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Purpose of review

Respiratory syncytial virus (RSV) infection is the leading cause of bronchiolitis and hospitalization in young
infants and causes 100 000-200 000 deaths annually. There is still no licensed vaccine against RSV
infection and the therapeutic options are mainly supportive. Despite almost six decades of research,
important knowledge gaps remain with respect to the characterization of immune mechanisms responsible
for protection and pathogenesis, as well as to the identification of risk factors that predict the severity of

infection.

Recent findings

Observations made in mouse models and young children suggest that the early innate immune response
plays a major role in the pathogenesis of bronchiolitis due to RSV infection. Recent studies have improved
our understanding of the role of the adaptive immune response mediated by TH1, TH2, TH17, regulatory
T cells, and CD8™ T cells in the pathogenesis and resolution of RSV infection. Moreover, investigations
performed in the last years have made important contributions to our knowledge of the immune response in
young children, the principal risk group for severe disease.

Summary

A comprehensive understanding of how the protective and deleterious immune response during the course
of RSV infection is induced in young children remains a challenge over the coming years.
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INTRODUCTION

Respiratory syncytial virus (RSV), a member of the
Paramyxoviridae family, is the leading cause of
lower respiratory tract disease during infancy.
Infants are infected by RSV during the first year of
life, and virtually all by 2-3 years of age [1,2]. The
clinical spectrum and severity of RSV infection can
range from a mild upper respiratory illness to a
severe infection of the lower respiratory tract,
usually bronchiolitis. The majority of children dis-
play a mild illness of the upper airways; however,
2-5% will develop a severe bronchiolitis, which
requires hospitalization [2-4]. These patients will
show later a high risk to suffer recurrent wheeze and
asthma [5,6]. Immunity to RSV infection is protec-
tive, but it does not result in the induction of long-
lasting immunity. RSV does not induce an effective
immunological memory, and the titers of virus-
specific antibodies rapidly decline after primary
natural infection. Hence, recurrent symptomatic
infections occur throughout life [7]. Worldwide,
RSV is estimated to cause more than 30 million
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new episodes of lower tract illness in children under
5 years of age, 3-4 million hospitalizations and
100000-200000 fatal outcomes, with more than
95% of these deaths occurring in developing
countries [8,9].

Epidemiological data reveal that 49-70% of
children hospitalized because of RSV infection are
younger than 6 months, indicating that very young
age is the most important risk factor for severe
RSV infection [1,9]. Other important risk factors
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Pathogenesis and immune response

KEY POINTS

e RSV infection is the leading cause of bronchiolitis and
hospitalization in young infants.

e There is currently no licensed vaccine against RSY
infection, and the therapeutic options are limited.

e Our current understanding of the host response to RSV
in humans remains rudimentary; however, recent
findings strongly suggest that the early innate immune
response plays a major role in the pathogenesis of
severe infection.

o New studies have provided important information about
the role of the adaptive immune response mediated by
TH1, TH2, TH17, Tregs, and CD87 T cells in the course
of RSV infection.

associated with severe RSV disease are premature
birth [10"], low birth weight [11], male sex [12],
chronic lung disease [13], congenital heart disease
[14], immunodeficiency [15], Down syndrome [16],
low socioeconomic status [1], and diet [17"]. The
importance of RSV infections in older adults is
increasingly recognized [18-20]. Despite the enor-
mous disease burden associated with RSV infection,
there is still no vaccine or effective therapy, and the
employment of passive immunoprophylaxis with
neutralizing antibodies directed to RSV is limited
to high-risk babies.

Severe bronchiolitis induced by RSV infection is
associated with sloughing and death of airway epi-
thelial cells (which are the primary targets of RSV
infection), edema of the airway wall, increased
mucus production, and infiltration of the airway
by neutrophils and lymphocytes. The cytophatic
effects mediated by RSV might explain many of
the pathological findings in RSV disease; however,
there is compelling evidence supporting that the
host immune response has also an important role
[2,21,22].

Our current understanding of the host response
to RSV in humans remains rudimentary because
most observations have been performed in animal
models, which do not adequately reflect the course
of human infection. Unfortunately, mainly because
of ethical concerns related with studying infection
in very young children, we know very little about
the immune response against RSV at the site of tissue
injury, the airway. This review focuses on recent
advances in identifying innate and adaptive
immune mechanisms involved in the resolution
and pathogenesis of RSV infection in infants. For
an update on other important topics, such as the
analysis of virus characteristics, the epidemiology of
RSV infection, and the current efforts to develop
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well tolerated and effective vaccines for population
at risk, we refer the readers to other recent reviews
[1,2,23,24,25%,26-28].

