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Global phase equilibrium calculations: Critical lines, critical end points and
liquid–liquid–vapour equilibrium in binary mixtures
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bstract

A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for
alculation of the different parts involved. A Newton procedure using composition, temperature and volume as independent variables is used for
alculation of critical lines. Each calculated point is analysed for stability by means of the tangent plane distance, and the occurrence of an unstable
oint is used to determine a critical endpoint (CEP). The critical endpoint, in turn, is used as the starting point for constructing the three-phase
ine. The equations for the critical endpoint, as well as for points on the three-phase line, are also solved using Newton’s method with temperature,

olar volume and composition as the independent variables.

The different calculations are integrated into a general procedure that allows us to automatically trace critical lines, critical endpoints and

hree-phase lines for binary mixtures with phase diagrams of types from I to V without advance knowledge of the type of phase diagram. The
rocedure requires a thermodynamic model in the form of a pressure-explicit EOS but is not specific to a particular equation of state.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Phase equilibrium calculations are most often focused on
alculation of phase equilibrium at given temperature, pressure
nd composition (the isothermal flash) or on correlation or pre-
iction of specific isothermal or isobaric data. Calculation of
ritical lines, three-phase lines and critical end points (CEP)
re less common although for any binary system these lines and
oints enable us to distinguish between single phase regions and
egions of two or three coexisting phases. Global phase equilib-
ium diagrams, i.e. phase diagrams containing those lines in

ifferent projections of the P–T–v–x space, are therefore useful
n the analysis of potential conditions for separation processes,
s well as in analysing the ability of thermodynamic mod-

Abbreviations: CEP, critical endpoint; LCEP, lower critical endpoint; LLV,
iquid–liquid–vapour; tpd, tangent plane distance; SRKSoave–Redlich–Kwong
quation of state; UCEP, upper critical endpoint
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ls to qualitatively and quantitatively reproduce experimental
ehaviour.

In the present work we propose a procedure for the automated
onstruction of global phase equilibrium diagrams, together with
he methods used to calculate the individual elements. The pro-
edure automatically handles all types of fluid phase behaviour
rom I to V according to the classification of Scott and van
onynemburg [1]. In order to clearly define the scope of the
resent work and avoid confusion, two important remarks need
o be made.

First, two particular kinds of problems towards which
esearch efforts are devoted in the field of thermodynamic
odeling and phase equilibrium calculations should be clearly

ifferentiated. One problem is to establish whether a particular
ualitative behaviour can be predicted with a certain model
r equation of state and given values or relations between
he parameters of the two pure compounds which constitute

binary system. Additionally, this requires delimiting the
egions, over the interaction parameters space, where each

ype of phase behaviour will be predicted. Another completely
ifferent problem, more basic perhaps, is the following: given an
quation of state and parameter values for two pure compounds
nd their interactions, obtain the complete picture of the phase

mailto:mcismondi@plapiqui.edu.ar
mailto:mlm@kt.dtu.dk
dx.doi.org/10.1016/j.supflu.2006.03.011
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Nomenclature

b first condition to be satisfied in a critical point
(defined in Eq. (3))

B matrix defined in Eq. (2) or (11) for calculation
of critical points

c second condition to be satisfied in a critical point
(defined in Eq. (4))

f̂i fugacity of component i in a mixture (f̂i = xiϕ̂iP)
F vector of equations, e.g. in the calculation of

critical points
g specification equation for a marching procedure

(defined in Eq. (6))
I identity matrix
J Jacobian matrix for F with respect to X
n number of moles
P pressure
s distance parameter (calculation of critical points)
S specified variable or its value, in a marching

procedure
T temperature
u normalized eigenvector of the B matrix
v molar volume
V total volume
X vector of independent variables, e.g. in the

calculation of critical points
x, y, w molar fractions for the more volatile component

(1) if no index is specified
zi molar fraction of component i

Greek letters
δij Kronecker delta function: 0 for i �= j and 1 for i = j
Δ half of specified difference in composition

between two quasi-critical phases for the first
point after a CEP on a three-phase line

η perturbation for numerical calculation of
derivatives by central differences

λ eigenvalue (or smallest eigenvalue) of the matrix
B defined in Eq. (2) or (11)

