liver was lower in hyper-
thyroid conditions (Fig. 1c). Moreover, although all mice de-
veloped kidney metastases, the greatest number of metastatic
lesions was observed in hypothyroid animals (Fig. 1d), indi-
cating that the hypothyroid status favors the dissemination
capacity of EL-4 cells.

Thyroid hormones control the balance between cell
proliferation and apoptosis

To unravel the mechanisms underlying the dual effects of
thyroid status on TCL, we first evaluated the influence of
TH fluctuations on the balance between proliferation and ap-
optosis. Treatment of EL-4 cells in vitro with T3 and T4 led to
an increase in proliferating cell nuclear antigen (PCNA) mes-
senger RNA (mRNA) and protein levels (Fig. 2a, b). This
effect was accompanied by an initial increase of D-type
cyclins, required for the progression of the cell cycle from
G0 to G1 phases, followed by a subsequent increase in cyclins
A2 (late G1 to S) and B1 (G2 to M) (Fig. 2a, b). Accordingly,
hyperthyroid tumors (10 days pi) exhibited increased expres-
sion of PCNA and cyclins D1, D3, and E1 (G1 to S and S
phases) (Fig. 2c, d) compared with euthyroid and hypothyroid
tumors.

Previously, we found induction of apoptosis when T lym-
phoma cells were treated in vitro with T4 for more than 5 days
[3]. Therefore, we evaluated apoptotic induction by long-term
treatment with THs on EL-4 cells and its possible involvement
in solid tumors. We found increased annexin-V/PI double
staining of EL-4 cells starting from the fifth day of treatment
with T3 and T4 (Fig. 3a). In addition, we observed at day 15
an increase in active caspase-3 (Fig. 3b) and the proapoptotic
protein Bad and a decrease in the antiapoptotic protein Bcl-2
(Fig. 3c). Likewise, analysis of apoptosis indicators showed
increased active caspase-3 expression (Fig. 3d) and augment-
ed Bax mRNA (Fig. 3e) in tumors from hyperthyroid mice.
Additionally, the terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP nick end labeling (TUNEL) assay in
tumor sections showed that hyperthyroid tumors displayed
increased number of apoptotic cells, mainly located contigu-
ous to necrotic areas (Fig. 3f). However, the number of
TUNEL-positive cells in the highly proliferative areas of these
tumors was lower than in controls, suggesting a different sit-
uation in the in vivo conditions where the balance tips toward
tumor cell proliferation. The number of TUNEL-positive cells
in hypothyroid tumors was also higher than in controls, al-
though they were distributed throughout the whole tissue.

These results suggest that plasma levels of THs have a
direct action on the growth of EL-4 lymphoma cells, inducing,
although at different extents, both proliferation and death. Al-
though these results are unequivocal in vitro, other factors in
the tumor microenvironment may contribute to impair the
proapoptotic effects of THs and to promote tumor growth in
hyperthyroid animals.

Effects of thyroid status in different immune cell
compartments of the tumor microenvironment

The thyroid status could also control tumor growth and me-
tastasis through modulation of antitumor immune responses.
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As tumor infiltration of immune cells may correlate with good
or poor prognosis depending on the magnitude and quality of
these responses, we analyzed the presence of different lym-
phoid subpopulations in the tumor microenvironment. Note-
worthy, EL-4 cells are CD4 and CD8 negative, thus preclud-
ing any confounding factor in the characterization of tumor-
infiltrating lymphocytes (TILs) in the presence of tumor cells.
Interestingly, the percentage of TILs was lower in hyperthy-
roid animals than in the other groups (Fig. 4a). Analysis of the
quality of the infiltrate revealed a lower percentage of total
CD8+ T cells (Figs. 4b and S1A) and activated T cells
(Figs. 4e and S1D) and a higher frequency of CD19+ B cells
(Figs. 4d and S1C), with no changes in CD4+ T cell count
(Figs. 4c and S1B). To confirm the functionality of CD8+

TILs, these cells were sorted from tumor cell suspensions
and activated in vitro. Approximately 80 % of CD8+ T cells
were positive for IFN-γ staining, with no significant differ-
ences between groups (Fig. 4f), suggesting full functionality
of the CD8+ T cell compartment in EL-4 tumor microenviron-
ment irrespective of the host thyroid status.