THE IMMUNE RESPONSE OF HEALTHY
INFANTS

Newborns and infants are highly vulnerable to
infection and this condition is not restricted to
RSV. Early acquisition of HIV, hepatitis B virus,
and cytomegalovirus is commonly associated with
higher levels of virus replication and more severe
disease compared with those infections acquired in
later life [29-31]. Infants infected by Mycobacterium
tuberculosis are at least five times more likely to
develop active tuberculosis compared with adults,
and also show higher rates of severe disseminated
disease [32,33]. Infants are also much vulnerable to
malaria compared with adults [34]. Moreover,
epidemiological data related to infectious disease
in the United States in the period 1998-2006 reveal
that infants younger than 1 year show a rate of
hospitalization 4 to 10-fold higher compared with
patients ranged from 1 to 59 years [35,36].

The heightened susceptibility of newborns and
infants to a variety of pathogens could be explained
considering some signatures that characterize the
innate and adaptive immune system during the first
months of life [37,38,39%]. Pattern recognition
receptors (PRRs) are expressed by innate immune
cells and play an essential role for detecting invad-
ing pathogens and initiating both the innate and
adaptive immune response [40,41]. Two families of
PRRs have shown to act as key sensors of viral
infection by recognizing viral nucleic acids: Toll-like
receptors (TLRs) and RIG-I (retinoic acid inducible
gene)-like receptors (RLRs) [41,42]. A large body of
evidence indicates that TLR-mediated responses are
defective in neonates [43-45]. Conventional den-
dritic cells (DCs) are responsible for the initiation of
the adaptive immune response and it has been
clearly demonstrated that when stimulated through
TLRs they produce low levels of the inflammatory
cytokines interleukin-12 and type-lI interferons
(IFNs) [43,46]. Plasmacytoid dendritic cells (pDCs)
are the most important source of type-I IFNs during
acute viral infections, and previous studies have
reported a reduced production of type-lI IFNs by
pDCs in response to TLR7 and TLRY ligands, a defect
that persists until 6-12 months of age [47-49].
Natural killer (NK) cells also show a defective func-
tion in neonates being their capacity to destroy
infected cells and to produce the inflammatory
cytokines tumor necrosis factor-a and IFN-y severely
compromised [50,51]. The CD4" T cell compart-
ment has a particular immunological status in
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neonates. They show a defect in developing TH1,
and a skewing toward TH2 immunity [39%,52,53],
perhaps reflecting the inability of neonatal DCs and
macrophages to produce the TH1-polarizing cyto-
kine interleukin-12 [46,52]. The function of TFH is
also defective in young infants [53-55], and
together with the delayed maturation of follicular
DCs and bone marrow stromal cells appears to
explain the compromise in B cell responses
[28,56]. The CD8" T cell compartment also shows
a strong defect in young infants, which involves the
generation of both effector and memory cells
[57",58,59".

RECOGNITION OF RESPIRATORY
SYNCYTIAL VIRUS INFECTION BY
PATTERN RECOGNITION RECEPTORS AND
ACTIVATION OF THE EARLY INNATE
IMMUNE RESPONSE

Two families of PRRs are involved in the recognition
of RSV: TLRs and RLRs [26,60,61]. TLRs 3 and 7 are
expressed in endosomes and recognize dsRNA and
sSRNA, respectively, whereas TLR4 is expressed on
the cell surface and recognizes the RSV envelope
glycoprotein F [62,63]. The RLR family acts as cyto-
solic sensors of nucleic acids and recognizes viral
RNA [41,61]. Early stimulation of PRRs by RSV acti-
vates signaling cascades resulting in a number of
responses mediated by different cell types: pro-
duction of mucus, proteases, antimicrobial peptides,
type-I and type-III IFNs and chemokines (including
interleukin-8) by epithelial cells, the synthesis and
release of type-I [FNs by pDCs, the production of a
number of cytokines and chemokines by alveolar
macrophages, the phenotypic maturation of DCs,
and their migration to lung-draining lymph nodes
to prime the adaptive immune response against RSV
[26,60,61]. The relative contribution of each PRR in
the activation of different cell types and different
cell functions in the course of RSV infection remains
controversial. RSV has shown to persist longer in the
lungs of infected TLR4 or TLR2-deficient mice,
suggesting that both TLRs play a protective role
[64,65]. Silencing of either TLR3 or TLR7 did not
impair in-vivo clearance of RSV, but enhanced the
production of TH2-type cytokines, inducing goblet
cell hyperplasia and mucus overproduction, sup-
porting the notion that these receptors prevent
the development of a more severe disease [66,67].
Interestingly, investigations in immunodeficient
patients unresponsive to TLR3, TLR4, TLR7, and
TLR3 stimulation do not reveal a predisposition to
severe RSV infection, suggesting a redundant role for
TLRs in host defense [68]. The contribution of RLRs
was analyzed in mouse models, and revealed an
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important role of these receptors in the early innate
immune response against RSV, by stimulating the
production of a range of inflammatory mediators
such as type-I and type-IlIl IFNs, inflammatory
cytokines and chemokines, metalloproteinases,
and cathepsins [69,70%,71,72]. Type-I and type-III
IFNs play a critical role in antiviral immunity. A
comprehensive review of the actions mediated by
[FNs in RSV infection is beyond the scope of this
review, and is well covered elsewhere [61,73-75].