ϕ̂i fugacity coefficient of component i in a mixture

Subscripts
1, 2, i component index
c critical property
S specified
U denoting upper critical end point
V vapour
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x, y, w denoting a phase in LLV or three-phase line
calculation

quilibrium predicted, which is essentially delimited by critical
ines, liquid–liquid–vapour equilibrium lines and, in some

ases, azeotropic lines. Since the pioneer works of Scott and
an Konynemburg [1,2] many other important contributions
ave been made concerning the first kind of problems (see for
xample [3–5] and the references cited therein). Nevertheless,

T
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nly the calculation of single critical points, most often for mix-
ures of specified composition, has received attention in relation
o the second kind of problems. On the other hand, and at least
o our knowledge, procedures for the automated calculation of
ritical lines exhibiting maxima and minima in composition
ave not been published, nor for their integration with LLV lines
nd critical end points, particularly without knowing in advance
he type of phase behaviour predicted. Therefore, the request
or a strategy and for procedures for the automated calculation
f global phase equilibrium in binary systems has not been
atisfied yet. The development of such tools for the engineering
nd the research community is the goal of this paper. The reader
nterested in global phase diagrams, meaning the boundaries
f different types of phase behaviour on the space of model
arameters or related variables, is referred to the works cited
bove.

We address here the general problem of obtaining, from an
quation of state and given parameters, the global phase equi-
ibrium diagram of a binary system, namely critical lines, LLV
ines and critical end points in the P–T–V–x space. How well
hey compare to experimental data will depend on the model
nd parameters used, and that is completely beyond the scope
f this paper. The examples given are illustrative.

. Overall strategy for global phase equilibrium
alculations

As indicated by Scott and van Konynemburg [1] and Deiters
nd Pegg [3], there are essentially five qualitatively different
ritical lines that are of interest in binary mixtures both in terms
f experiments and calculations. Their combinations cover all
ossibilities in systems of Type I–V in the classification of Scott
nd van Konynemburg [1]. These lines are defined in terms of
heir ending points:

. A continuous liquid–vapour critical locus connecting the
critical points of the two pure components (C1 and C2, with
lower and higher Tc, respectively). This is characteristic of
systems showing phase behaviour of Type I or II.

. A liquid–liquid critical line descending from Cm (a
liquid–liquid critical point at infinite pressure) to an upper
critical end point (UCEP) is found in systems of Type II or
IV.

. A characteristic line in systems of Type III, descending from
Cm to C2. It may exhibit relative minima and maxima in
pressure.

. A line going from C1 to an UCEP in systems of Type III, IV
or V.

. The line going from the LCEP to C2 in systems of Type IV
or V.

These lines and their relation with Types I–IV in the classifi-
ation of Scott and van Konynemburg are exemplified in Fig. 1.

ype V is exactly as Type IV but without a liquid–liquid critical

ine (B) and the associated three-phase line.
The approach chosen here is shown schematically in Fig. 2.

t starts with calculating the critical line starting at C2, i.e. the
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Fig. 1. Different critical lines of interest in binary systems showing phase

ritical point for the pure component with the higher critical

emperature. This line may end in three different ways:

. A stable critical line that ends in C1. This indicates a phase
diagram of Type I or II.

ig. 2. Algorithm flow sheet for calculation of all critical lines determining the
ype of phase behaviour.
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viour of Types I–IV in the classification of Scott and van Konynemburg.

. A stable critical line that tends toward infinite pressure. This
behaviour is characteristic of Type III.

. A point on the line becomes unstable. The occurrence of
a critical endpoint is an indication of Type IV or V phase
behaviour.

In addition to this, it is necessary to search for the existence of
n isolated critical line (i.e. a critical line that is not connected
o any of pure component endpoint). The existence of such a
ine distinguishes between Types I and II in case (1) above, and
etween Types IV and V in case (3). Finally we need procedures
or locating and calculating the individual elements, i.e.

critical lines originating at pure component endpoints;
isolated critical lines;
stability analysis and critical endpoints;
three-phase lines.

Procedures for each of these are given in the following sec-
ions.

. Calculation of critical lines

A comprehensive review on calculation of critical points was
ublished by Sadus [6]. All the methods discussed prescribe
ow to find the critical temperature and volume (and therefore

lso the pressure) for a mixture of known composition. Methods
or calculation of critical points requiring the specification of
omposition, and which are based on the use of temperature and
olume, such as the classical method of Heidemann and Khalil
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7], as iteration variables, are accurate and robust. In addition to
eing more well behaved, they are able to handle cases where
he use of temperature and pressure fails, like pure components
nd critical azeotropes. In this work, we formulate the criticality
onditions from a variant of the Heidemann–Khalil approach
hat avoids the nested loops of that method.