Tregs can promote tumor growth by thwarting the devel-
opment of effective antitumor immune responses and promot-
ing tumor-immune escape [26]. Similarly, MDSCs constitute
a heterogeneous population of immature myeloid cells with
broad immunosuppressive activity within tumor microenvi-
ronments [26]. We found no considerable differences in the
frequency of MDSCs (CD11b+Gr1+) or CD4+CD25+FoxP3+

Tregs within tumor infiltrates of the different groups analyzed
(Fig. S1D and S1E).

Regional and systemic antitumor immune responses are
affected by the thyroid status

Establishment of metastasis is regulated, among other factors,
by regional and systemic immune responses [26]. To evaluate
the impact of thyroid status in the decisions between immune
cell activation or tolerance to tumor antigens, we first analyzed
the distribution of immune cells in tumor-draining lymph
nodes (TDLNs) of control, hyperthyroid, and hypothyroid
tumor-bearing mice. We could find no differences in the per-
centage of T (CD3+) or B (CD19+) cells within TDLN or non-
draining lymph nodes (NDLN) among different experimental
groups (Figs. 5a, b, S2A and S2B). However, we found a
decline in the percentage of T lymphocytes in TDLN with
respect to NDLN in all the groups (Fig. 5a). Similarly, we
found no differences in the distribution of NK cells among
different animal groups (Figs. 5c and S2C). The percentages
of CD4+CD25+FoxP3+ Tregs were similar in NDLN and
TDLN in control and hyperthyroid mice; however, hypothy-
roid mice showed an increased percentage of these cells in
TDLN, which was also higher compared to the values obtain-
ed for hyperthyroid or euthyroid mice (Figs. 5d and S2D).
Accordingly, the percentage of activated CD8+ T cells
(CD8+CD69+ or CD8+CD44hi) was decreased in TDLN of
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hypothyroid mice (Figs. 5e, f, S2E and S2F). Thus, the pres-
ence of immunosuppressive Tregs in hypothyroid TDLNmay
contribute to tumor spreading to metastatic niches.

Additionally, we evaluated if the thyroid status affects the
distribution and functionality of splenic immune cells in re-
sponse to EL-4 cell challenge. Thus, we analyzed the distri-
bution of lymphoid subpopulations in spleens from 10-day
tumor-bearing mice. We found no differences in the percent-
ages of CD4+ or CD8+ T cells (Figs. 6a, b, S3A and S3B),
although the proportion of splenic CD19+ B cells declined in

hyperthyroid and increased in hypothyroid animals (Figs. 6c
and S3C). Hyperthyroid mice also showed an increased per-
centage of splenic NK cells, while it was decreased in hypo-
thyroid animals (Figs. 6d and S3D). Moreover, we found that
the thyroid status modulated the frequency of MDSCs in the
spleen, as a decreased or increased number of these cells were
found in hyperthyroid or hypothyroid animals, respectively
(Figs. 6e and S3E). However, the frequency of splenic Treg
cells was similar irrespective of the thyroid status (Figs. 6f and
S3F).
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In spite of the lack of differences in the percentage of CD8+ T
lymphocytes, the frequency of activated splenic CD8+ T cells
(CD69+ or CD44hi) was increased in hyperthyroid mice

(Figs. 6g, h, S3G and S3H). Additionally, hyperthyroid mice
showed increased CTL cytotoxic activity against CFSE-stained
EL-4 cells, which was reduced in hypothyroid mice (Fig. 7a).
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Splenocytes from hyperthyroid tumor-bearing mice also showed
increased NK cell-mediated cytotoxic activity against
radiolabelled YAC-1 cells, while no differences were detected
in hypothyroid mice compared to controls (Fig. 7b). Thus, fluc-
tuations in the magnitude and quality of regional and systemic
immune responses may explain, at least in part, the changes
observed in tumor growth and dissemination in hyperthyroid
and hypothyroid individuals.