CELLS OF THE INNATE IMMUNE SYSTEM
IN RESPIRATORY SYNCYTIAL VIRUS
INFECTION

In a recent study, Mejias et al. analyzed the tran-
scriptional profile from the blood of RSV-infected
children who required hospitalization [76™]. They
reported that RSV infection is associated with the
activation of neutrophils, the upregulation of type-I
IFN-related genes, enhanced markers of systemic
inflammation, and suppression of T and B-cell-
mediated immunity. This suggests that RSV disease
could be regarded as a dysregulated innate immune
response to infection [76"",77]. Consistent with this
view, previous studies have shown that severe bron-
chiolitis in young infants is associated with a strong
influx of neutrophils into the airways [78,79], that
appear to promote epithelial cell damage and mucus
overproduction [21,80]. Interestingly, a genetic
polymorphism of interleukin-8 (CXCL8), which
plays a critical role in recruitment of neutrophils
in the lung [81], has been associated with an
enhanced risk of severe bronchiolitis [82].

There is a general agreement that pDCs play a
protective role during RSV infection [26]. They are
mobilized to the nasal mucosa and the airways, and
promote the clearance of the virus through the
release of high amounts of type-I IFNs [83-85].
Mouse models of RSV infection revealed that
depletion of pDCs resulted in the enhancement of
viral load, pulmonary inflammation, and airway
hyper-responsiveness [84,85]. It should be noted,
however, that the ability of pDCs to produce
type-I IEN is limited during the first months of life
[47,49,86,87"], and hence this could compromise
the effectiveness of the immune responses against
RSV in early life.

Alveolar macrophages are not only strategically
located in the lung to function as a first defense
system against respiratory pathogens, but also play a
major role in the maintenance of lung homeostasis
in the absence of stimuli able to disrupt lung struc-
ture [88]. Recently, it was shown that alveolar
macrophages are essential for protection against
influenza virus-induced morbidity, by virtue of their
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ability to remove dead cells and surfactant material
from the airway, hence maintaining lung function
[89%"]. Observations made in lung necropsies from
infants who died from RSV infection suggest a
similar role for alveolar macrophages in the course
of severe infection [90]. Moreover, mouse models of
RSV infection revealed that depletion of alveolar
macrophages dampened the early innate immune
response to RSV, and enhanced the peak viral load
and airway occlusion [91,927].

NK cells play an important role in the control of
viral infections by killing infected cells and by pri-
ming DC function and T cell responses, via the early
production of IFN-y [93]. Severe RSV bronchiolitis in
young infants appear to be associated with a poor
infiltration of NK cells in the airway [94], suggesting
that they exert a protective role. Animal models of
RSV infection, however, have shown that NK cells
may contribute to lung injury during the early steps
of RSV infection [95], and also stimulate CD8* T cell
responses, avoiding TH2 responses and subsequent
allergic sensitization [96,97]. It should be men-
tioned that neonatal NK cells express phenotypic
and functional deficiencies that may compromise
the immune responses against RSV in the first
month of life [98].

THE ADAPTIVE IMMUNE RESPONSE
AGAINST RESPIRATORY SYNCYTIAL
VIRUS INFECTION IN YOUNG INFANTS

Conventional DCs play an essential role in the
induction and regulation of adaptive immune
response, including the generation of cytotoxic
responses mediated by CD8" T cells, the differen-
tiation of CD4" T cells into different functional
profiles, and the promotion of B-cell responses
[99]. As mentioned above, neonatal DCs produce
low levels of interleukin-12 and type-I IFNs com-
promising both the differentiation of CD4" T cells
into TH1 cells and the development of CD8" T cell
memory [46,52]. Moreover, mouse models of RSV
infection have revealed that neonatal DCs express
low levels of co-stimulatory molecules in the course
of infection, and a limited ability to process and
transport antigens to draining lymph nodes [597].
Consistent with these observations, RSV infection of
human DCs has shown to induce only a low increase
in the expression of the lymph node homing recep-
tor CCR7, while inhibiting DCs ability to activate
CD4™" T cells [100,101].