.1.1. Criticality conditions

Following Michelsen and Heidemann [8] in their analysis of
igher order critical points, Appendix (A9)–(A18), we proceed
s follows:

We consider a binary mixture at temperature T, molar volume
and composition (z1, z2 = 1 − z1). Let the number of total moles
t = n1 + n2 be 1 and therefore total volume V = ntv = v. Define
omposition variables by

1 = z1 + s
√

z1u1; n2 = z2 + s
√

z2u2 (1)

here s is a distance parameter and (u1, u2) a normalized vector,
2
1 + u2

2 = 1. This vector is chosen as the eigenvector corre-
ponding to the smallest eigenvalue λ1 of the matrix B given
y

ij = √
zizj

(
∂ ln f̂i

∂nj

)
T,V

(2)

valuated at s = 0, i.e. n1 = z1, n2 = z2. The conditions that must
e satisfied at a critical point are then

= λ1 = 0 (3)

=
(

∂λ1

∂s

)
s=0

= 0 (4)

ote that for an ideal gas, B = I and all eigenvalues are equal to
.

We evaluate the elements of B analytically from the given
OS and solve analytically for λ1. c is subsequently calculated
umerically using central differences:

≈ λ1(s = η) − λ1(s = −η)

2η
(5)

egarding the value for the perturbation, there is a balance
etween accuracy (favoured by small values) and roundoff
favoured by large values). The value η = 0.0001 was found to
e a reasonable compromise.

.1.2. Newton procedure for tracing out critical lines

In cases where composition varies monotonically along the
ritical line it is possible to trace the line by specifying z1 and
olving Eqs. (3) and (4) for T, v using the results from the pre-
ious point on the line as initial estimate. Monotonic variation
s not always the case, and e.g. Type III systems often exhibit

axima and minima in composition along a critical line. We

herefore extend the system of equations to be solved with a
pecification equation:

(z, T, v) = XS − S = 0 (6)

c
d
t
f
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here XS represents one of the variables z1, ln T and ln v, and S
he value specified for that variable in the point to be calculated.
he set of equations to be solved is thus

=

⎛
⎜⎝

XS − S

b

c

⎞
⎟⎠ = 0 (7)

nd Newton’s method is used for solving the equations:⎛
⎜⎝

�z1

� ln T

� ln v

⎞
⎟⎠+

⎛
⎜⎝

0

b

c

⎞
⎟⎠ = 0 (8)

he evaluation of the Jacobian requires the derivatives of b and
with respect to z1, ln T and ln v. These are all evaluated numer-

cally by central differences with an increment of 0.0001.
When a converged solution has been determined we can eval-

ate the vector of sensitivities dX/dS which is calculated from⎛
⎜⎝

dz1/dS

d ln T /dS

d ln v/dS

⎞
⎟⎠+

⎛
⎜⎝

−1

0

0

⎞
⎟⎠ = 0 (9)

he vector of sensitivities is used for two purposes:

its numerically largest element determines the variable that is
specified in the following step;
it is used to obtain an initial estimate for the solution vector
in the following step from

Xnew = Xold +
(

dX

dS

)
�S (10)

he increment in the specification, �S is controlled by the num-
er of iterations required to solve for the current point. If the
olution is found in three iterations or less, the numerical value of
S is increased, and if five or more are required, �S is decreased.
his is complemented with a maximum step allowed.

Finally, if we are unable to converge the equations at a spe-
ific point, we revert to the previous point Xold, reduce the step
y a factor of 2 and calculate a new estimate using Eq. (9).
he construction is started at (a known) pure component crit-

cal point, and as the initial specification for the first point on
he line we chose composition. Subsequent points are calculated
utomatically.

The procedure used for tracing out a critical line is essentially
dentical to that used by Michelsen [9] to trace phase boundaries
n multicomponent mixtures.

. High-pressure critical line

Types II and IV phase diagrams are characterized by the pres-
nce of a critical line that is not connected to any of the pure

omponent endpoints. The line extends from infinite pressure
own to zero (and negative) pressure with very modest varia-
ions in temperature, molar volume and composition. We search
or the existence of such a line as follows:
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. The pressure is fixed to a specified, high value, typically
200 MPa. Initially, the temperature is set to 300 K.