To confirm the involvement of CD8+ antitumor T cells in
decreased tumor dissemination in hyperthyroid mice, we de-
pleted tumor-bearing mice from CD8+ cells as described [27,
28] and analyzed metastasis spreading. Mice depleted of
CD8+ T cells showed less than 1.7 % CD8+ cells in the spleen
(Fig. 8a) and displayed a complete reduction of specific cyto-
toxic activity toward EL-4 cells (Fig. 8b). Notably, CD8+ T
cell depletion resulted in increased frequency of mice devel-
oping liver metastasis and augmented number of renal metas-
tasis (Fig. 8c, d), thus substantiating the contribution of

effector CD8+ T cells to antitumor responses during tumor
dissemination.

Discussion

Research over the past few years revealed a complex interplay
between immune and endocrine systems during tumor growth
and metastasis. This intricate connection, orchestrated by im-
mune cells, cytokines and hormones, may influence tumor pro-
gression when individuals are exposed to physiologic or patho-
logic endocrine conditions [29–32]. The results presented here
illustrate the influence of THs in tumor growth and metastasis of
a TCL, particularly the effect of hyperthyroid and hypothyroid
conditions in intrinsic (tumor proliferation and apoptosis) and
extrinsic (tumor immunity) factors that govern tumor progres-
sion.We identified a paradoxical effect, in which high circulating
levels of THs favor T lymphoma growth, whereas a hypothyroid
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condition facilitates tumor dissemination. We demonstrate that
the thyroid status can selectively affect the distribution of differ-
ent immune cell populations in the tumormilieu and the nature of
local and systemic immune responses.

A consistent association between large tumor burden, accel-
erated tumor growth, and risk of metastasis has been demonstrat-
ed in several human cancers [33, 34]. However, these effects do
not seem to be connected in hyperthyroid and hypothyroid mice
showing increased tumor growth in response to high TH levels
and accelerated tumor dissemination associated to low TH con-
centrations. Accordingly, Martinez-Iglesias et al. [17] showed
that hypothyroidism reduces primary tumor growth but increases
the formation of pulmonary metastasis in mice inoculated with
human hepatocarcinoma or breast cancer cells.

To elucidate the mechanisms underlying our observations
and according to our previous findings [2, 3, 18, 19], we
investigated the action of TH treatment on the balance be-
tween cell proliferation and death in EL-4 cells. In vitro results

showed a dual action of THs, as they exerted a proliferative
effect when cells were treated for short time periods and in-
creased tumor cell apoptosis after 5 days of treatment. Prolif-
erative actions were evidenced by increased PCNA and cyclin
levels, similarly to the effects observed in several human TCL
cell lines upon TH addition [19]. These mechanisms were also
evident in vivo in hyperthyroid tumors.

Long-term treatment of EL-4 cells with THs resulted in
increased apoptosis related to an increase in active caspase-3
and proapoptotic Bad, along with a decrease in antiapoptotic
Bcl-2 protein. Thus, engagement of proapoptotic programs by
THs would prevent cells to disseminate, leading to a lower
number of metastasis in hyperthyroid mice. Interestingly,
Mihara et al. [35] observed higher frequency of apoptotic
Jurkat T cells following treatment with THs for 14 days, an
effect that was accompanied by reduced Bcl-2 expression.
Accordingly, and despite their greater size, hyperthyroid tu-
mors also showed increased number of apoptotic cells within
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The frequency of different lym-
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necrotic areas, with almost no signs of apoptosis in other areas
in which proliferation prevails. Probably because of this im-
balance, tumors in hyperthyroid hosts displayed greater size
than those growing in euthyroid or hypothyroid mice.