Antibodies play an essential role in antiviral
immunity by directly neutralizing free virus
particles and also by inducing the opsonization of
extracellular virus or infected cells [102]. The two
major surface proteins of RSV, the proteins G and F,
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are the most important targets of neutralizing anti-
bodies [24]. The effectiveness of the humanized
monoclonal antibody palizumab directed to the F
protein, in the prophylaxis of high-risk infants,
indicated that neutralizing antibodies can effec-
tively confer protection against RSV infection
[103]. Passive transfer of maternal IgG antibodies
through the placenta and colostrums confer protec-
tion to neonates, but the levels of maternal
antibodies decline rapidly, showing a half-life of
2-3 months [104-107]. Infection by RSV in young
infants results in the induction of an antibody
response, but fails to establish long-lasting immu-
nity because the antibody titers rapidly decay [108].
Even in the adult, the titers of IgG-neutralizing
antibodies rapidly wane after natural RSV infection
[109,110], being lower titers of nasal IgA and
serum IgG-neutralizing antibodies associated with
increased rates of infection [109,111,112].

Children with a defective T-cell response show
an increased RSV-mediated disease severity and high
viral titers, indicating that T cells are involved in the
resolution of the infection [113,114]. Mouse models
of RSV infection have clearly shown that CD8"
T cells are not only required for viral clearance,
but are also involved in the induction of lung injury
[115,116]. On the contrary, observations made
during the course of severe infection in young
infants suggest that T CD8" cells are involved in
the clearance of RSV, but not in the induction of
lung disease. Infants are able to mount a virus-
specific CD8" T cell response; however, accumu-
lation of activated T CD8' cells was almost
undetectable in broncheoalveolar lavage samples
at the time of hospitalization, in the peak of illness,
but reach high levels 9-12 days after the onset of
primary symptoms, that is, at convalescence
[117,118]. This suggests that CD8" T cells do not
contribute to pathogenesis associated with RSV
infection [119,120].

The relevance of TH2 responses in the patho-
genesis of RSV infection in young infants is unclear
[22,121%,122]. Observations made in infants during
the course of severe bronchiolitis have shown con-
tradictory results. Although some studies reported a
correlation between the levels of TH2 cytokines in
broncheoalveolar lavage and the severity of RSV
infection [123-125], other studies failed to detect
this polarization toward a TH2 profile [126-128].
More recently, the participation of TH17 cells in the
pathogenesis of RSV infection has been proposed.
TH17 cells play an important role in the immune
response against bacteria and fungi, but also are
involved in the induction of tissue injury by virtue
of their ability to induce the rapid recruitment and
activation of granulocytes and macrophages, and
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the stimulation of epithelial cells [129,130]. TH17
cells were found to be increased in the tracheal
aspirate and the peripheral blood of infants during
the course of severe RSV infection [131,132""]. More-
over, experiments in mice revealed that cytokines
associated to the TH17 profile, such as interleukin-6,
interleukin-23, and interleukin-17, are detected in
the airways following RSV infection [133-1335].
TH17-derived cytokines appear to promote three
major deleterious responses: infiltration of the lung
by neutrophils, stimulation of interleukin-13 syn-
thesis and mucus over-production, and inhibition
of cytotoxicity mediated by T CD8" cells [26,136].

Forkhead box P3* regulatory T cells (Tregs) play
a critical role in the control of autoimmune
responses. They do not only prevent autoimmunity,
but also modulate immune response during infec-
tion to minimize tissue injury [137,138]. Mouse
models of RSV infection have shown that Tregs play
an important role in controlling lung inflammation
in the course of RSV infection [139-141]. These
studies revealed that infection by RSV induces Treg
recruitment in the lung and mediastinal lymph
nodes, and also that depletion of Tregs enhances
disease severity [139-141]. We have recently
reported that RSV infection in young infants who
required hospitalization induces a dramatic and
prolonged reduction in the frequency of peripheral
blood Tregs [142]. Scarce information is available
about the function of Tregs during the course of
human acute viral infections; however, increased
frequencies of Tregs in patients infected by dengue
or influenza A virus (HIN1) have been reported
[143,144]. Whether the depletion of circulating
Tregs during RSV infection is because of the recruit-
ment of Tregs to the lung or the lung-draining
lymph nodes, the death of Tregs, or the acquisition
of an effect-like phenotype, under the pressure of
inflammatory conditions [145], remains to be
clarified.

CONCLUSION

Infection by RSV is the common most single cause of
hospitalization in young infants, and results in
100 000-200 000 deaths each year. It is also a lead-
ing cause of respiratory disease in the elderly and in
immune compromised patients. There is currently
no licensed vaccine against RSV infection and the
therapeutic options are limited. There are still many
important gaps in our understanding of the patho-
genesis of RSV infection. Why do some children
develop severe bronchiolitis, whereas most suffer
a mild illness? What is the role of the innate and
adaptive immune mechanisms in the protection
and pathogenesis of RSV infection? Why do RSV
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infection fails to induce long-lasting immunity,
even in the adult? Answers to these questions are
crucial to the development of effective vaccines and
new therapeutic tools for the prevention and treat-
ment of RSV infection.
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