. At the current temperature we calculate the minimum eigen-
value of the matrix given by

Bij = δij + √
zizj

(
∂ ln ϕ̂i

∂nj

)
T,P

(11)

as a function of composition (50 equidistant points). The
Gibbs–Duhem equation shows that one of the eigenvalues is
always 1. The sum of the eigenvalues equals the trace of the
matrix, and for a binary the other eigenvalue, i.e. the one we
are interested in, is therefore found from

λ = 1 + z1

(
∂ ln ϕ̂1

∂n1

)
T,P

+ z2

(
∂ ln ϕ̂2

∂n2

)
T,P

(12)

From the Gibbs–Duhem equation:

z1

(
∂ ln ϕ̂1

∂n1

)
+ z2

(
∂ ln ϕ̂1

∂n2

)
= 0,

z1

(
∂ ln ϕ̂2

∂n1

)
+ z2

(
∂ ln ϕ̂2

∂n2

)
= 0

and therefore,

λ = 1 −
(

∂ ln ϕ̂1

∂n2

)
T,P

(13)

At the limit of intrinsic stability (the spinodal) the smaller
eigenvalue is exactly zero. The mixture is critical at a com-
position zc if
a. the smallest value of λ1 is found at zc, and
b. this value is exactly zero.

. At fixed zS (the composition at which λ1 is minimum at the
specified T and P) we now reduce T (if λ1 is positive), or
increase T (if λ1 is negative), until we arrive at a temperature
where λ1(T, zS) equals zero. We abandon the search if the
temperature falls below a pre-specified limit, typically 30 K.

. The procedure with first determining zS as the composition
where λ1 is smallest and subsequently T as the temperature
where the eigenvalue is zero, is repeated twice.

Unless the search was abandoned in step 3 an initial estimate
f composition, temperature and molar volume of a critical point
t 200 MPa is now available. We specify the molar volume and
alculate the first point. The next step is taken in the direction
hat leads to a decreased pressure, and this usually corresponds to
n increased molar volume. All subsequent steps are performed
ith the automatic procedure described earlier.
It may, in particular for the initial point on the high-pressure

ine, be advantageous to increase the set of equations with (the
og of) pressure as a new variable. The corresponding extra equa-

ion is the EOS, i.e.

4 = P − P(z1, ln T, ln v) = 0 (14)

f this approach is used we specify for the initial point
= 200 MPa and for the next point a reduction in pressure.

l

l

t
a
t
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. Critical endpoints

At a critical endpoint the critical phase (zc, T, vc) is at equi-
ibrium with another phase, (y, T, vy). The five unknown are
etermined from the set of equations:

(zc, T, vc) = 0 (15)

(zc, T, vc) = 0 (16)

(zc, T, vc) = P(y, T, vy) (17)

n f̂1(zc, T, vc) = ln f̂1(y, T, vy) (18)

n f̂2(zc, T, vc) = ln f̂2(y, T, vy) (19)

he equations are solved using Newton’s method with numerical
erivatives of b and c as described earlier and analytic derivatives
or the remaining. Good initial estimates are required, and these
re obtained from stability analysis.

. Stability analysis of critical lines

The computational cost of an extensive stability analysis for
binary mixture is very modest. We have therefore adopted a

rocedure where each calculated point on a critical line is tested
or stability. If the current point is unstable and the previous
table we know that a critical endpoint is located on the section
f the critical line that connects the two points.

The test for stability is performed as follows:
At the current point on the critical line we calculate the pres-

ure Pc and the component fugacities f̂c1, f̂c2. The critical point
s unstable provided a composition y exists where

pd(y) = y(ln f̂1(T, Pc, y) − ln f̂c1)

+ (1 − y)(ln f̂2(T, Pc, y) − ln f̂c2) < 0 (20)

e divide the composition interval in 50 equidistant points and
valuate the tangent plane distance at each. This table is used to
ocate possible minima in the tangent plane distance. If minima
ith a negative value of the tpd exist, the critical point is unstable.
he composition of the minimum ym together with the critical
omposition, the temperature and the molar volumes of the two
hases are used as the initial estimate for solving the equations
or the CEP.