Compelling evidence indicates that antitumor immune re-
sponses are influenced by different signals both locally and
systemically [26]. In fact, infiltration of immune cells in the
tumor parenchyma is frequently an indicator of lymphoma
progression [36–38], and immune cells have been described
to be modulated by the thyroid status [21, 39]. Recently,
Alamino et al. [40] showed that dendritic cells exposed to
THs are endowed with enhanced capacity to activate antitu-
mor responses bymodulating CD8+ Tcell survival, migration,
and effector function [40]. Our results show that hyperthyroid
tumors have a lower proportion of infiltrating immune cells,
mainly composed of active CD8+ T lymphocytes, even
though CD4+ T cells and B lymphocytes were also present.
Interestingly, the infiltrate of hyperthyroid tumors showed a
lower rate of total and activated CD8+ Tcells and an increased

proportion of B cells. Although the role of the B cell compart-
ment has not been examined here in detail, the involvement of
regulatory B cells leading to Treg cell activation and inhibition
of antitumor responses has been described [41]. Notably,
CD8+ T cells present within TILs were functional as demon-
strated by their ability to produce IFN-γ when exposed to
tumor antigens. Thus, the high circulating levels of THs in
hyperthyroid hosts may have an important effect on lympho-
cyte infiltration, particularly in the prevalence of cytotoxic T
cells. Hence, impairment of the cytotoxic T cell activity in the
primary tumor may favor its growth. In this regard, it has been
proposed that cytotoxic and regulatory T cells may have pos-
itive or negative prognostic values in lymphomas, respectively
[37, 42]. Moreover, Th2 and Treg cells expanded in the pres-
ence of galectin-1, a tumor-derived immunosuppressive lec-
tin, have been shown to correlate with good prognosis in clas-
sical Hodgkin lymphoma [43].

Unexpectedly, hyperthyroid animals showed decreased
metastatic dissemination despite their enhanced susceptibility
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toward tumor growth. Of note, EL-4 lymphoma cells have
been reported to generate liver and kidney metastasis [19,
27], and changes in THs differentially influenced metastasis
to these target organs. It has been estimated that only the
0.01 % of tumor cells that get into circulation can survive
and establish micrometastasis at distant sites because of me-
chanic stress, cell death, T cell, or NK cell-mediated cytotox-
icity in the microcirculation [28, 44]. In addition, the balance
between tumor cell proliferation and apoptosis regulated by
the thyroid status could also affect EL-4 cell dissemination
and metastasis. In fact, the increased amounts of THs in hy-
perthyroid mice could induce apoptosis of circulating EL-4
cells, which would limit the metastatic establishment, as oc-
curs following long-term treatment of EL-4 cells with THs
in vitro. Supporting these findings, higher susceptibility to
apoptosis was described in circulating T lymphocytes from
patients with Graves’ disease [35].

Additionally, tumor dissemination could be associated to
the activation of immunosuppressive cells as described [44].
Interestingly, TDLN of hypothyroid mice displayed an in-
creased proportion of Treg cells that would contribute to the
creation of an immunosuppressive microenvironment, thus

limiting antitumor immune responses. In fact, a fewer number
of activated CD8+ T cells were found in the TDLN of these
animals with respect to control or hyperthyroid mice. Recent
studies revealed that some lymphoma Tcells might adopt a Treg
cell profile and Treg cells have been documented extensively in
patients with different types of TCLs [45–47]. Thus, increased
number of Treg cells, together with a reduced frequency of acti-
vatedCD8+T lymphocytes in TDLNof hypothyroidmice, could
be suggestive of a shift toward immune cell tolerance and to an
increased metastatic potential of lymphoma cells.

Interestingly, we also evaluated the distribution of immune
cell subsets in spleens of tumor-bearing mice, as indicator of
tumor-induced systemic immune responses. Spleens from hy-
perthyroid animals showed a higher proportion of NK cells
with augmented cytotoxic activity compared to control mice.
Remarkably, the opposite phenotype was found in the spleens
of hypothyroid mice. However, we found no differences in the
proportion of CD4+ or CD8+ T cells among our experimental
groups. Nevertheless, we found that the thyroid status sub-
stantially regulated the activation and cytotoxic activity of
splenocytes, as low circulating levels of THs inhibited the
cytotoxic activity of CD8+ T cells, while high TH levels
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increased the number of activated CD8+ T cells and potentiat-
ed their cytotoxic function. These effects of THs are crucial in
the regulation of EL-4 cell dissemination, as confirmed by
CD8+ T cell depletion in hyperthyroid mice, in which the
number of metastatic nodules was significantly higher than
in non-depleted hyperthyroid animals, thus indicating the con-
tribution of CD8+ T cell function to EL-4 cell metastasis.