. Calculation of LLVE lines

The seven unknown are temperature T, molar volume of the
hree phases, vx, vy, vw, and molar compositions x, y, w. These
re found from the six equations:

(x, T, vx) = P(y, T, vy) = P(w, T, vw) (21)

n f̂1(x, T, vx) = ln f̂1(y, T, vy) = ln f̂1(w, T, vw) (22)

ˆ ˆ ˆ
n f2(x, T, vx) = ln f2(y, T, vy) = ln f2(w, T, vw) (23)

ogether with a specification equation. Newton’s method with
nalytic derivatives is used to solve the equations and the entire
hree-phase line is constructed by a marching procedure similar
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ig. 3. Phase behaviour of Type II predicted for methane + carbon dioxide with
nd therefore could not be calculated by a method requiring specification of com

o that used for the critical line. The natural variable for specifica-
ion is temperature, except in the regions close to a CEP, where
pecification of the intermediate composition is more conve-
ient.

The starting point for the construction is a critical endpoint,

ypically an UCEP, where two of the phases, e.g. the x- and
-phase are identical in composition and volume. Therefore, spe-
ial attention must be paid to the calculation of the first point
after the CEP) in order to prevent for the trivial solution. We

ig. 4. Phase behaviour of Type II predicted for carbon dioxide + hydrogen sulphide
igher than 152 K up to the UCEP while heterogeneous azeotropy appears at lower te

ig. 5. Phase behaviour of Type V predicted for methane + n-hexane with the SRK E
table lines D and E.
RK EOS and kij = 0.120. The critical line B shows a minimum in composition
tion.

alculate this point as follows:

Let x* be the smaller of xcU and 1 − xcU. Set Δ = 0.025 x*.
Use as initial estimate x = xcU − Δ. and y = xcU + Δ.
Solve the pressure equations:
PUCEP = P(x, TUCEP, vx); PUCEP = P(y, TUCEP, vy)

to generate initial estimates for vx and vy.

with the SRK EOS and kij = 0.120. Standard LLVE is observed at temperatures
mperatures.

OS and kij = 0.00. The unstable part of the critical line is shown, connecting the
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Use y − x − 2Δ = 0 as the specification equation.
Use TUCEP as the initial estimate for T, and the composition
and volume of the non-critical phase at the CEP as the initial
estimates for w and vw.

For the following points on the line either y or ln T are to be

pecified. The three-phase line will terminate at another critical
ndpoint or when the temperature falls below a prescribed value.

For binary mixtures where the components vary widely in
olatility round-off error may be a problem unless precautions

g
a
e

ig. 6. GPEC plots in the PT and T–x projections for the system carbon dioxide + n-te
nd 0.090) were used with the SRK EOS, leading to predicted phase behaviour of Typ
o Fig. 1.
rcritical Fluids 39 (2007) 287–295 293

re taken. Supposing for example that w is very close to 1 the
ole fraction of second component, required for the calcula-

ion of its fugacity, is determined from w2 = 1 − w and will
herefore loose most of its significant digits, which may prevent
onvergence. In this case we replace w by ln(w2) as independent
ariable. The same applies to y in the calculation of CEP’s.
Alternatively, such problems can be eliminated with more
enerality and robustness if we choose two composition vari-
bles for each phase. Replacing the variable x by x1 and x2 (or,
ven better, ln x1 and ln x2) that are formally treated as mole

tradecane. Three different values for the kij interaction parameter (0.078, 0.084
es II, IV and III, respectively. Critical lines are indicated with letters according
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umbers requires that we introduce the additional equation:

1 + x2 − 1 = 0

nd similarly for the other phases. The extension from 7 to 10
quations does not require the evaluation of new properties or
erivatives and has only marginal influence on the computational
ost.

. Illustration of the algorithm for different types of
ystems

The model used in Figs. 3–6 for illustration purposes is
he very well known Soave–Redlich–Kwong equation of state
SRK EoS, [10]) with quadratic mixing rules and one interaction
arameter for the energetic parameter. Nevertheless, it must be
ointed out that the proposed strategy and methods are appli-
able to any equation of state or any model for the Helmholtz
nergy of mixtures (see Fig. 7 for an example with a non-cubic
roup contribution equation of state).