These effects could be explained by the release of immu-
nosuppressive cytokines and growth factors that contribute to
tilt the balance toward immune tolerance either in the spleen,
TDLN, and tumor microenvironment. Interestingly, we found

an increased proportion of MDSCs, with no differences in the
number of Treg cells in spleens from hypothyroid mice and a
reduced proportion of MDSCs in hyperthyroid spleens. In this
regard, very few clinical studies have linked the presence of
MDSCs to lymphoma development. Tadmor et al. [48]
showed increased frequency of MDSCs in the bone marrow
from patients with B cell lymphomas. Also, animal models of
TCLs showed increased number of MDSCs, and treatment
with arginase inhibitors impaired the immunosuppressive ac-
tivity of these cells, leading to augmented antitumor responses
and reduction of tumor size [49].

Liver Kidney

Hyper 2/6 5/6

Hyper
+ anti-CD8 5/5 5/5

Control anti-CD8
0

5

10

15

20

25
*

Hyper

N
um

be
r 

of
 m

et
as

ta
si

c
no

du
le

s 
in

 k
id

ne
y

C D

Control anti-CD8
0

10

20

30

40

50

***

Hyper

%
 ly

si
s

Control anti-CD8
0

5

10

15

20

25

***

Hyper

%
 C

D
8+

A

B

PI

101 102     103     104    105     106      107.2 101 102     103     104    105     106      107.2 

50
00

0
10

00
0

12
80

0

50
0

0
10

00
16

00

43.7% 8.9%

CD8+
C

D
4+

Hyper Hyper + anti-CD8

101 102    103    104    105    106     107.2 101 102    103    104    105    106     107.2 

10
1

10
2 

   
10

3 
   

10
4 

   
10

5 
   

10
6 

   
 1

07
.2

 

10
1

10
2 

   
10

3 
   

10
4 

   
10

5 
   

10
6 

   
 1

07
.2

 

15.9% 0.0% 12.7% 0.8%

1.9%84.5%19.5%64.5%

Hyper Hyper + anti-CD8

Fig. 8 Effect of depletion of
CD8+ T lymphocytes in tumor
growth in hyperthyroid mice.
Hyperthyroid mice were i.v.
inoculated with 3×105 EL-4 cells
and selectively depleted (Hyper +
anti-CD8) or not (Hyper) of CD8+

Tcells by intraperitoneal injection
with anti-CD8 mAbs at days −1,
2, and 7, relative to tumor inocu-
lation. Spleens were removed
10 days after tumor cell inocula-
tion, and single cell suspensions
were obtained. a Representative
dot plots of flow cytometry anal-
ysis of CD4+ and CD8+ T lym-
phocytes and mean±SEM of
CD8+ T cell percentages are
shown. b Specific cytotoxic ac-
tivity was evaluated, and repre-
sentative histograms for CFSE-
gated cells and the mean±SEM of
IP+ cells, which were considered
to be positive for lysis, are shown.
c Number of mice with metastatic
foci in liver or kidney after
10 days of EL-4 cells i.v. injec-
tion. d Number of metastatic foci
in kidney at day 10 post inocula-
tion. *p<0.05 versus control;
***p<0.001 versus control

J Mol Med



In summary, our results indicate that the thyroid status dif-
ferentially modulates antitumor immune responses and alters
the balance between tumor cell proliferation and apoptosis,
leading to substantial alterations in tumor growth and meta-
static phenotypes of lymphoma T cells. Identification of the
mechanisms by which THs shape the tumor microenviron-
ment will contribute to the design of novel therapeutic strate-
gies in malignant diseases.
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