The examples given for systems of Types II, III, IV and V
ere chosen to show minima or maxima in composition as well

s other particularities discussed in the following paragraphs.
hese examples are only for illustration of the methods and,
ccording to the scope defined in the introduction, no attention
as been paid in this work to the correspondence with experi-
ental data or the appearance of solid phases.

.1. Liquid–liquid critical lines in systems of Type II

The P–T projection of the global phase equilibrium of the sys-
em methane + carbon dioxide is shown in Fig. 3. A temperature-
omposition (T–x) projection is also shown. Unlike the line A,
hich shows a monotonic variation of composition between both
ure components, the line B exhibits a maximum molar frac-
ion of carbon dioxide. Although the critical line B looks small
ompared to line A in the T–x projection, it actually covers a
ressure range up to 5000 bar, going through a minimum tem-

erature which cannot be seen in the limited pressure range of
he P–T projection included in the figure.

Fig. 4 corresponds to the system carbon dioxide + hydrogen
ulphide and Type II is observed again. Nevertheless, some

i
o
d
F

Fig. 7. Phase behaviour of carbon dioxide + tricaprylin (Type IV) as predict
rcritical Fluids 39 (2007) 287–295

mportant differences are observed, namely the relative posi-
ion of line B and the UCEP respect to line A, the P–T slope of
ine B at the UCEP (negative in Fig. 3 and positive in Fig. 4)
nd more important the appearance of heterogeneous azeotropy
n the second case. The latter is indicated by a crossing between
he light liquid (L2 in the figure) and vapour branches in the T–x
rojection, resulting in a vapour with intermediated composition
t lower temperatures.

.2. Unstable critical points in Types IV and V

We have observed that for some systems of Type IV and
lines D and E are actually part of a continuous critical line

hat connects the pure component endpoints. This is illustrated
n Fig. 5 for the mixture methane–n-hexane. The part of the
ritical line between the two critical endpoints, which includes
he two cusps and extends to negative pressures, is unstable but
s constructed without problems with the procedure described
bove provided the stability check is not used to terminate the
alculation.

.3. Type III and the transformation to Types IV and II

Fig. 6 shows diagrams equivalent to those in Figs. 3 and 4
ut for an asymmetric system for which phase behaviour of
ype III has been experimentally measured: carbon dioxide + n-

etradecane. Predictions obtained with kij = 0.090 (or higher)
gree at least qualitatively with experiments. The complex
ehaviour of line C, exhibiting minima and/or maxima in all
ariables: P, T, x and v, indicates that for tracking a critical
ine like this it is crucial to specify the proper variable and
o control the step length to each new point. Note that mod-
st decrements in the kij parameter results in transformations
o Types IV and II. It is interesting to observe the continuity
f these transformations for the critical lines and LLVE com-
ositions in the T–x projections, including the breaking of line

into lines B and E, and the later fusion of lines D and E

nto a continuous line A. Note the particularity of this line A
r a Type II as shown in Fig. 6 (exhibiting a pronounced ten-
ency to Type IV) when compared to the more typical lines A in
igs. 3 and 4.

ed by the GC-EOS [11,12] and parameters from Espinosa et al. [13].
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In order to illustrate the general applicability of the methods
roposed to any equation of state, we show in Fig. 7 the global
hase equilibrium diagram for a highly asymmetric system like
arbon dioxide + tricaprylin, calculated with the group contri-
ution equation of state GC-EOS [11,12] and parameters from
spinosa et al. [13]. This system is experimentally known to be
f Type IV [14,15].

. Conclusions

We have developed a rapid and robust procedure for
utomatic calculation of global phase equilibrium diagrams
or binary mixtures. No advance knowledge of the type of
hase diagram is needed, and diagrams of Types I–V are all
andled.

The robustness of the method is due to many factors, the most
mportant being:

Points on the critical lines and the three-phase lines are solved
by Newton-based methods, where temperature, molar volume
and composition are used as the independent variables.
Extensive use of analytic derivatives is made. In cases where
numerical derivatives are needed, these are calculated by cen-
tral differences.
Criticality conditions are likewise formulated in terms of tem-
perature, volume and composition.
Sensitivity equations permit effective tracing of the equilib-
rium lines.
Stability analysis based on the tangent plane distance is used
to locate critical endpoints.

The approach presently cannot be used for Type VI phase
iagrams that exhibit closed critical lines. To handle such sys-
ems an approach for verifying the existence of such lines would
e needed.
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